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F I R S T  MOTIONS FROM SEISMIC SOURCES N E A R  A F R E E  

SURFACE 

BY R. BURRIDGE, E. R. LAPWOOD, AND L. KNOPOFF 

ABSTRACT 

The radiation patterns of first motions are calculated for the sudden occurrence of an arbi- 
trarily oriented fault (dislocation) at the surface of a half space; the dislocation in the fault 
plane is also arbitrarily oriented and is assumed to occur over a very small area of the fault 
plane. Initially the source is considered at a finite depth and the solution is obtained by allow- 
ing the depth to tend to zero. 

In general the results show a surprising directionality for the radiation of SV .  In the focal 
plane projection the first motions of P and S H  for a strike-slip fault show the familiar four- 
lobed radiation patterns. The first motions of S V  show some reversals in polarity with angular 
distance from the source. 

The first motions for all components of motion for a dip-slip fault have characteristics 
governed strongly by the presence of the free surface, and hence differ markedly from the usual 
radiation patterns for a deeply imbedded source. 

1. INTRODUCTION 

Theoretical discussions of first motions from seismic sources have usually been 
based on the assumption that the medium is infinite in all directions, so that  the 
observed disturbances are uninfluenced by the proximity of any boundary. 

The first motions from deep foci are not influenced by the presence of a free 
surface since the phases reflected from the surface arrive late compared with the 
direct waves. But as the source approaches the surface the direct and reflected 
phases approach one another in time and an interference can result if observation 
is made with a long period system. When the source is precisely at the surface, long 
or short period instruments Inust record some alterations of the infinite medium 
radiation pattern in first motions. 

In  this paper we obtain radiation patterns of first motions when a discontinuity 
in displacement (a dislocation) occurs suddenly near the surface of a uniform half- 
:space. We give formulae for the ideal case in which a point source is at zero depth 
below the surface. These are obtained by a limiting process, and will be good 
approximations when the linear dimensions of the region of faulting and the depth 
:are small compared with a typical wavelength of the disturbance. 

Since even in the sinlple problem of incidence of a plane wave on a plane surface 
there is a remarkable variation in amplitude of the reflected waves with angle of 
incidence, it is to be expected that the proximity of the surface will profoundly 
modify the radiation pattern. Moreover, when an incident S-wave impinges be- 
yond the critical angle, so that there is total reflection, there is a consequent change 
of phase hvthe  reflected S-wave. Thus if there is an incident pulse, which may be 
regarded as a combination of plane waves, there will be a change of pulse shape on 
reflection wherever critical reflection beyond the critical angle is involved. Finally, a 
surface source is associated with head wave effects, not predictable from the in- 
finite medium problem; S-wave radiation beyond the critical angle must be in- 
fluenced by this cause as well. I t  is the effect of these phenomena that we examine. 
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Our sources are arbitrarily oriented dislocations of the type that  occur in models 
of earthquakes. Using the results of Burridge and Knopoff (1964) we obtain equiva- 
lent systems of dislocations across the plane z = h, the z-axis taken normal to the  
surface, and then solve our boundary value problem in relation to these. 
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FIG. 1. (a) Schematic diagram of the free surface (xOy), the source S at depth h, and the  
fault  plane dipping at angle ~. (b) A magnified view of the assumed relative motion at the  
region of faulting (shown hatched in (a)) for a strike-slip fault. (c) The same for a dip-slip 
fault.  

~. ~ATHEMATICAL DESCRIPTION OF CERTAIN TYPES OF I~AULT, AND 

EQUIVALENT SYSTEMS OF POINT FORCES 

We consider models of strike-slip and dip-slip faults on a plane which dips at an 
angle $ relative to the plane surface of a half-space. At time t = 0 the two sides of 
the fault suddenly acquire a permanent relative displacement tangential to the  
fault plane; we say that  a dislocation occurs. We assume that  the normal stresses 
are continuous across the fault plane. 

Let the half-space be defined by z _-> 0 (figure 1) and let the faulting take place ~ 
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across a small  region (shaded in Figure  l a )  near  the point  (0, O, h) of the plane 

z - -  h +  y t a n 3  = 0, 

wi th  which we associate the  uni t  normal  v = (0, sin 5, cos 5). 5 is thus the  angle of 
dip of the  faul t  place, and the  str ike is parallel  to Ox. We regard the  plane z = 0 as 
horizontal .  

Le t  the  d isp lacement  vec tor  be u = (u, v, w).  Then  a strike-slip faul t  is charac-  
terized by  a discont inui ty  which we denote  b y  [u] in u, while v and w have  zero dis- 
cont inui ty  (figure l b ) .  A dip-slip fault  is character ized by  discontinuit ies [v] and 
[w] which are constrained by  the  relat ion 

[ v i s i n g +  [w]cos5  = 0 

4o ensure tangent ia l  mot ions  only (Figure  l c ) .  
T a k i n g  r and  s to be rec tangular  coordinates  in the  faul t  p lane  such t h a t  

x - - -  r, y = s c o s 3 ,  z = h -  s s i n 3 ,  

we m a y  specify the  discontinuit ies [u], [v], [w] as funct ions of r, s, and tinle t. We 
then  consider the  limit as the  area  of faul t ing tends to zero a t  (0, 0, h).  

