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APPLICATIONS OF THE TRANSMITTED KIRCHHOFF-HOLMHOLTZ 
METHOD TO TRANSMITTED· BODY WAVES AND POSSIBLE 

STRUCTURAL EFFECTS AT NTS 

BY PATRICIA SCOTT AND DONALD V. HELMBERGER 

ABSTRACT 

We extend the Kirchhoff·Helmholtz integral method to calculate acoustic po­
tentials which transmit through three-dimensional warped boundaries. We specify 
the potentials on an arbitrary surface with Snell's law and plane-wave transmis· 
sion coefficients and numerically integrate their contributions at a receiver via 
the scalar integral representation theorem. The method is appropriate for mod· 
eling precritical transmitted potentials. Results from test models compare well 
with optical solutions for transmissions through a flat interface. We model the 
effect of several idealized crust-mantle boundary structures on teleseismic P 
wave generated by explosion sources. The structures are all upwarps and are 
designed to produce travel-time residuals as a function of delta and azimuth 
which have the same magnitude as residuals observed for NTS tests within 
Pahute Mesa. These structures consistently cause complicated low amplitude 
waveforms which arrive early and simple high amplitude waveforms which arrive 
late. Thus, they cause systematic amplitude variations with azimuth, delta, and 
source location. The magnitude of this variation is less than or equal to 2~. This 
factor is somewhat less than the observed ab amplitude variation with azimuth 
of Pahute Mesa tests; however, it is approximately the same magnitude as the 
observed ab variation at a given station as a function of test location within the 
mesa. 

INTRODUCTION 

Despite dramatic improvements in the level of sophistication of data analysis, 
seismologists still cannot deterministically predict many observed amplitude and 
travel-time anomalies of body waves. One hypothesis to explain these anomalies is 
the presence of nonplanar velocity discontinuities such as sedimentary basins, 
mountains, and faults near the source or receiver. In order for us to assess the 
importance of this hypothesis, we need a technique for predicting the impact of 
near source and/or receiver structural complexity on far-field waves. In this paper, 
we present such a method based on the numerical evaluation of the Kirchhoff­
Helmholtz integral with use of modified tangent plane boundary conditions. This 
method calculates the response of a wave which is transmitted through a warped 
boundary between two acoustic media. It contrasts from Scott and Heimberger 
(1983) where the reflections from a warped boundary are calculated. In this paper, 
we briefly describe the formalism of Kirchhoff-Helmholtz method for the transmit­
ted case. Then, as an example of the method, we model the observed azimuthal 
amplitude and travel-time anomalies of short period P waves from NTS blasts as a 
result of a geologic structure at the Moho. 

FORMALISM 

The method in this work is based on the numerical evaluation of the Kirchhoff­
Helmholtz integral equation. The formalism differs slightly from that presented in 
Scott and Heimberger (1983). In that paper, we discussed the reflected wave solution; 
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however, here, we state the Kirchhoff-Helmholtz solution for a transmitted poten­
tial. We also qualitatively discuss the assumptions involved in its use. 

We wish to calculate a transmitted potential 'P2 at point f in a homogeneous body 
V2 resulting from an incident source potential located at point ~o in a homogeneous 
body V1 • The boundary between the two bodies a V. The sound speeds and densities 
of V1 and V2 are a 1 and a2 and p1 and p2 , respectively. From the scalar integral 
representation theorem, we write the solution for 'P2 at a point f off the boundary 

a) 

b) 

av 

FIG. 1. (a) The geometry of the Kirchhoff-Helmholtz calculations for transmission across two acoustic 
media with sound speeds a1 and a 2 and densities Pt and P2· The source is in V1 at ;,0 and the receiver is 
in V2 at f. (b) A close up of a piece of the boundary which displays the angles. 

a v, with v2, at a time t as 

(1) 

Here * denotes convolution and • denotes a vector dot product. G2 is the fundamental 
singular solution of the scalar wave equation 

(2) 

In addition 112 is the outward pointing normal of V2 • <I> and Y'<I>·~2 are the potential 
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and its normal derivative on the surface av in V2 • We display the geometry in 
Figure 1a for this problem. 

Equation (1) is exact for the initial conditions that ~2(,!;, 0) and ¢ 2(,!;, 0) equal zero 
throughout Vz. The derivation can be found in Mao and Pao (1971) or Stratton 
(1941). To obtain equation (1), one requires that aVis a reasonably smooth surface. 

We now specify Gz and cf>. For a homogeneous medium, it is sufficient to use 

(3) 

If the incident field in V1 results from an isotropic point source at ~0 , then cf> is 
approximated by 

(4) 

Here, T is the acoustic plane wave transmission coefficient for a flat interface and 
is dependent on the local incidence angle at each point. f(t) is the time function of 
the incident source function. The function in equation (4) approximates cf> well if 
the incident source field is of sufficiently high frequency such that every point on 
the surface transmits the incident pulse as though there were an infinite plane 
tangent to the surface at that point. Then the amplitude and the phase on the 
surface can be described locally by plane wave transmission coefficients and Snell's 
law. The value of the potential at one point is independent of the values at other 
points. Hence, the contributions of diffractions and multiple scattering to the 
potential are neglected. 

We now estimate the normal derivatives aci>janz and aGzfanz 

ac~> _ -Ti(t- 71) aT1 
I~- ~o I anz 

aGz _ -b(t- Tz) aTz 
anz - 47r I,!; - ~I anz. 

