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Abstract

Motion of a single Fourier mode of the plucked string is an example of transient, free decay

of coupled, damped oscillators. It shares the rarely discussed features of the generic case, e.g.,

possessing a complete set of non-orthogonal eigenvectors and no normal modes, but it can be

analyzed and solved analytically by hand in an approximation that is appropriate to musical

instruments’ plucked strings.
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I. BACKGROUND

The transient, free decay of coupled, damped oscillators is not discussed in elementary

physics courses and rarely, if ever, in advanced ones. The discussion in advanced physics

textbooks is cursory, typically suggesting that one would proceed “just as one might imag-

ine” but that the details are cumbersome. The new features possessed by such systems

relative to the well-studied ones are just not part of the basic physics education offered to

all students of physical sciences and engineering. Consequently, when analogous aspects

arise in particular situations, the people involved sense an aspect of discovery. Sometimes

the “newly” discovered perspective has major impact. Although the mechanics of such linear

systems has been understood, in principle, for hundreds of years, rediscovery of their special

features has occurred even into the 21st Century.

Here are some examples of such rediscoveries. Understanding the Ko–K̄o meson system1

in the 1950’s laid the groundwork for the experiments that identified CP and T (time reversal

symmetry) violations in the fundamental interactions.2,3 Mechanical engineers in the 1960’s

were interested in the shaking of buildings,4,5 which can exhibit something now known as

transient growth. The origin of the characteristic sound of the piano6 (in contrast to earlier

stringed, keyboard instruments) was elucidated in the 1970’s. Stability analyses in fluid

mechanics and analogous problems in applied linear algebra witnessed a major revolution

starting in the late 1990’s.7,8

Of course, numerical integration of differential equations has gotten easier and better

over the years. And it has often been observed that “non-normal” linear systems sometimes

exhibit surprising transient behavior, quite sensitive to parameters and initial conditions.

But that is not a substitute for thorough understanding of at least one simple, mechanical

system.

There are several related meanings of the term “non-normal.” Here, it refers simply to

matrices with complete sets of eigenvectors which are not all orthogonal to one another.

They are common elements of a variety of systems including ones that exhibit transient

growth where all eigenvectors, individually, decay monotonically.7−9 As described in the

following, the total energy of two coupled, damped oscillators decays in time, no matter

what the initial conditions or parameter values. However, there are ranges of parameters

and initial conditions for which the amplitude and energy of one of the oscillators can grow
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before eventually decaying. In such cases, the decay of the total system’s energy comes in

spurts, rather than a steady one- or two-rate exponential.

II. THE STRING AS TWO COUPLED, DAMPED OSCILLATORS

The ideal string stretched taut between two fixed points has normal modes with frequen-

cies that are integer multiples of the fundamental. In a musical instrument, there are actually

two degenerate modes for each frequency, reflecting the possibility of string displacements

in the plane transverse to the string direction.

The “fixed” ends are neither fixed nor perfect. That produces a very small coupling

between the originally degenerate modes, which splits the frequencies by a small amount

(proportional to the coupling) and picks out as normal modes those linear superpositions

that diagonalize the perturbation. Again, in the specific context of a stringed instrument,

it is important that the splitting be small so that any combination of the two is perceived

as a single pitch.

By itself, the vibration of a string produces almost no sound — because the tiny cross

section of the string moves almost no air. There must be some further transduction of the

string motion to air motion. In acoustic instruments, that is accomplished by linking one

end of the string to a sound board. String oscillations force sound board motion, which in

turn produces sound. Hence, at least one “fixed” end of the string is not actually fixed.

Furthermore, in a good musical instrument, that end motion is the string’s primary loss of

energy. And again, that damping must be weak so that the consequent width or spread in

frequency due to the damping leaves a single discernible pitch rather than noise.

So, for the present, we focus on a single original frequency. The system is approximated as

two initially degenerate oscillators which are weakly coupled and weakly damped. The catch

is that the coupling and the damping, represented as matrices in the space of the two initial

oscillators, are generally not simultaneously diagonalizable. In particular, we may choose

as a basis the up-and-down motion (relative to the sound board) and the side-to-side. In

the absence of damping, a small coupling between these two (denoted in the following by

ε) splits the degenerate frequencies by a fraction ε. But arbitrarily small ε also rotates the

eigenmodes to 45o diagonals with respect to the soundboard.

However, the coupling of vibration to the sound board is typically far more effective for
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vertical motion than for horizontal. To make matters as simple as possible, we will consider

explicitly small vertical damping (denoted by γ) and no horizontal damping. If the system

is started out in one of the modes of the undamped problem, then the non-zero damping

will pull it away from that mode and mix in some of the other.

What is it that actually happens?