I .  For  a strike-slip dislocation we t ake  

[u] = SS(r)~(s)H(t) 

where H is the  Heavis ide  step-function,  ~ the  Dirac  function, and  S is a measure  of 
the  an lount  of offset, which we take  as constant .  F r o m  Burr idge and Knopoff  
(1964) we obta in  the  equivalent  body-force  as 

fi #5'(x)~(y)~(z h)H(t)/ 
(2.1 

t--t~(x)5 
'(y)~(z-- h)H(t)\ 

- ~,~'(x)5(y)~(z + S sin ~ h)H(t)) 

/ 

where  ~ '(x)  = dS(x)/dx and t* is the  r igidity of the  medium.  
Tak ing  5 = 0 in (2.1),  we see t ha t  the  coefficient of cos ~ is the  body  force equiv- 

a lent  of slip on a horizontal  plane.  This  model  is denoted by  (a ) .  Tak ing  ~ = 90 ° 
we see t h a t  the  coefficient of sin 5 is the  equivalent  of strike-slip on a vert ical  p lane;  
this model  is called (b) .  

I I .  Fo r  a dip-slip dislocation we take  

[v] = -DS(r)5(s)H(t) cos 5 

[w] = D~(r)~(s)H(t) sin 
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where D is constant. The equivalent body force is 

f~ 

fz 

= D cos 25 

( 0 / 
- - # 5 ( x ) 5 ( y ) ( ( z -  h)H(t) 

\ -~5(x)~ ' (y)5(z  h )H( t ) /  

o I + D sin 2~ t~(x)5'(y)5(z -- h)H(t) 

- ~ 5 ( x ) 5 ( y ) 5 ' ( z -  h )H( t ) /  

(2.2) 

We observe that  the coefficient of D cos 2~, which gives the body force corresponding 
to unit slip on a horizontal plane, differs from (a) of I only in the interchange of x 
and y. I t  needs no separate discussion. The coefficient of sin 2~, which is the body 
force equivalent to dip-slip on a plane dipping at 45 °, we denote by (c).  

The radiation from dislocations on a plane dipping at angle 5 can thus be ex- 
pressed as a linear combination of elementary solutions to problems describing the 
radiation from dislocations on horizontal, vertical, and 45 ° planes. To facilitate the 
solution of the problem with a horizontal boundary, we make further transforma- 
tions needed to express the prescribed dislocations in terms of dislocations across a 
horizontal plane only. We consider each of the elementary models in turn. 

(a).  This body force corresponds to the discontinuity [u] = SS(x)5(y)H(t) 
across z = h where the other components of displacement and the stresses are con- 
tinuous. These six conditions are most conveniently expressed as 

[u] = S~(x)5(y)H(t), ~ = O, 

[v] = 0, ~ = 0, (2.3) 

Jowl  sx 5' [ w ] = 0 ,  ~ = x + 2 .  (x)5(y)H(t) 

where [ ] denotes the saltus in the direction of positive z across z = h, and },, tL are 
the Lain6 constants of the medium. 

(b).  This body force, which was derived as equivalent to a strike-slip on a verti- 
cal plane, is equivalent also to the following set of discontinuities across z = h 
(Burridge and Knopoff, loc. cit., formula (10)):  

I o n ? =  SS(x) ( (y)H( t ) ,  [u] = o, 

[,] = o ,  

[w] = o, [ a ~ ]  = o. 
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[Note that  since all systems of dislocations that  are equivalent to the same body 
force give the same radiation pattern, it is possible for two different sets of disloca- 
tions to give identical radiation patterns, as is well known from fault plane solu- 
tions.] 

(c). This body force, derived as equivalent to a dip-slip on a plane dipping at 45 ° 
is also equivalent to the set of discontinuities across z = h: 

[u] = O, 

[v] = O, 

[w] - Dg 
X + 2~ 

- -  ~(x)~(y)H(t) ,  0 

k + tL ( ( x ) ~ ( y ) H ( t ) ,  
X +  2t~ 

2X + 3t~ ~ ( x ) ( ( y ) H ( t )  
;~+ 2~ 

(2.5) 

3. THE FOURIER SYNTHESIS 

For each of the sources (a),  (b) and (c) the values of [u], [v], [w], [Ou/Oz], [Ov/Oz], 
[Ow/Oz] are given. Using the Fourier inversion formula we may write 

where 

l f ' f ' f  ~ . [u]- (27r)3 . d~ . d~ . dv[u]d ('t-~-'~') (3.1) 

Ff f [u] = dt dx dy[u]e -~(~'t-~-'v). 
z¢ a¢ z¢  

(3.2) 

Equation (3.1) represents In] as the result of compounding discontinuities with 
simple harmonic dependence on x, y and t. We can therefore find first the radiation 
pat tern set up when the discontinuities vary  harmonically with x, y and t, and then 
combine the results by means of the integrals shown in (3.1) to obtain the radiation 
due to the originally prescribed discontinuities. We do this because we may expect 
the solution of the elastic wave equations for harmonically varying discontinuities 
at  z = h to be in terms of plane harmonic or inhomogeneous waves of the types P,  
SV,  and SH. 

4. THE SOURCE FUNCTIONS 

We now construct for the displacement (u, v, w) a sum of solutions of the elastic 
wave equations which can be made to possess prescribed discontinuities at z = h. 
Consider 

: i l i A ,  
\{½A sgn (z - h) + ½A'}~/ ,  

e i (~ t -~x -Èy- [ l z -hD 
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{½B -{- ½B' sgn (z -- h)}~j$ ) 

+ {½B -}- ½B' sgn (z -- h)}~" ~ e i( '°t-~-~-~' '~-~l) (4.1) 

{½B sgn (z -- h) -]- ½B'} ( - -~  -- ,~) sv 

+ 

- /½C + ½C' sgn (z - h)}n\  

{½C + ½C' sgn (z - h)}~ ~ e i( '~t-~-~-Vl~-hl) , 

0 /,~. 

w h e r e , 2 +  2 +  t2 = 2/a~ , ~ 2 +  2 +  ~.,2 = c 2/~, a and ~ being the velocities of 
P and S waves, {(h + 2u)/p} ~/2 and {u/p}i/2 respectively. ~- and ~' are defined as 
being real and positive or pure imaginary with negative imaginary part: then the 
corresponding expressions represent plane waves or bounded inhomogeneous waves 
respectively. 