(5) 

(6) 

The dot over the functions in (5) and (6) signifies time derivative. We approximate 
the normal derivatives by assuming the amplitudes of G2 and cf> vary slowly on the 
surface relative to the phase. Hence, we can discard the terms 

Substitution of equations (3), (4), (5) and (6) into equation (1) yields 

(7) 

where r = I ~ - J; I , the distance from the surface to the receiver, and To = I ~ -
~o I ,the distance from the source to the surface. We note that the discarded parts of 
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normal derivatives are proportional to 1/ror2 and 1/rr0
2

• For problems computed in 
this study, the distance from the source to the surface averages 40 km, and the 
distance from the surface to the receiver averages 20,000 km. The 1/r0 r2 and 1/rr0

2 

terms are 6.25 X 10-13 and 3.1 X 10-9
, respectively, and are small relative to the 

term 1/r0 r in equation (7), which is 1.25 X 10-7
• We therefore discard these terms 

with confidence. 
To estimate aTt1an2 and aT2/an2, we recall that the gradient of the phase is 

parallel to the normal of the wave front and has units of slowness. Thus, 

aT1 cos 01 
-=-- (8) 

aT2 cos 02 
-=--
an2 a2 

(9) 

where cos 0 1 is the cosine of the angle between the normal to the refracted wave 
front and the normal to the surface 112• It is equal to 

(10) 

where 0; is the local incident angle calculated by 

(~ - ~o) 
cos 0; = • 112· (11) 

ro 

cos 02 is the cosine of the angle between the normal 112 and a ray connecting the 
surface and the receiver. Thus, 

(12) 

Figure 1b shows a detailed picture of these angles. Substitution of the cosine factors 
(10) and (12) yields 

(13) 

The method for the calculation of equation (13) is discussed in Scott and 
Heimberger (1983). We si:rnply calculate the integral as a summation of single point 
evaluations of the integrand. This method of integration requires that the elements 
which comprise the surface be small in length compared to the incident source 
wavelength. As in Scott and Heimberger (1983), we obtain the numerical ramp 
response from this integration and convolve it with the analytical third derivative 
of a Haskell isotropic source. Thus, we obtain ¢2, the time derivative of the po­
tential. 

These calculations are appropriate for precritical transmission in a linear acoustic 
media. We do not allow the transmission coefficient to be complex. When the 
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incident angle ei exceeds the critical angle, <I> equals zero. This boundary value is 
consistent with geometric ray theory, but is not a realistic shadowing function. 
Rather, we expect <I> and a<I>jan2 to vary smoothly across the shadow boundary if 
the surface is reasonably smooth. However, we argue that, under the circumstances 
considered here, the postcritical incidence portions of the integral contribute to the 
summed response of the transmitted potential at times much later than the specular 
portions and, therefore, are unimportant. 

As a check of the method, we compute the transmitted response of a wave 
propagating through a planar boundary separating two volumes of different sound 
speeds. We then compare the numerical maximum amplitude with that obtained 
from the following first motion formula 

( 
ro r) cp t = TLf t - - - - . 
a1 a2 

(14) 

Here, Lis the spreading coefficient (Langston, 1977; Hong, 1978) 

(15) 

where z1 and z2 are the vertical distances of the source and receiver, respectively, 
from the boundary. 1/ui is 

( 
1 )1/2 

1/ui = a? - Po
2 (16) 

where Po is the ray parameter. 
Figure 2 shows examples of this comparison. We have computed transmitted 

potentials for an incident isotropic source which is the first derivative of a Haskell 
source with parameters (B = 2, K = 10). The velocity and density model used for 
the comparison calculations are shown in the top of Figure 2b. 

We show two Kirchhoff synthetics in Figure 2a to demonstrate the nature of 
truncation phases which can contaminate the synthetics. These phases arrive 
approximately 3~ sec after the first arrival in both synthetic A and synthetic B and 
they are artifacts of the technique. In synthetic A, the phase is a result of the 
finiteness of the grid. A diagram to the left of the synthetic shows this effect. The 
grid is a square with a length of 150 km. The source is 500 km above the center of 
the grid and the receiver is 1000 km below the source. From this diagram, we 
observe that the edge interferes at a time t2 = ro2/a1 + r2/a2. The geometric ray 
arrives at a time t1 = roda1 + rda2. Hence, the truncation phase arrives 3.6 sec 
later than the first arrival in synthetic A. 

In synthetic B, the phase is a result of the shadowing function. We use the same 
grid to calculate synthetic Bas for synthetic A; however, the source is 167 km above 
the interface. For this velocity model, the local angle between the incident ray and 
the normal to the surface exceeds critical when the distance from the center of the 
grid exceeds 50 km. <I> on the surface is 0 beyond this distance. This abrupt change 
in boundary conditions introduces a truncation phase into the synthetic. From the 



136 PATRICIA SCOTT AND DONALD V. HELMBERGER 

diagram to the left of synthetic, we see that this phase arrives 4 sec later than the 
geometric arrival. The truncation phase in synthetic A caused by grid finiteness 
does not constitute a problem. If it contaminates the phase of interest, we can 
enlarge the grid appropriately. However, the truncation phase in synthetic B caused 

a) 

b) 
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FIG. 2. (a) Two synthetics and the grid geometry used to compute them. Synthetic A is contaminated 
by a truncation phase which originates from the edge of the grid. Synthetic B is contaminated by a phase 
which originates from the abrupt change in boundary conditions. The grid next to synthetic B is gray 
when <P = 0 on the boundary. (b) A comparison between Kirchhoff-Helmholtz and first motion solutions. 
The input source is the first derivative of a modified Haskell function with parameters (B = 2, K = 10). 
The maximum dimensionless amplitude of the source input functon is 45.1. 

by the boundary conditions fundamentally restricts the source-receiver geometries 
we can investigate. 

Figure 2b shows a profile of Kirchhoff synthetics for a source 500 km above the 
interface and five receivers 500 km below the interface. The horizontal distance, x, 
of the receivers ranges from 0 km, directly underneath the source, to 755 km. The 
two columns next to the synthetics contain the numerical peak amplitudes and the 



APPLICATIONS OF THE TRANSMITTED KIRCHHOFF-HELMHOLTZ METHOD 137 

predicted amplitude from equation ( 15). The agreement is good. We cannot calculate 
a response past x = 755 km because a truncation phase resulting from the boundary 
conditions on the interface starts to interfere with the direct arrival. We must 
always take care to avoid such contamination. 

NTS STRUCTURE (AN EXAMPLE OF NEAR-SOURCE EFFECTS) 

We now apply the method by modeling the effects of idealized Moho structures 
on transmitted teleseismic P waves generated by nuclear tests in Pahute Mesa, 
Nevada Test Site. We wish to ascertain whether focusing-defocusing by structure 
on the Moho explains the unusual behavior of amplitudes from these tests. 
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FIG. 3. The short-period P-wave ab amplitude data set for 25 Pahute Mesa events plotted as a 
function of station location. The amplitudes are corrected for event size, geometric spreading, and 
instrument gain at 1 sec and are plotted relative to a master event (from Lay et al. 1983a). 