We choose original restoring forces, the coupling, and the damping so that the system

is linear. (E.g., the damping is proportional to the velocities.) With positive damping, the

total energy must decrease monotonically with time. It is handy (and virtually essential)

to use a complex number representation of the frequencies and vectors; their superposition

into real motions at the end is totally parallel to standard treatments of the free decay of

the single damped harmonic oscillator.

We will find that there are, indeed, two eigenfrequencies. They describe exponential

decay multiplied by sinusoidal oscillation. They have corresponding eigenvectors, which

are possible motions that follow their single eigenfrequency. However, these vectors have

complex components, which, translated into the real motion of strings, means that their

motion in the transverse plane is elliptical rather than strictly linear (as is the case without

damping). And, finally, these eigenvectors are not orthogonal. One consequence is that the

total energy and the rate of energy dissipation (which is the volume of produced sound in

this simple model) are not the sum of two independent, decreasing exponentials.

The spring, mass, and damper analog of this model of a string’s single frequency mode

is illustrated in Fig. 1. Two identical oscillators are coupled with a weak spring, κ, but

weak viscous damping

k
m m

k
κ<<k

FIG. 1. two oscillator mechanical analog

only one of the oscillators is damped. Newton’s second law yields two coupled differential

equations in time that are linear in the two displacements. Write the displacements, x1(t)
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and x2(t) in vector form with

x(t) =

x1(t)
x2(t)

 .
For the plucked string, x1(t) is a given mode’s vertical motion, and x2(t) is the horizontal

motion.

The equations of motion take the form

ẍ = −K · x− Γ · ẋ , (1)

where K and Γ are 2 × 2 matrices representing the coupling and damping. (The general

mathematical problem would include a mass matrix multiplying ẍ.)

The unit of time can be chosen to put K into the form

K =

1 ε

ε 1

 .

I.e., for weak coupling and damping, units are chosen such that all of the angular frequencies

are close to 1. And the damping, as described above, takes the form

Γ =

γ 0

0 0

 .

There is no basis in which K and Γ are both diagonal. A commonly recognized reflection

of this is that the commutator

[K,Γ] = K · Γ− Γ ·K =

 0 − εγ

εγ 0

 6= 0 .

(Of course, there are other forms of damping for which the damping and coupling matrices

do commute. In such cases, the separation into normal modes is straightforward.)

III. SOLUTION: EIGENVALUES

We seek eigenvalues α and time-independent eigenvectors xo such that eαtxo is a solution

to Eq. (1). Plugging that in yields

(α2I + K + αΓ) · eαtxo = 0 , (2)
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where I is the identity matrix. xo = 0 is a solution to Eq. (2) but not to the problem at

hand. For all other solutions, the matrix factor in Eq. (2) cannot have an inverse, and that

requires that its determinant vanish, which is the following:

(α2 + 1)2 + γα(α2 + 1)− ε2 = 0 . (3)

This would be easy to solve were either γ or ε zero, but as it stands it is a quartic

equation. Quartic is the highest order polynomial for which a closed-form solution exists.

That solution has been known since the 16th Century, but it is far longer than most people

can remember or comprehend. Also it contains a great many nested square and cube roots.

Just as the single damped oscillator has cases with radically different qualitative behavior,

i.e., over damped, under damped, and critically damped, there are cases here, too — only a

great many more.

For weak coupling and weak damping, we can anticipate the structure of the solutions

from physical considerations. With γ � 1 (and γ > 0), the four solutions for α will be

two complex conjugate pairs. Re[α] will be negative, reflecting the monotonic loss of energy.

Im[α] comes in conjugate pairs. These conjugate pair solutions can ultimately be superposed

to get real solutions with sines and cosines of t with the same frequency. And this multiplicity

of solutions allows fitting of any initial conditions of the two oscillators.

If both γ � 1 and ε� 1, then all the frequencies will be near to 1, i.e. i Im[α] ≈ ±i. And

this offers a way to approximate Eq. (3) and reduce the algebra problem to a quadratic.10 In

the term γα(α2+1), approximating the first α by ±i leaves the whole term still as small as ε2

and (α2 + 1)2, at least in the vicinity of the desired solutions. So, using this approximation,

Eq. (3) becomes

(α2 + 1)2 ± iγ(α2 + 1)− ε2 ' 0 , (4)

whose solutions are

α ' ± i

(
1± i

γ

4
± 1

2

√
ε2 − (

γ

2
)2
)
. (5)

If the three ±’s were chosen independently, there would appear to be eight solutions.

However, the approximation of Eq. (3) by Eq. (4) introduces four extra solutions that do

not satisfy the actual approximation. These are easy to identify by their having Re[α] > 0

for γ > 0. We retain the four α’s with Re[α] < 0.