The subscripts P ,  S V  and S H  indicate that the forms of the three expressions on 
the right hand side of (4.1) have been constructed so as to represent waves of the 
usual types. The combinations of constants A, B, C, A', i f ,  C', are so chosen that 
the terms in A, B, C have discontinuous z-derivatives across z = h, being themselves 
continuous, while the terms in A', B', C' are discontinuous but have continuous z- 
derivatives. 

Since the dislocations will be specified, we can find A, B, C, A', B', C' from the 
following set of equations: 

~A'  + ~'~B r - ~?C = 

nA '  + ~ 'nB'  + ~C = 

~A -- ( ~  + v2)B = 

- i ~ A  - i~'2~B + i~'~?C = 

- i ~ A  - i~'2~B - i~'~C = 

[;], 

[w], 

5 ? '  (4.2) 

- i ~ A  ' + i ~ ' ( C  + n : )B '  = ~z " 

Here we have found the relations for dislocations [u]e ¢('~t-~x-"~') of (3.1) which form 
a source varying harmonically. We will subsequently introduce pal~icular values of 
[5], etc. corresponding to source (a), (b) and (c), solve (4.2) for A, B, C, A', B r, C', 
and then complete the construction of our solution by integration over ~, 7, o~. 

5. REFLECTIONS AT THE F R E E  SURFACE 

Maintaining the generality provided by the source, which is represented by (4.1), 
we now seek to satisfy the condition that the boundary z = 0 is free from stress. 
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From our knowledge of reflection of plane waves we expect tha t  incident P will 
give rise to reflected P P  and P S ,  incident S V  to reflected S P  and S S V ,  incident 
S H  to reflected S S H .  Using (4.1) as applied to the region 0 =< z < h and formu- 
lating the exponents in the reflected waves according to Snell's Law, we determine 
the coefficients so tha t  the stresses 

Ou ~-~ = # -}-  , 

0;) Ov 
"rz~= ~ -4- , 

Ou Ov ) Ow Ow 
~ . = x  ~+Uyy+~-  + 2 .  oz 

all vanish on z = 0. We obtain the complete set of incident and reflected plane waves 
for which the expressions valid in the region z > h are: 

Incident : 

() 1 u = ~ ( A  -+ A ' )  e i(~t-a-'y-r(~-h)) , 

W p 

() (?) = 1 '7 
u -~ ( B  + B ' )  e i(~t-a-'y-V(~-h)) , 

W s v  _ _ ~72 

W ,stt 

Reflected: 

1 ( A  -- A ' )  e ~('°t-a-'~-~'(~+h)) 
u 2 ~ -  ' 
W p p  

= ( A  - -  A ' )  
e i (~ t -~x -Èy -~ ' z -~h )  

= ( B  - B ' )  

- -  - -  ~ / 2  

6t 

e ~('~t-~-'y-~-~'h) , (5.1) 
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1 (B -- B') e i(~'-~-'u-V(~+h)), 
"W ,%~ v 

where 

u = 1_ 2 ( C -  C')  e "~'-~-'~-r'(z+h)) 

W S S H  

( )2 
J - ~ + rr ' (~  ~ + n~) ( 5 . 2 )  

.and 

= - ~-~-'(~ + ,7~), ( 5 . 3 )  

We now allow h to tend to zero. Then P,  PP, and SP, having the same exponent 
and the same direction, combine into a single wave. S, SSV, and PS also combine, 
and so do SH and SSH. 

We have carried the calculations as far as we can for a general source. We now 
insert the particular values of A, B, C, A', B', C' that  relate to our sources (a), (b),  
and (c). 

6. SOURCE (a): SLIP ON A HORIZONTAL PLANE 

Inserting the discontinuities (2.3) into the Fourier transform (3.2) we obtain 

~ ,  ~ = O, 

[~] = o, ~ = o, (6 .1 )  

[ ~ J  1 x 
[?o] = o, ffZ- = : -  s - -  i~. 

We will omit the factors S/io~ and D/io~ and bring them back at a later stage. Sub- 
st i tuting these values into (4.2) and solving we get 

A = O ,  A ' = 2 ~ ,  

o) 2 

B =  O, B' = 2o~r , ~Y4-~ 
(6.2) 

C = O, C' = - 
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With these values, all expressions in (5.1) cancel. The reflected disturbance pre- 
cisely cancels the incident in the limit when h -~ 0. I t  may also be verified directly 
using known radiation patterns valid in a whole space and known reflection coeffi- 
cients tha t  P, PP and SP tend to cancel as h ---) 0, as do SH and SSH. SV, PSV 
and SSV are more difficult to treat directly owing to critical reflections. 