We review these anomalous observations of short-period P waves from Pahute 
Mesa. Figure 3 is a plot of 1200 ab amplitude measurements from 25 tests within 
Pahute Mesa as a function of station location from Lay et al. (1983a). The ab 
amplitudes are measured from the first peak to the first trough. They are corrected 
for geometric spreading, the instrument gain at 1 sec and event size, following a 
procedure developed by Butler (1984). The amplitudes are relative to a master event 
which minimises the overall scatter of the data. 

The data has two important features. First, the relative amplitudes range from 
0.13 at station TRI to 5.1 at station SHK. This variation is nearly a factor of 40. 
Most stations between the azimuths oo and 60° have significantly lower amplitudes 
than those between 600 and 120°. Second, the relative amplitudes at a given station 
vary by a factor of 2~ as a function of event location within the mesa. The latter 
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variation clearly originates from a near-source mechanism because the events are 
separated by, at most, 15 km. 

If one calculates the mean relative amplitude at each station, then the overall 
amplitude variation with azimuth reduces to a factor of 12 (Lay et al., 1983a). The 
next two figures suggest that this large amplitude scatter is also caused by a near­
source mechanism. Figure 4, from Lay et al. (1983a), shows the azimuthal pattern 
of relative amplitudes for GREELEY, an event within the mesa, and FAULTLESS, 
an event 100 km outside the mesa. Although both events have comparable yields, 
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FIG. 4. The relative ab amplitudes of GREELEY and FAULTLESS as a function of station location 
(from Lay et al., 1983a). 

their azimuthal patterns differ substantially. This difference is particularly obvious 
between oo and 90°. Figure 5 displays plots from Lay et al. (1983b) which enhance 
the difference between patterns of events in the mesa and events outside the mesa. 
These plots are ratios of amplitudes of three events outside the mesa (FAULTLESS, 
PILEDRIVER, and BILBY) divided by the average mesa amplitudes. These ratios 
are an approximate measure of a near-source anomaly if the FAULTLESS, PILE­
DRIVER, and BILBY patterns are only influenced by path and receiver effects and 
are, therefore, constant as a function of azimuth. Furthermore, the path and receiver 
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effects must be characterized by multiplicative factors. Because the ratio patterns 
for all three events are similar, these assumptions are probably true. Therefore, the 
factor of 13 variation of these ratios between oo and 120° is roughly an estimate of 
the near-source anomaly at the mesa. 

To see if this amplitude variation correlates with waveform changes, we plot in 
Figure 6 several seismograms at stations between 30° and 100° which recorded both 
FAULTLESS and GREELEY. The top and bottom seismograms are recordings of 
FAULTLESS and GREELEY, respectively, with their absolute ab amplitudes in 
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FIG. 5. Ratios of relative ab amplitudes of FAULTLESS, PILEDRIVER, and BILBY divided by the 
average relative ab amplitudes of the mesa events (from Lay et al., 1983b). 

millicrons, corrected for instrument gain only. There is no obvious waveform 
differences in the GREELEY records which correlate with the dramatic ab ampli­
tude changes. Furthermore, we do not see any obvious difference in frequency 
content and/or complexity between low stations and high stations for either event. 
However, there are some systematic differences between GREELEY and FAULT­
LESS seismograms. A shoulder occurs 2 to 3 sec after the first arrival on GREELEY 
records (e.g., STU, PTO, MAL, STJ, OTT, GEO, and ATL). Lay has also seen 
these arrivals for other mesa events (Lay et al., 1983b). No such arrival is apparent 
on the FAULTLESS seismograms. Also the width of the first pulse of GREELEY 
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seismograms is narrower than those of FAULTLESS seismograms at a few stations 
(e.g., SJG, ATL, BLA, GEO, SCP, and STU). Both phenomena, though, occur 
throughout the azimuthal range,and do not correlate with the ab amplitude changes. 

The data demonstrates that near-source anomalies cause a variation of 2~ of 
relative ab amplitudes at a given station as a function of event location within the 
mesa. Moreover, near-source anomalies also cause part of the ab amplitude variation 
with azimuth (or station location) from mesa events. We cannot completely elimi­
nate contamination of the azimuthal pattern by path and near-receiver effects. 
Certainly near-receiver effects can be as large as those observed for the Pahute 
mesa tests (Butler, 1984). Yet the similarity of the ratio patterns of FAULTLESS, 
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FIG. 6. Seismograms from FAULTLESS (top record) and GREELEY (bottom record) displayed in 
order of increasing azimuth in the range of 30° to 100°. Also shown are the absolute ab amplitudes in 
millimicrons, corrected only for instrument gain at 1 sec. 

BILBY, and PILEDRIVER suggests that the pattern for mesa tests, seen in Figure 
3, is dominated by a near-source mechanism. Finally, the variation of relative ab 
amplitudes with azimuth does not correlate with any obvious waveform changes for 
a typical mesa event, GREELEY. There is no definitive evidence to determine 
whether ab variations correlate with travel-time residuals. 

In this paper, we assume that all the observed amplitude anomalies result from 
near-source mechanisms. We then test the hypothesis that structure on the Moho, 
consistent with travel-time residuals, focuses or defocuses P waves enough to 
produce the magnitude of the amplitude anomaly. There are alternative near-source 
explanations for these anomalies. In addition, to the focusing-defocusing hypothesis, 
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workers (Lay et al., 1983; Wallace et al., 1983) postulate that the movement of faults 
associated with nuclear blasts causes a superposition of distributed or point double­
couple sources with the isotropic bomb source. The amplitude anomalies are, then, 
the radiation pattern caused by a double-couple source. Longer period studies of 
Love/Rayleigh ratios, Pnl, P and S waves (Nuttli, 1969; Aki and Tsai, 1972; Wallace 
et al., 1983) generated by these blasts support the latter hypothesis. However, we 
speculate that, as the frequency content of the signal increases, the role of lateral 
near-source structure in distorting amplitudes becomes more important. From 
travel-time residual studies (Spence, 1974; Minster et al., 1981) workers have 
deduced that there is a high-velocity zone directly beneath the Silent Canyon 
Caldera in the mesa which extends down to 100 km. Such a velocity structure may 
cause amplitudes which deviate from those predicted by a spherically symmetric 
Earth model. 