7. SOURCE (b): STRIKE-SLIP ON A VERTICAL PLANE 

We find the Fourier transforms of the discontinuities (2.4) as 

[~uJ s (-i,), [u] = o, ~ = : -  

I ~ ]  (--i~), (7.1) 
S 

[~] = 0, ~ = i-~ 

[~] = 0 ,  ~ = 0 .  

and the solution of (4.2) as 

¢/0" ~ ~ A'  = 0, A = 2 ~ 2 ~ .  , 

~2 
B = 2 ~n B ' =  0, (7.2) 

~2 ~2 "k- 7 2,  

C -  O. 
r ' (~  ~ + ~ )  ' 

Putting these values into (5.1) and combining terms we get 

~v [ ~ '  e ~(~t-~-'y-V~) (7.3) 

This is the solution corresponding to a harmonically varying source. Re-inserting 
the factor S/i~o and integrating, we obtain the formal solution corresponding to 
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the prescribed dislocation: 

() I I I :  - -  _ _  ei(O,t-~x-~y-f z) 
w ~ ( 2 ~ )  ~ ~ i ~  ~ ~ -~- (7.4) 

S f d o f f  d~f_ d~ }~ __ ~2_ --  r ]~ '  e i(c°t-~x-~y-~'z), 

(7.5) 

u _ S " d~ d~ d~ (2~)~ . i ~  . . r ' ( ~  ~ + n  ~) W sit 
(--~0 ~1) ei(~t-~x-,~y-U z). (7.6) 

This is the exact formal solution, but to discover its physical meaning it is necessary 
to evaluate the integrals. As we wish to find only the pattern of first motions, we 
take the stationary phase approximation which is derived in Appendix I and ex- 
hibited in fornmlae (I.8). We also introduce a right handed set of unit vectors 

sin 0 cos ¢ \  

, = ~ s i n O s i n C ] ,  

\ cos 0 / 

/cos  0 cos ~ t  / - - s i n  ¢~ 

1~-- [ eos0  sin ¢ ] ,  [ -- 

\ --sin0 / l e o  ¢ ] 

(7.7) 

w h e r e x  = R c o s t s i n 0 ,  y = R s i n O s i n ¢ ,  a n d z  -- Rcos0 .  Seen along the ray 
from the source to the point (x, y, z), f" is in the line of sight, l~ is perpendicular to 
this and points upwards in a vertical plane, and ~ = ~ X ]~ points to the observer's 
right. 

In the notation of Appendix I, for up ,  the radiated P-wave 

F(c~, sin 0 cos ¢, sin 0 sin ¢) = 
as -- sin20) 1/s sin ¢ cos ¢ sin'°0 

( ( a s _ " a 2 -- sin~O) 1/s sin20 -t- sin'S0 cos 0 
( 7 . 8 )  

and F is real. Hence 

U p  - -  
1 S 

a e - sinS0) 1/2 sin'0 cos 0 

2~R(J )2 (j  ),/.~ 
-- sinS0 +sin20 cos0 ~ - -  sin'S0 (7.9) 

• sin ¢ cos ¢ ~ ( t  - R /a)  

where R = (x 2 + y2 + z2)1/2. 
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Similarly, for usv ,  the radiated S V  wave 

F(3,  sin 0 cos q~, sin 0 sin ¢) = 
sin 0(½ -- sin20) 

B sin20) 1/2 (½ - sin~0) 2 A- sin~0 cos 0 ~-2 - 

• sin ¢ cos ¢ 1~ 
and is real for sin 0 < fl/a. Hence 

l l S V  - -  

1 S sin 0 cos 0(½ - sin20) 

(3~ _ )1/2 2z 3R (½ _ sin2O)- o + sin-OO cos O ~-~ sin20 
sin ¢ cos ~ £~( t - R /B)  

(7.10) 

when 0 < sin -~ (B/a) .  
When sin 0 > B/a, F is complex• We separate real and imaginary parts, obtaining 

U S V  - -  
1 S sin 0 cos 0(½ - sin20) 3 B2 sin ¢ cos ok  ~(t - R / 3 )  

21r 3R (½ _ sin20)4 + sin40 cos2O (s in20_ ~ )  

1 S 
2~ BR 

( sinB0 cos 0(7 - sin20) sin20 - ~ sin ~ cos ¢1~ 6'(t - R / 3 )  

(½ -- sin20)4 + sin40 cos20 (sin20 -- ~2) 

(7.11) 

+ 

when 0 > sin -1 3/a.  
Thus when 0 > sin -1 B/a, uzv has a form which is constructed from the ~ function 
and its allied function ~'. Again, for u z , ,  F is 

F(3,  sin 0 cos ¢, sin 0 sin ¢) = tan 0 cos 2¢ [ 

which is real. Thus 

1 S 
sin 0 cos 2¢ f~(t - RsH/3),  (7.12) 

usH -- 27r BR 

If the original discontinuities have time variation G(t) instead of H ( t ) ,  the above 
solution will be modified by convolution with g(t) = dG(t) /dt .  In particular, the 
first motion (for sharp G(t) ) will have time dependence like g(t -- R / a )  for P and 
g(t - R / 3 )  for S H  and for S V  for 0 < sin -1 3/a.  But for 0 > sin -~ (3 /a) ,  fornmla 
(7.11) will be modified by replacing ~(t - R /B)  by g(t - R /B)  and ~'(t - R/B)  by 
g'(t -- R /B)  where g~ is the allied function of g, given by 

g'(t) = . . . .  1 p _ f _ ~  g(t "r) 1 dr, (7.13) 
7F T 
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' P - '  indicating that  the Cauchy principal value is to be taken at the singularity 
r = 0. The function - 1 / l r r  is in fact 8~(r). 

The  variation of the amplitude of P with direction is seen to depend on two fac- 
tors, one a function of the polar angle 0 alone, the other a function of azimuth ¢ 
alone. Computations have been made for a Poisson medium in which X = #, 2 = 3B2 
and in figure 2 the variation of the amplitude of P with 0 is shown by means of a 
polar diagram for the range 0 < 0 < 90 °. The variation with ¢ is shown in figure 3. 

0.5 
0 . . . . . . . .  0 

0.5 

~(-) 

S~ 

0.5 

SV ~ 

0.5 ~ 8 

8=0 ° 

1.0 

1.5 

2.0 

e °o ° \ 

FIG. 2. Polar diagrams for the variation with 0 of SV, (SV r and SV~), and P for both the 
sources (b) and (e). 

The amplitude for a given direction (0, ¢) is proportional to the product  of these 
two factors. The first motion in P varies with time as g(t  - R / a ) .  

The dependence of S V  on direction is more complicated, but  again variation with 
0 and with ¢ can be separated. The variation of S V  with ¢ is the same as that  of P 
and is shown in Figure 3a. The variation with 0 is found as for P as long as 0 < 
sin -1 ¢~/a, and the time dependence is as f ( t  - R / ~ ) .  But when O > sin -1 B/a S V  is 
composed of two terms, namely S V '  with time variation g(t - R/¢~) together with 
S V  ~ with time variation g~(t -- R/ f l ) .  S V '  and S V '  are both shown in Figure 2. 

The dependence of S H  on direction is simple: polar diagrams for the factors 
sin 0 and cos 2¢ are given in Figures 4e and 4a respectively. 

In these figures continuous lines indicate positive values, broken lines negative 
values. 
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W e  observe  t h a t  t he  p a t t e r n  in a z i m u t h  is t he  same for P a n d  S V - - t h e  four-  
lobed  rose t t e  shown in figure 3a. F o r  SH i t  is also a four- lobed roset te ,  b u t  r o t a t e d  
t h r o u g h  45 ° compared  wi th  t h a t  for P a n d  S V  (F igu re  4a) .  

T h e  mos t  r e m a r k a b l e  fea tu re  of these  g raphs  is t he  d r a m a t i c  va r i a t i on  of S V ,  S V  r 
and  SV '  wi th  t~ near  t he  cr i t ical  angle  e¢ = sin -~ ~ / a .  F igures  5 a n d  6, in which  e is 

( ~  5 ~ 0.5 

9b =90 = 
FIG. 3. Polar diagrams for the variation of P and SV with ~: (a) for the source (b) and (b) 

for the source (c). 

s~  * ~  ~ - ~ ,~ . ,  % 

y 

® 
y 

0.5 1.0 

Fla.  4. Polar diagrams for the variation of SH: (a) variation with (b for source (b), (b) 
variation with ¢ for source (c), (c) variation with e common to both sources. 
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the abscissa, show this variation. In Figure 6 the horizontal scale is stretched to 
show detail near 0 = 0c. The steepness of SV to the left and SV ~ to the right of 
0c is due to the vanishing of [ sin 2 0 - (~2/a2)]1/2 at  0c, with an infinite derivative 
there .  

3.0 i--  

2.5 

2.0 

1.5 

1.0 

0.5 

S V  

/ 

\ v ~ 

60" 8 90* 

\ 
\ 

"x. j 

-0 .5  - -  
FIG. 5. Linear graph of variat ion of SV ,  S V '  and S V  ~ with e (cf. Figure 2). 

The relative size of the lobes of P and SV in 0 < 0 < 0, shows that  for such 
angles nmst of the radiated energy is in SV. This radiation has a large prominence 
near 0, showing remarkable sensitivity to direction. 

For 0 > 0~ SV' is comparable with SV' except near 0 = 90 °. This means that  for 
a large range of 0 the first motion in S V  is a mixture of the original and allied 
pulses. This in general blunts the sharpness of SV and makes the time of arrival of 
S hard to identify. 

8. SOURCE (e):  DIP-SLIP ON A PLANE DIPPING AT 45 ° 

The Fourier transforms of the discontinuities (2.5) are 

[u ]  = o, O~l D X + ~ i~, 
-ffffz = iwh + 2t~ 
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[4 = o,  

D g 
[ w J -  i~ X + 2t~' 

30 V 

I ~ l -  D 2X + 3g 
61, 

Oz ioJ X + 2g 

= o, 

(s.1) 

2.5 

2 .0  

1.5 

1.0 

0.5 
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/ 

/ 

'SV ~ 

I I I 
034* 35* 36* 0 
FIG. 6. Magnified detail of Figure 5 near the critical angle &. 

and the solution of (4.2) is 

~ v 2 - -  i'2 A '  = 0, 
A =  ~2 ~- , 

/32 ~2 + 22 B' 
B = - - w ~ - , e 2 + ~ / ~ ,  = O, 

C = ~n C' = 0. V(f2 + ~2), 

The full formal solution, corresponding to (7.4), (7.5), "(7.6) is then (u) _o 

• { h ~  (~2 + 7/2) + ~2} ~ (71~ei(~t-~x-nY-~Z) , 

(a2) 

(s3) 



1904 B U L L E T I N  O F  T H E  S E I S M O L O G I C A L  S O C I E T Y  O F  A M E R I C A  

:) -" 
(8.4) 

/ ~  ~2 e~/ ~( \ 

• x---4-~(~e+n~)+n g - ( ~ }  - ~ - n  e/ 

w ~ . -  (2~)~ i Z  + '7 e (8.5) 

Evaluating the first motion by the method of stationary phase, we obtain, corre- 
sponding to (7.8)-(7.12) : 

) 1 D sine0c°s 0 ~ - -  sin e0 ~ - -  2 +  sin 2¢ 

4~raR ( ~ _  sin2 0) 2 Be )l/e 
-t- sin 2 0 cos 0 ~-e -- sin2 0 

• ~ ( t -  R/,~). 