To investigate how geology can affect amplitudes, we presume that the apparent 
velocity variations deduced from the travel-time residuals are a manifestation of 
Moho topography. We exclude from consideration the impact of the Silent Canyon 
volcanics on transmitted P waves because both Spence and Minster correct the 
residuals statically for these low velocity rocks; thus the residual patterns are not a 
result of the caldera. In any case, we cannot readily model a feature so close to the 
source. If we place a strong velocity discontinuity, such as that between volcanic 
and granite rocks, closer than 10 km to the source, we generate a truncation phase 
which interferes with the transmitted P phase. 

We des~ribe the Earth with a two layer crust-mantle velocity model. The velocity 
of the uper layer is 6.5 km/sec and that of the lower is 8 km/sec. The depth of the 
interface is 45 km. The receivers are located at distances such that the 1/R amplitude 
decay corresponds to spreading at teleseismic distances between 60° and 70° for a 
JB Earth (Langston and Heimberger, 1975). 

The number of ways to distort the Moho is infinite. We, therefore, restrict 
ourselves to a few three-dimensional topographies where the maximum height of 
the anomaly is 10 km and the maximum width is approximately 25 km. The choice 
of these values is based on both the Spence (1974) and Minster et al. (1981) studies. 
They find an advance of :::::: 0.25 to 0.4 sec for nearly vertical rays from shots within 
the caldera. As these rays become shallow, this advance lessens or disappears 
completely. From crude calculations, we estimate that 10 km of upward relief on 
the Moho will produce the required timing anomalies of these rays. Furthermore, 
we confine the relief laterally so that rays exiting the mesa at shallow angles are 
unaffected by the structure. We recognize that these structures are extreme. How­
ever, if we cannot produce the observed amplitude anomalies with these topogra­
phies, we can discard structure on the Moho as the dominated cause of these 
anomalies. 

Of the infinite number of structures, we arbitrarily select four examples with 
height c = 10 km and width w = 25 km. These topographies are described by simple 
analytical formulas and are convenient to use. The topographies with their labels 
are as follows 

Upwarp: Z = Zcon+ ~ (cos(21r((r- w/2)/w)) -1) if 

' w 
Z = Zcon if r > 2 

w 
r ~­-2 (17a) 
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Exponential: z = Zcon - ce-4.sosrfw!2 

w 
Z = Zcon - c if r ;a 2 

(17b) 
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FIG. 7. Transmitted potentials from sources 35 km above the center of the structure. The cross­
sections of the structures upwarp, exponential, plug, and sine are above the synthetics. For comparison, 
potentials which propagate through a flat boundary are shown in the first column. The potentials are 
from receivers which are 20,000 km below the source and which vary from 0 to 7000 km horizontally 
away from the source. All amplitudes are multiplied by 0.01. 

Here, r = ../(x - Xc) 2 + (y - Yc) 2 and is the horizontal distance of each point on 
the surface from the midpoints of the grid (x0 Yc). Zcon is the baseline level of the 
Moho and is 45 km for all the calculations. The values of the constants in the 
exponential and the sine bumps confine the anomaly's width to approximately 25 
km. A schematic cross section of each topography is shown in Figure 7. All the 
structures are symmetric with azimuth. 

Initially, an isotropic source is directly above the center of the structure; thus, 
the transmitted potential is only a function of x and z. The source is 45 km above 
the baseline of the Moho. The transmitted potential is calculated at receivers which 
are 20,000 km below the C\Ource. The horizontal distance of the receivers from the 
center of the topography ranges from 0 to 7,000 km. Figure 7 shows the transmitted 
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potential and the peak amplitude as a function of x in increments of 1000 km for 
each of the four topographies. In addition, the responses for a wave which transmits 
through a planar boundary are displayed in the first column. The corresponding 
take-off angle for the flat boundary synthetics are to the left of the column. By 
comparing these synthetics with those in the other columns, we can determine how 
much distortion of the waveform is caused by each structure. The synthetics in 
Figures 7 and 10 do not include a Q and instrument operator or a reflected pP 
phase. Although these effects are important, we want to examine amplitude and 
waveform distortions caused by structure with a simple input pulse. The ringing 
caused by an instrument or pP may mask the presence of multiple arrivals caused 
by the topography. 

All the structures cause intriguing changes in the waveforms and arrival times of 
the synthetics. The waveform features originate from timing changes caused by 
each topography. Each point of the Kirchhoff synthetic originates from elements 
which are illuminated by the source and, in turn, illuminate the receiver at a total 
travel time, (J = r 1 + r 2• We can associate, with each element of the grid, a value of 
total travel time, CJ(X, y). The total travel-time function on the surface depends on 
the source location, the receiver location, and the surface geometry. Figure 8 shows 
examples of this function. Here, we calculate CJ(X, y) for elements which make up a 
flat interface (Figure 8a), an upwarped interface (Figure 8b), a plug (Figure 8c) and 
a sine function (Figure 8d). In each example, the source is directly above the center 
of the structure and is 45 km above the baseline of the interface. The receiver is 
20,000 km directly below the source. The contours of constant total travel time are 
projected onto the topography (top figure in 8, a through d). We also display these 
contours as a function of x andy (bottom figure in 8, a through d). The contours 
are circles because of the particular source-receiver geometry. For the sake of 
brevity, we only show that portion of the grid which contributes to the initial second 
of. each Kirchhoff synthetic. The synthetics which correspond to these total travel­
time functions are also shown (middle figure in 8, a through d). These figures show 
how structure on the interface distorts the total travel-time contours and, as a 
result, produces multiple arrivals in the synthetic. 

We examine this effect in detail. The contours are in intervals of 0.125 sec as are 
the tick marks below the synthetics in Figure 8. The geometric arrival time occurs 
at the center of the contour plot. Thus, by counting the contours, we can estimate 
the cumulative area of the surface which contributes to the synthetic at a given 
time. We deduce, from Figure 8, that, approximately, 

dS I A(t)a dt t. (18) 

A(t) is the amplitude of the response at time t. S is the total area of the surface 
which contributes to the response at time t. For example, the initial 0.375 sec of the 
synthetic from a flat interface results from a rapid increase in the cumulative area 
of the surface which is illuminated between t = 0.125 and t = 0.25 sec. After t :;:: 
0.25 sec, the area of the surface is illuminated at a constant rate. Thus, the resultant 
synthetic can be viewed as a convolution of the source time function with a step 
function which starts between t = 0.125 and 0.25 sec. 

We quantify this statement by following an approach developed by Hilterman 
(1975) and Haddon and Buchen (1981). The symmetry of the source-receiver 
geometry and the surface geometry allows us to recast the integral (13) as a one-



144 PATRICIA SCOTT AND DONALD V. HELMBERGER 

~sec ~sec 
t--50 km---1 

a --• -- --
Contour interval: (d) 
0.125 sec 

FIG. 8. Travel-time contours for a source 35 km directly above the structure and receivers 20,000 km 
directly below the source. The four structures are: (a) a plane; (b) an upwarp; (c) a plug; and (d) a sine 
function. The contours are projected onto the topographies and flat grids. The synthetics which 
correspond to each travel-time projection are in between the two projections. The contour interval is 
0.125 sec as are the tick marks of the synthetics. The geometric arrival time is the center of the contours. 

dimensional integration with respect to total travel time, cr. If the transmission 
coefficient varies slowly over the surface, then 

(19) 

where 
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and 

Q1 and n2 are the time derivatives of modified solid angles. !h is a modified solid 
angle with vertex at the source subtended by the surface S, and !22 as a modified 
solid angle with vertex at the receiver subtended by S. 

We now examine the origins of the multiple arrivals in the potentials which 
propagate through interfaces with structure. For example, the amplitude and fre­
quency content of synthetics from the upwarp (column 3 of Figure 7) are controlled 
by the interference of two pulses. The travel-time contours in Figure 8b for the 
upwarp differ considerably from those of a flat interface (Figure Sa). Far less of the 
upwarped surface is illuminated within 0.25 sec of the geometric arrival time. 
Furthermore, the upwarp topography causes subtle changes of the width between 
travel-time contours. There are two locations where this change occurs: (1) at the 
top of the upwarp and (2) at the edge of the upwarp. The first pulse in this synthetic 
originates from the elements in the first location while the second pulse originates 
from the second location. Because the ring of elements which contribute to the 
second pulse has a larger area than that of elements which contribute to the first 
pulse, the second pulse is larger than the first pulse. 

As the receivers move away from the center, the maximum amplitudes decrease 
as a result of the interference of the two pulses. We destroy the symmetry of the 
surface illumination by moving the receivers horizontally. The illumination of 
elements, which initially was simultaneous, now occurs at slightly different times 
and causes destructive interference; this destructive interference causes a reduction 
in peak amplitudes and the broadening of the pulse widths for both phases. 
Moreover, as the receiver moves out laterally, the planar part of the boundary 
becomes more important in controlling the amplitude of the transmitted pulse. 
Hence, the amplitudes, travel times, and the waveforms of distorted pulses ap­
proaches those of a pulse which has propagated through a flat boundary. This 
phenomena is present in almost all the top synthetics in Figure 7. 

Other intriguing features are present in the synthetics shown in Figure 7. The 
potentials transmitted through the sine and exponential bumps shown in columns 
3 and 5 have an apparent delay which is not seen in the other synthetics. These 
two topographies drop in height near the peak more rapidly than does the upwarp 
topography. Consequently, fewer elements are illuminated and contribute to the 
transmitted potential at times near the geometric arrival time. This is illustrated 
for the sine topography in Figure 8d. Hence, the amplitude near the geometric 
arrival time is lower than amplitudes at later times. 

The opposite is true for the synthetics of waves which are transmitted through a 
plug. They are displayed in column 4 of Figure 7. The topography and travel-time 
contours for the bottom synthetic from this column are shown in Figure 8c. This 
figure shows that more elements are illuminated and contribute to the response 
near the geometric arrival time for this topography than for the upwarp, sine, and 
exponential topographies. The resultant synthetic is made up of two pulses of equal 
size. Each pulse has the amplitude and shape of a wave which has transmitted 
through a planar interface. The plug is essentially comprised of two planar inter­
faces, one at z = 45 km and the other at z = 35 km. The edges of the plug have been 
tapered to avoid a shadowing problem. While the difference in the interface depths 
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does not alter the amplitudes of the pulses, it does change the arrival times. This 
slight separation in arrival time causes the observed interference pattern. As the 
receiver moves out laterally, the timing between the two pulses changes. The pulse 
width of the first arrival narrows while the width of the second one broadens. By 
transmitting a wave through such a structure, we vary the maximum amplitude of 
the synthetics by a factor of 2~. 

We confirm that these structures are approximately producing the correct travel­
time anomalies. We plot the residuals, in addition to the peak amplitudes of the 
synthetics, as a function of distance to discern any systematic relationship between 
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FIG. 9. Plots of peak amplitudes, amplitudes of first pulses, and travel-time residuals as a function 
of distance from synthetics in Figure 7. The different symbols correspond to different topographies and 
are at the bottom of the figure. Where first pulse amplitudes are different from peak amplitudes, the 
values of first pulse amplitudes are plotted with open symbols and the peak amplitudes are plotted with 
closed symbols. The dotted line corresponds to the peak amplitudes from synthetics which propagate 
through a planar interface. 

the two parameters. We also plot the amplitude of the first pulse if the synthetic is 
made up of multiple arrivals. This amplitude is measured from the start of the 
synthetic to the first peak. The plots are displayed in Figure 9. The travel-time 
"residuals" are defined by the difference between the arrival times of transmissions 
through a bumpy surface and the times of transmissions through a flat surface. 
Where there is an apparent delay in the synthetics such as in those from the 
exponential and sine bumps, we measure the arrival time at the start of the upswing. 
The amplitudes are uncorrected for geometric spreading. The change of amplitude 
from spreading, seen in the synthetics in column 1, is negligible in the distance 
range of interest; hence no correction is necessary. 
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The "residuals" in Figure 9 produced by these structures behave in a predictable 
fashion. The transmitted potentials which propagate vertically to stations between 
0 to 4,000 km experience the most advance. The exceptions to this behavior are 
residuals from the sine and exponential synthetics. We know there is some energy 
arriving at these nearly vertical stations with 0.3 sec advance from the previous 
discussion. However, because the energy is so small relative to later pulses, these 
synthetics appear to have delays. 