(8.6) 

l l s v  

(1 V ) 1 D sin0 cos0 -- sin 20 ~ -  2-bsine~ 

_ O) 112 41r BR (1 sine 0)2 ..b sine 0 cos 0 ( ~  _ sin e 

• k~(t - R/B), 0 < sin -1B/a, 

(8.7) 

and 

l l B t r  ~--- 

(1 ) • 2 O/ • 2 
1 D sin0 cos0 - s m  0 ~ -  2-~ s m ¢  

, . . . . . . . . . .  ~ -  f ,~(t  - R / ~ )  
4~rBR ( 1  sin2 0) -t-sin4 0 eos~ 0 (sin20 - \  ~'~a2 ] 

1 D sin30c°s 20 - sin 20 sin 2 0 -  ~ ]  

4~ fiR ( 1 -  sin~ 0)4 + sin4 0 eos20(sin2 0 -- ( ~ )  

(o' ) • ~; -- 2 -t- sin 2 ¢ l~'(t -- R/B), 0 > sin -~ B/a. 

(8.s) 

1 D sin 0 sin2 ~i~ (t -- R/B). (8.9) USH -- 41r fir 

It is notable that the variation with 0 of the amplitude of P, SV and SH is the 
same for source (c) as for source (b). Figures 2 and 4c therefore represent these 
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variations. But  the variation with ¢ is not the same for both sources. For source 
(c) P and S V  vary  with ¢ as 

2 

a _ 2 + s i n  2 4 .  

This is shown in Figure 3b. SH varies as sin 24 and this is shown in Figure 4b. 

9. CONCLUSION 

We have shown that  the radiation pat tern from a dislocation source of strike- 
slip or dip-slip type is strongly affected by the proximity of a plane boundary. 
Peculiarities of reflection lead to rapid variation of amplitude of SV  with polar 
angle, and phase changes, which occur when the polar angle exceeds the critical 
angle, change the time dependence of the outgoing pulse. 

0 

0 
FIG. 7. The plane projection used in Figure 8 and 9. 

I t  will be observed that  only SH has non-zero displacement at a distant point 
of the free surface. The vanishing of P and S V  on z = 0 is valid for a half-space, 
but  on a spherical surface, this conclusion is not important.  

Our solution is a limit as h --+ 0. Thus it will be a first approximation to the solu- 
tion of a problem in which h and the dimensions of the fault are small compared 
with a typical wavelength of the disturbance. I t  therefore has most relevance to 
observations of body waves of long wavelength, but  not so long that  the high fre- 
quency approximation does not hold. 

We have given solutions for first motions due to strike-slip on a vertical plane (b) 
and dip-slip on a fault plane dipping at 45 ° (c).  If the fault plane dips at an angle 8, 
our solution for (b) in section 7 must be multiplied throughout by sin 8 and our 
solution for (c) in section 8 nmst be multiplied by sin 28. 

Our calculations have given the first motion radiation pat tern from a sudden 
dislocation occurring near the surface. The general results may be summarized by 
plotting the expected signs of the first motion on the focal plane projection. The 
focal plane projection we use (figure 7) projects the intersection of the extended 
ray with the earth's surface onto the plane tangent at the focus from the antipodal 
point. By this scheme, observatories near the focus are projected as near the focus 
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and observatories at 180 ° from the focus are projected at infinity. Thus variation in 
t~ in our solution appears as a variation in radius in the plane of proj'ection; varia- 
t ion in azimuth ¢ appears as a variation in polar angle in the plane. 

Using this projection, we can draw the three theoretical patterns representing 
the radiation expected at a remote observatory, corresponding to each of P, SV 
and SH, for each of the two basic nmdels (Figures 8 and 9). 
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FzG. 8. The signs of first motions corresponding (a) to P, (b) to SV, (c) to SH for source (b). 

In the case of the schematic diagram for the strike-slip motion on a vertical fault 
plane at the surface (figure 8), the radiation in both P and SH is precisely as pre- 
dicted by the familiar gradient relations obtained for a fault deeply buried beneath 
the surface. The unusual feature of this solution is, however, the reversal in sign of 
SV at  0 = 45 °. In the earth this corresponds to A ~ 17½ °. The source of this re- 
versal is found in the reversal of the sign of both SV' and SV' at this angle. Not 
shown in Figure 8 is the very strong amplitude of SV near the critical angle. The 
signs of SV' and SV'  are such that  no change in sign of the composite SV immedi- 
ately beyond the critical angle is expected when compared with the SV for angles 
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less than critical. The critical angle for a Poisson's ratio of } is ~ ~ 35 °, correspond- 
ing to A ~ 23½ °. Thus very pronounced amplitudes of S should be observed near 
A ~ 23½ °. The reversal at A ,~ 17½ ° has not been noted in earlier theoretical work 
on the subject and is strictly the result of interaction with the free surface. 

In the case of the schematic diagram for dip-slip faulting, the results are again 
surprising at first glance. In the first place, the several radiation patterns are identi- 
cal, except for a nmltiplicative factor, for all angles of dip of the fault, except for 

(o) (I 

U 45 

D 

(c) 

+ 

+ 45 
u 
D 

D 

X 

+ 

t 

FIG. 9. The signs of first motions corresponding (a) to P, (b) to SV, (c) to SH for source (c). 

the pathological cases of vertical and horizontal faults. This result has been verified 
in two ways: 1) by the method of this paper, and 2) by considering the P and S 
radiation from a dislocation in an infinite medium, then considering all the possible 
reflections from a free surface, and finally adding the incident and reflected rays of 
the same type (e.g., P, SP, and PP). The second procedure has not been elaborated 
here. 

Since the result for dip-slip faulting is independent of the angle of dip of the fault 
plane the angular radiation patterns show no dependence upon the dip angle. 