When the paths of the potentials become shallower, we see that the advance 
disappears. The planar part of the interface begins affecting the travel times and 
waveforms. The arrival times of the transmissions through the bumps approach 
those of transmissions through a flat interface. The exception to this pattern is the 
residuals of the plug synthetics. These synthetics have an advance of 0.3 sec which 
is constant as a function of horizontal distance. The behavior results from the 
constant height of the plug across the entire width of the bump. 

What is the relationship between the travel-time anomalies and the amplitude 
anomalies? We predict that as the magnitude of the travel-time anomalies decreases 
the magnitude of the amplitude anomalies decreases also. The amplitudes, as well 
as the arrival times, will be controlled by the planar part of the surface. This 
relationship is observable in Figure 9. The amplitudes, except in one case, start to 
approach the value of 0.002 at distances ranging from 5,000 to 7,000 km. The 
exception is the maximum and first pulse amplitudes of the synthetics from the 
plug topography. These values appear to systematically decrease with distance. 
However, these values do approach the planar amplitudes at distances beyond 7000 
km. 

Furthermore, waves which arrive earlier than is predicted by planar calculations 
also have lower amplitudes than is predicted. Contrarily, the synthetics from the 
sine topography arrive late and have anomalously high amplitudes. Indeed, the 
pattern of residual variation is precisely mimicked by the pattern of amplitude 
variation for this structure. The mimicking of amplitude and travel-time anomalies 
also occurs for synthetics from the exponential bumps. 

This mimicking does not occur for synthetics from the upwarp and plug topogra­
phies. Each of these synthetics consists of multiple arrivals. Thus, if we take the 
maximum amplitude as a measure of amplitude anomaly and compare with travel­
time anomalies, we do not see an obvious correlation between the two parameters. 
The travel time is perturbed by a relatively small part of the surface. The maximum 
amplitude is perturbed by a much larger part ofthe surface. It is a less local property 
ofthe topography. If a broader band source time function interacts with the surface, 
the amplitude anomaly would change but not the travel time anomaly. To improve 
the correlation, we measure the amplitude of the first pulse of the synthetic if it is 
different from the maximum amplitude. These values are shown in Figure 9 by the 
open circles and triangles for the upwarp and plug synthetics. We do not improve 
the visual correlation significantly. 

The modeling of a symmetric structure demonstrates that such a structure on the 
Moho, consistent with travel-time residuals, causes a factor 2~ in maximum ampli­
tude variation as a function of distance. The variation of amplitudes of first pulses 
is somewhat less. :.L\je1the1 variation is as large as the observations of amplitude 
changes between stations for a given test at NTS. Furthermore, where there is a 
large amplitude variation, there is significant waveform distortion of the synthetics. 
Also, the bumps generally cause low amplitudes. We note that the mesa data set 
has both anomalously high and low amplitudes. The low amplitude synthetics arrive 
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early. However, any relationship between amplitude anomalies and travel-time 
anomalies is dependent on frequency because the effect of a structure on a wave is 
dependent on frequency. 

The modeling to this point produces anomalies which are dependent only on 
distance because the structures are symmetric. We now introduce asymmetry into 
the problem by allowing the source to move off the center of a symmetric upwarp. 
We do these calculations because observed travel-time and amplitude anomalies are 
presented as a function of azimuth. Yet we do not know if these anomalies arise 
from azimuthal or delta heterogeneities. Additionally, there is an observed variation 
of amplitude at a given station with a change in source position in the mesa. If we 
change the source position across a sample structure, can we reproduce the factor 
of 2~ seen in Figure 3? We also wish to examine whether there is any systematic 
relationship between amplitude and travel-time anomalies as a function of azimuth 
as we have done previously with these parameters as a function of distance. 

The modeling experiment is similar to the previous one. The receivers are 1000 
to 7000 km horizontally away from the center of the topography and 20,000 km 
below the source. The sources are 45 km above the baseline of the Moho. To produce 
the azimuthal anomalies in the synthetics, we move the source off the center of the 
upwarp in one direction in increments of 2 km. The responses are calculated for 
seven distances at five different azimuths. We select the topography upwarp for 
this experiment. The choice of topography is somewhat arbitrary; however, we make 
this particular choice because this topography causes substantial variation in 
a:mplitudes as a function of distance. If this topography fails to produce much 
azimuthal variation, then the other topographies will fail to do so, also. 

Figure 10 shows our results. A crosssection of the source-receiver configuration 
and the geometry of the upwarp is in the center of the figure. In addition, a 
topographic map of the center portion of the grid is displayed. The contours are in 
kilometers, and the maximum height of the bump is 10 km. The topography map 
also shows the source locations and the azimuthal lines along which the calculations 
are done. The resulting waveforms and maximum amplitudes surround these dia­
grams. Each group of 28 waveforms is calculated for the corresponding azimuth. 
The groups are made up of four columns of synthetics corresponding to calculations 
done with the source location designated at the top of each column. Sources A, B, 
C, and D are, respectively, 2, 4, 6 and 8 km from the center. The rows correspond 
to calculations done at the horizontal distances next to the row. In Figures 11 to 
13, we plot the travel-time residuals, peak amplitudes, and first pulse amplitudes 
obtained from these synthetics as a function of azimuth for each distance. 