The P-wave first motions are everywhere of the same sign (figure 9);  this re- 
sult represents a significant alteration of the familiar rosette pat tern obtained in an 
infinite medium. The results for SV again show the reversal at ~ = 45 ° with a large 
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spike in the radiation at the critical angle. The results for SH are unusual since' 
although the solution has a quadrant  organization, the rosette is rotated by 45 ° 
with respect to the solution for the strike-slip fault; in this case a vertical plane 
normal to the fault is a plane of symmetry,  rather than one of antisymmetry.  

In figures 8 and 9 our convention has been that  positive signs represent compres- 
sions in the case of P, motions toward the surface in the case of S V  and motion in 
a clockwise direction about the focus in the case of SH. A negative sign reverses 
these directions. 

The conclusion that  the P-wave radiation from a dip-slip motion on a dipping 
fault is everywhere of the same sign is physically reasonable if one asks how the 
dip-slip motion originates. In the postulated motions at the fault of figure 9, the 
stresses producing the earthquake must have been compressionM along the line 
normM to the strike of the pre-existing fault. Thus, when rupture takes place, the 
first motion is one of dilatation or motion toward the focus, in agreement with the 
solution. 

The pathological solutions of zero first-motion from dip-slip on a vertical fault 
should not be considered as requiring that  the motion vanishes for all time in a real 
earthquake. This result only requires that,  for this source, the solution vanishes for 
wavelengths long compared with the vertical extent of the fault. One should obtain 
a non-vanishing solution for shorter wavelengths in the next order of approxima- 
tion. This has been carried out in Appendix II  and the radiation patterns are given 
there algebraically. 

With regard to the range of applicability of these calculations, we note that a 
seismograph capable of resolving events 0.1 sec apart  should be capable of resolving, 
in principle, P from PP if the source is more than 250 m below the surface along 
the vertical, if we assume crustal P wave velocities of the order of 5 km/sec. How- 
ever long period instruments are not capable of performing such a fine resolution 
and recordings of body wave first motions on long period instruments should be 
studied carefully. 
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Appendix  I. Stationary phase approximations for first motion 

In the expressions. (7.4), (7.5), (7.6) and (8.4), (8.5), (8.6), (R is an algebraic 
expression of fourth degree, homogeneous in ~, */and o~. Thus in the integrals with 
respect to ~ and */the integrands are all homogeneous algebraic functions of degree 
zero multiplied by an exponential. The  exponents are all of the type 

i(~t -- ~x -- */y -- ~oz) 

where ~2 -4- ,/2 -4- ~0 2 = 502//c 2 and c = a or f~, ~ being real and positive where ~2 + 2 < 
fM2/C 2 and ii-0 real and positive where ~2 -4- */2 > ,2/c2" 

The method of evaluation of the integrals in (7.4), (7.5), (7.6), (8.3), (8.4), (8.5) 
will be first to approximate to the integrals with respect to ~ and ~ under the as- 
sumption that  ~ is large, and then to integrate with respect to ¢o. The assumption 
that  ] ~ ] is large is justified by the fact that  we are seeking first motions only, and 
the values of ~ contributing to the first motions are large ones. 

Let us therefore consider the integral 

I ( ~ )  = d~ d*/ F(¢o, ~, */)e ~(-~-'y-~°~) 
oo 

(I.1) 

where F is homogeneous of degree zero. We change the variables of integration to 
0 ' and ~b' where 

w sin 0' ' w 0' ~' = -  c o s ¢ ,  */ = - sin sin 
C C 

which implies 

2 

~o ~ O' 0(~, */) ¢o sin O' 0'. = - cos and - cos 
c 0(0', ¢') c 2 

If we also express x, y, a n d  z in spherical polar coordinates x = R s i n  0 cos ~, y = 

R sill 0 sin ¢, z = R cos 0 we may write 

= c o s  I ( ~ )  ~ dO' d~'F(c, sin O' cos ~ ,  sin O' sin ~') sin O' O' 

~R e-l-i-_ (sin0 sin~'  cos(~b--~')+cos0 cos0')  
o 

(I.2) 

where F is the path 0 to ½~ along the real axis and then ½~ to ½~ + i~ along a line 
parallel to the imaginary axis. This ensures that ,  for w > 0, (w/c) cos 0' is real and 
positive or has zero real part  and negative imaginary part. If ~0 < 0, F is the mirror 
image of this in the real axis. I t  is well known that  for the purpose of computing 
first motions only the high frequency components are relevant. Thus we may take 
I ¢o I to be large and treat  the integral by Kelvin's method of stationary phase. We 
shall consider only positive ~ since changing the sign of ~ has the effect of changing 
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I(co) into its complex conjugate when ~0 is real. This is true also for (1/iw)e i'°t and 
therefore for the whole expressions in (6.1) and (6.2). 

The points of stationary phase (saddle points) for q~' are given by sin 0 sin 0 p. 
sin (~ -- Ct) = 0 leading to q~P = 4. On setting ¢t = ~b the saddle point for O' is 
given by sin (0 - 0') = 0 leading to O' = 0. Other saddle points, ¢' = ~ q- 7r and 
0' = - 0 for instance, are not relevant to our purpose since each path of integration 
may be made to pass through just the one saddle point without changing the value 
of the integral. We now perform the approximation for the integral with respect to 
4' writing cos (~b t - q~) ~ 1 - 1(~ ~ -- ~)~ when Ot is near q~. 

Hence 

~o2fr I (~ )  ~ ~ sin O' cos O'F(c, sin O' cos ¢, sin O' sin ¢)e -~R~-~°~(°-°') dO' 

f ~  o,R (¢--0')2 0 t 
. e ~ ~ 2 s i n O  s i n  d¢~'. 

The inner integral is 

271-5 ~1/2 ei~/4. 
Rw sin 0 sin 0'] 

(I.3) 

Performing a similar operation for the integration with respect to 0', we obtain 

I(w) ~ ~ \ ~ / ~ 0 ]  sin 0 cos 0 F(c, sin 0 cos ¢, sin 0 sin ~) 

o~ ~ coR 
. e--iRe viii4 f cite (o-o')~..dO, 

- -  - - i w R / c  2rdco F(c, sin 0 cos ¢, sin 0 sin ¢) cos 0 e . 
cR 

(I .4) 

We will perform one further step before applying the formulae to the special 
values in sections 7 and 8. We compute 

1 f ~  1 i ( ~ ) e ~  d~ (I.5) J ( t )  - (2r) 3 = 

to obtain the pulse shape. Notice that  F(c, sin 0 cos ¢, sin 0 sin ~) is not a function 
of w and write F(c, sin 0 cos ¢, sin 0 sin ~b) = Re F + iImF. Thus 

But  

J( t )  ~ - -  COS 0 f :¢  e i'dt-R/c) { Re  Rc(2r) 2 ~ F q - i I m F s g n w }  &0. 

foo 1 e ~(t-R/~) d~ ~(t R/c)  
2~" 

(L6) 



FIRST MOTIONS FROM SEISMIC SOURCES 1911 

and 

f ~  
1 e~(*-u/~)i sgn ¢0 d~0 8'(t R/c) ,  

2~- ~o (I.7) 

where ~ is the allied function of 8. Therefore 

cos0 { R e F . ~ ( t -  R/c)  + I m F . ~ ' ( t -  R/c)} .  (I.S) J( t )  ~ 22cR 

Appendix I I .  A dip-slip on a vertical fault 

In our model (a) we found that  when we allowed h --~ 0 the motion vanished. 
I t  would seem sensible, however, to expand the solution in powers of h since in 
reality every seismic source has some depth even though it might be small. Our 
result may be interpreted as the vanishing of the term independent of h and we now 
seek the term in h to the first power. The coefficient of h in this case is what we 
wish to calculate and to evaluate it we divide by h, before allowing h to tend to 
zero. 

Source (a),  which has beer~ called the slip on a horizontal plane, gives identical 
radiation to the source specified by [w] = S~(y)~(z - h)H(t ) ,  the components u, v, 
and the tractions being continuous, the square brackets referring to discontinuities 
across the plane x = 0. 

On substituting the values of A, B, C, A', B', C' given in (6.2) into (5.1) we have 

1~2 ~ [(Re ih~ + (R*e - ' h ~ -  2 -- -- 

OJ ~2 2~ 

/ ~' 
(II.1) 

( e i~'h _ e - i f  'h)  ei(~t-$x-~v-~' z). 

These each tend to zero as h --* 0 but  

E( )2 1(i) l i m l  : 2i~ 2 ~ '  o~ 2 _ ~2 + ~2(~2 + 2) 
h~o-h  - o~ ~ (R ~ - ~12 ei(°'*-~'-'~u-~*) 

P 
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1(:) 
l ' ~ a  w ~ -  ) ] 2i¢~ 2 ~ )-~ -- n2 ~0 2 ~ 2  

~o~ ~ + n ~ ~ L\~  -~- - n~ + ¢~(~ + n~) 

( I I .2)  

h m -  - e i(~°t-(x-ny-~z ) 

Each  of these is of the  form 

io~F(~o, ~, n)e i(-~-~'y-r°") 

where F is algebraic, homogeneous,  and of degree zero in its arguments .  We m a y  
use the  results of Appendix I as far  as equat ion (1.4) bu t  we shall need instead of 
J ( t ) ,  (I .5)  a funct ion K ( t )  defined as 

foo 1 I(¢o)e ~'°t &o K ( t ) -  (2~.)~ 

fao _ cos 0 io~e ~'°(t-Rl~) (Re  F + i sgn ~o Im  F)  &o 
cR(2~-) 2 ® 

(11.3) 

_ cos 0 {Re F ( ( t  -- R / c )  + I m  F ( ( ) ' ( t  - R / c )  } 
2~rcR 

where (a')~ is the allied funct ion of 8' and is given explicitly by  (8')~(t) = 1/~rt ~. 
Using this result  the  first motions are given by  

52 S sin 0 cos 0 a _ s i n 2 0  _ sin20 + sin20 cos2O 
Up ~ - -  (2 y t2 F ~-~ - sin~O + s i n 2 0  c o s  0 ~ ]  - -  sin20 (11.4) 

• cos ¢ ~a'(t - R/ ,~),  

USV 
S cos 0(½ - sin~0)[(½ - sin2O) ~ + sin2O(B2/a 2 - sin201 

~-~R (52 sin20) 1/2 (½ - -  sin20) 2 + sin20 cos 0 ~ -- 

• cos ~ f~a'(t - R / ~ )  

(11.5) 

X 0 < s i n - l ( 5 / a ) ,  
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U S V  - -  

S 
R~B 

cos 0(½ - sin~O)~[(½ - sin20) 2 
+ sin20(B2/a 2 - sin20)]eos ¢ k ( ( t  - R / B )  

(½ - sin:O) 4 + sin40 cos20(sin20 - B2/a 2) 

sin20 cos20(sin20 - -  B2/0~2) 1/2 

S • [(½ - sin20) 2 + sin20 cos20]cos q~ l ~ ( 6 ' ) ' ( t  - R/B)  
(11.6) 

(½ -- sin20) 4 + sin40 cos20(sin20 - -  B2/a 2) 

• 0 > s i n - ~ ( B / a )  

S cos20 sin ~ 1 ~'(t - Ro/B). ( I I . 7 )  
U s .  = ~ R  
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