There is a change in overall complexity of the synthetics as a function of azimuth. 
The waveforms from the group at fJ = oo are simple and impulsive with relatively 
high amplitudes. Only the stations at 1,000 or 2,000 km have multiple arrivals. As 
we rotate counterclockwise around the structure, a greater number of the synthetics 
in each group have multiple arrivals, and consequently, low amplitudes. Synthetics 
at (} = 135° and 180° all have multiple arrivals. The reason for this trend is the 
same as in the previous modeling study. As the sources move in the direction of a 
line along (} peq oo, a greater proportion of the elements which constitute the planar 
part of the grid contribute to the potentials calculated in the direction of this line. 
Hence, synthetics of this line become more impulsive as the source migrates from 
position A to position D. In contrast, the synthetics at (} = 135° and 180° remain 
complex. The elements which contribute to these potentials are largely from the 
nonplanar part of the boundary. 
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FIG. 10. Synthetics from the topography upwarp calculated for four source positions, five azimuths 
and seven distances. The topography map and cross-section with source positions are in the center. The 
contour interval is 1 km. The distances, angles, and azimuths of the receivers are also shown. 
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FIG. 11. Travel-time residuals for source locations A, B, C, and D plotted as a function of azimuth 
and distance. 

We examine the maximum amplitudes, first pulse amplitudes, and travel-time 
residuals in Figures 11 to 13 for systematics as a function of distance or azimuth. 
The behavior of maximum amplitude with distance and azimuth is the most variable 
of the three parameters. The maximum amplitudes as a function of azimuth do not 
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correlate very well with the travel-time residuals. The rapid change of this parameter 
with azimuth and source position reflects the sensitivity of maximum amplitudes 
to slight changes in relative timing between the two arrivals which make up the 
synthetics. The least variation of maximum amplitudes with distance and azimuth 
occurs at synthetics calculated with source position A, the closest source to the 
center of the symmetric source. We increase this variation with azimuth and 
distance when we remove the source further away from the center to position B, C, 
and D. 

The maximum amplitudes at()= 135° for source position B, C, and Dare lower 
than the amplitudes at other azimuths. This trend is a result of (1) the degree to 

Peak Amplitudes 

Source A 8 

0 '------'-----'------'-----' 0 '------''------'------'-----' 
oo 90° 180° 0° 90° 180° 

Azimuth 
FrG. 12. Peak amplitudes for source locations A, B, C, and D plotted as a function of azimuth and 

distance. 

which the planar part of the grid contributes to the response and (2) the degree of 
symmetry of the source and receiver locations with respect to the structure. Stations 
along () = oo and () = 180° are in positions of symmetry with respect to the sources. 
Elements on either side of a line which divides the grid contribute simultaneously 
to the responses at these stations and, consequently, cause higher maximum 
amplitudes. Stations along() = 90° and() = 45o are not symmetrically positioned 
with respect to the source; however, the planar part of boundary largely contributes 
to these responses; thus, they have high maximum amplitudes. But receivers along 
8 = 135 o are placed asymmetrically which causes elements to illuminate at different 
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times; in addition, these elements are largely in the perturbed part of the boundary. 
These two factors combine to produce the overall lower maximum amplitudes of 
receivers at 8 = 135 o. 

Although we do not discern any relationship between the maximum amplitudes 
and the travel-time residuals as a function of azimuth, we see a correlation between 
the first pulse amplitudes and the travel-time residuals. Synthetics which have a 
constant first amplitude as a function of azimuth also have approximately constant 
travel-time residuals. When the travel-time advances increase as a function of 
azimuth, the first amplitudes decrease with azimuth. Thus, early synthetics have 
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FIG. 13. Amplitudes of the first pulse for source locations A, B, C, and D plotted as a function of 

azimuth and distance. 

lower first amplitudes than the later synthetics. The trend of early arrivals with 
low amplitudes and late arrivals with high amplitudes holds true for all azimuths, 
distances, and source positions. 

The travel-time residuals decrease as a function of distance at all azimuths except 
for 8 = 135° and 8 = 180° for sources C and D. At these azimuths, the residuals 
increase as the distance increases. Clearly, if we pull the source off the center far 
enough, the shallower rays will interact with the upwarped part of the topography 
while the steeper rays interact with the flat part of the grid. 

As the source moves off the center, the range of variation of first amplitudes and 
travel-time residuals as a function of azimuth exceeds the range of these parameters 
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as a function of distance; that is, the trends of these parameters are stronger in 
azimuth than in distance. Thus, stronger variation of travel time and amplitude 
anomaly with azimuth than with distance may be an indicator of lateral variation 
with azimuth, as well as with distance, despite an uneven station distribution of the 
existing data set. 

What conclusions can be drawn from this modeling experiment? First, we create 
a variation of 2~ of first amplitudes as a function of azimuth and source position. 
The change of amplitude with source position is largest at 0 = oo and 45° and is the 
least at () = 180°. However, the variation at oo and 45o is created at the cost of 
considerable distortion of the waveform. This feature of low amplitude waveforms 
with complex or broadened pulses and high amplitudes waveforms with simple 
narrow pulses is not apparent in the mesa data set. 

Second, we create a trend in the first pulse amplitudes with azimuth. Specifically, 
we cause high amplitudes at () = 00, 135 o, and 180°. If the source moves far enough 
away from upwarp, it causes no amplitude anomalies. However, structure can 
produce a systematic azimuthal trend in amplitudes. But we must be cautious about 
pushing this interpretation too far. The azimuthal trend is an artifact of the moveout 
of the source in one direction with respect to the lines of receivers. If we were to 
distribute sources all over the upwarp and then calculate the averages of the first 
amplitudes at each azimuth for all the sources, we would undoubtedly eliminate any 
trend with azimuth. Thus, the stability of the amplitude pattern of all mesa events 
with azimuth location is not easily explained by structure on the Moho or any 
unusual velocity plug unless the sources are fortuitously located to one side of the 
heterogeneity. 

Third, we see a visual correlation between travel-time residuals and amplitudes 
of first pulses, but do not see any between residuals and peak amplitudes. This 
correlation may be diagnostic of structure as opposed to tectonic release. 

DISCUSSION AND CONCLUSIONS 

The previous two modeling experiments show that a structure on the Moho which 
causes travel-time residuals compatible with the Spence (1974) and the Minster et 
al. (1981) studies can produce variations of 2~ of amplitudes as a function of delta, 
azimuth, and source position. The variation is created at the cost of considerable 
distortion of the waveform. Furthermore, the travel-time residuals correlate with 
first pulse amplitudes but not with peak amplitudes. To see whether these initial 
results are relevant to the Pahute Mesa waveform data, we must now include a pP 
phase, a Q operator and a short-period instrument operator in a few Kirchhoff 
synthetics. 

We choose two sets of five Kirchhoff-Helmholtz synthetics calculated at 4000 km 
previously for the azimuthal study. The two sets correspond to the source positions 
A and D at five azimuths. This choice represents two extremes of source positions 
relative to a structure and may give us a reasonable idea of what to expect in 
amplitude and waveform variation as test sites move within the mesa. 

We put pP into the Kirchhoff-Helmholtz synthetics by convolving these synthet­
ics with a boxcar function of unit height and a width corresponding to the pP-P lag 
time. This convolution yields the impulse response of P and pP if the incident 
source is a modified Haskell function rather than its time derivative. We justify 
this simple model of pP by assuming that the reflection coefficient of this phase is 
-1. Lay et al. (1983a) estimates the reflection coefficient as 0.96 for pP. We further 
argue that pP interacts with the same part of the surface as does P. This assumption 
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is good for the shallow depths of the mesa tests which range from 0.5 to 1.4 km. 
The width of the boxcar is 0.85 sec; this estimate of the pP-P lag time is taken from 
Lay et al. (1983). A short-period instrument and a Futterman Q operator is also 
convolved into these synthetics. We use a Haskell function with parameters (B = 
2, K = 10) while Lay et al. (1983a) use slightly different values (B = 1, K = 8). 
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FIG. 14. Kirchhoff-Helmholtz responses (first column) convolved with a boxcar of width 0.85 sec and 
a short-period WWSSN instrument (second column) and a Q operator with t* values of 0.5 (third 
column) and 1 (fourth column). Responses are from a distance of 4000 km, azimuth range of 0' to 180' 
and source locations A and D. 

Figure 14 displays the results of the convolutions. The first column contains the 
initial Kirchhoff-Helmholtz synthetics with peak amplitudes taken from Figure 10. 
The second column show these synthetics convolved with a WWSSN short-period 
instrument and a boxcar. We introduce additional complexity into the waveform 
but do not change the range of peak amplitudes significantly when we include an 
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instrument and pP. The complexity of the waveform caused by structure is masked 
by the dominant interference between P arrd pP. 

We next convolve these synthetics with Futterman Q operators with a t* of 0.5 
and 1. The waveforms and their ab amplitudes are displayed in columns 3 and 4. 
The ab amplitudes are plotted as function of azimuth for both sources and t* values 
in Figure 15. We remove the complexity of the waveform for both sources with the 
two t* values. However, there are some observable differences in the first and third 
peaks of the waveforms as a function of azimuth. The first peak widens as azimuth 
incteases. The third peak becomes smaller and disappears altogether. Moreover, 
Figure 15 shows a variation of ab amplitudes with azimuth of 2~ for source D if t* 
is 0.5. However, when t* is 1, this variation reduces to a factor of 1.7. We also 
obtain a variation of 2~ of ab amplitudes with respect to source position if t* is 0.5. 
This occurs at() = oo and() = 45°; however, the difference between ab amplitudes 
for the two sources decreases as the azimuth increases. 

Thus, we cannot predict the observed ab amplitude variation with azimuth or 
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FIG. 15. ab amplitudes from synthetics in Figure 14 plotted as a function of azimuth for both source 
locations A and D and both t* values. 

station location if we use a structure on the Moho 10 km high and approximately 
25 km wide. If the factors of 12 or 40, seen in Figures 3 to 5, are measures of a 
purely near-source phenomena, then one requires a structure several hundred 
kilometers in scale on a boundary to match these factors. This structure would 
distort the waveform considerably. Yet there is no obvious evidence in the observed 
seismograms for a correlation between low amplitudes and complicated and/or 
broadened waveforms or high amplitudes and simple, impulsive waveforms. We 
speculate that, rather than a large structure on a single boundary, a small velocity 
or density perturbation along a several hundred kilometer ray path may produce 
the desired amplitude change. However, we cannot test this speculation with our 
method. 

On the other hand, we predict a factor of 2~ in ab variation with source location 
if t* is 0.5. This variation is not accompanied by any significant waveform distortion. 
Although we only produce a factor of 2~ at two azimuths, this is an artifact of the 
source moveout across the structure. If sources were uniformly distributed over the 
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structure, we would cause this same magnitude of variation at all the azimuths. 
Furthermore, no source would be systematically higher in ab amplitudes than 
another,gource at all the azimuths. Unfortunately Figure 3 does not show systematics 
with respect to source location. The data should be examined for such trends. 

Also the travel-time residuals do not correlate with the ab patterns. The convo­
lution with two t* values demonstrates the frequency dependence of the phenomena. 
If t* is larger than 1, we will produce a flat pattern of ab amplitudes with azimuth 
but the travel-time residuals will not change. Thus, we do not expect a systematic 
relationship between travel-time and amplitude anomalies because the ab ampli­
tudes are sensitive to Q but the travel times are relatively stable. This is an 
unfortunate result because such a correlation would be diagnostic of structure as 
opposed to tectonic release. As yet, there has been no study which definitively 
demonstrates a relationship. In addition, the data sets of amplitude and travel-time 
measurements do not have a one-to-one correspondence. Lay et al. (1983a) measure 
the ab amplitudes off of short-period WWSSN instruments while Spence (1974) 
and Minster et al. (1981) use culled travel-time measurements from the ISC catalogs. 
We clearly need a study which compares the travel time and amplitude from the 
same seismogram. 

The largest overall variation in ab amplitude with azimuth in Figure 15 occurs 
because of differences in t* values. Yet there are no noticeable changes in the 
waveform. Thus, the ab amplitudes are far more sensitive than waveforms to Q 
differences. Perhaps, a lateral variation of Q with path can produce the extreme 
scatter of ab amplitudes for both tests inside and outside the mesa. However, it 
cannot explain the differences in patterns between these different test site areas. If 
the near-mesa anomalies are, indeed, at least a factor of 10, then structure on the 
Moho which is compatible with travel-time residuals cannot produce these large 
variations of amplitude with azimuth. However, such a structure could explain the 
observed variation of ab amplitudes with source position at a given station. 
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