The separate limits ε → 0 and γ → 0 recover the previously understood behaviors of

single damped oscillators and coupled, undamped oscillators.
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There are evidently three qualitatively different regions, even with both γ � 1 and

ε � 1. With ε > γ/2, the square root term contributes to the oscillation frequency; there

are two oscillation frequencies but only one decay rate, which is independent of ε. With

ε < γ/2, the square root term effects the two decay rates, and there is no splitting of the

oscillation frequency degeneracy. And for ε ≈ γ/2, the frequencies and decay rates of the

two eigenmodes are nearly equal.

In the Appendix, evaluations of Eq. (5) for three numerical pairs of ε and γ, representative

of the three regions, are compared to the exact values that come from solving Eq. (3).

IV. SOLUTION: EIGENVECTORS

Let the components of the four eigenvectors be a and b:

xo =

a
b

 .
(The eigenvalues α and eigenvectors xo, with their components a and b, have a four-valued

index i to tell which goes with which. That index i is suppressed when that improves clarity.)

The lower component of Eq. (1) tells us that

b

a
=
−ε

α2 + 1
' −ε
±iγ/2±

√
ε2 − (γ/2)2

. (6)

This specifies the four eigenvectors, one for each α. (Recall that α2 + 1 = 0 only for ε = 0

and α2 + 1 = ±ε for γ = 0.) The first expression for b/a with the = sign is exact relative to

the initial statement of the problem, i.e., Eq. (1); the approximate solutions to Eq. (4) are

used for the ' expression. The ratio b/a is of order 1 (because |α2 + 1| � 1).

Also, b/a is complex. The phase of each b/a means that in the oscillatory part of the

motion corresponding to a single eigenvalue, there is a fixed, non-zero phase between the

x1(t) and the x2(t). In the language of the plucked string: in the transverse plane, the eigen-

motions are elliptical rather than linear (which they would be in the absence of damping).

V. REAL SOLUTIONS AND NON-ORTHOGONALITY

Since there are a variety of precise meanings given to orthogonality and non-normality, it

is worth returning in the present context to the original physical problems and constructing
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the basis of real eigenfunctions.

For weak damping, the four eigenvalues α are two pairs of complex conjugates. Label

them as α±1 and α±2, where there are two, in general, different, negative real parts, each with

a pair of conjugate imaginary parts. The α±1’s can be assembled into two real eigenfunctions:

y+1(t) = eα+1t

a+1

b+1

+ eα
∗
+1t

a∗+1

b∗+1



y−1(t) = i

eα+1t

a+1

b+1

− eα
∗
+1t

a∗+1

b∗+1


= eα+1t+iπ/2

a+1

b+1

+ eα
∗
+1t+i

∗π/2

a∗+1

b∗+1

 .

These forms use the facts that α−1 = α∗
+1 and b−1/a−1 = b∗+1/a

∗
+1 (true in the original, exact

formulation). Likewise, there are two real functions y±2(t) similarly constructed out of the

conjugate pair α±2. Appropriate superpostion of the four y(t)’s can match the two initial

positions and velocities.

The normal modes of linearly coupled, undamped oscillators behave themselves, essen-

tially, like a set of uncoupled oscillators. Whatever superposition is determined by the initial

conditions remains in force for all time. Many quantities of central importance, such as the

kinetic energy, the potential energy, and the total energy of the system are, at any time,

just the sum of the contributions from the normal modes. Since these particular quantities

are quadratic in the dynamical variables, the reduction to a sum over modes requires that

cross terms between the contributions of different modes vanish. And that is the sense in

which the normal modes are normal to each other. However, for the generic case of coupled,

damped oscillators, such cross terms are non-zero. Hence, there are no normal modes —

in spite of there being a complete set of solutions corresponding to the time-dependence

eigenvalues.

As long as ε 6= 0, for convenience we can choose all four a±1,2 = 1. Then, for example, at

t = 0:

y+1(0) · y+2(0) = 4(1 + Re[b+1]Re[b+2])

6= 0 for γ/ε 6= 0 .
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Once again, this result is not particularly surprising, except possibly to those imbued with

an overwhelming respect for normal modes. If the coupled, damped system were exactly

describable by normal modes, then the total energy would decay steadily as the sum of one

or two exponentials. However, if the corresponding undamped system could exhibit beats,

then with the addition of very weak dissipation to only one of the (pre-coupled) degrees of

freedom, dissipation should likewise come and go at the beat frequency. And that is, indeed,

one of the possible generic behaviors.

VI. PLUCKED STRING SOUNDS

Careful measurements made of the sounds of plucked banjo strings were published by

Moore and Stephey.11 For one aspect of their experimental survey they damped all strings

but the first, plucked it, first in the vertical direction (relative to the banjo head) and then

in the horizontal. They did the same for the second string. They recorded the sounds

and analyzed them into Fourier components. In Fig. 2 (copied from Fig. 5 of Ref. 11)

the (logarithmic) sound intensities for the first three harmonics of each plucked string are

displayed as a function of time. Each harmonic acts as a separate nearly degenerate, coupled,

damped pair. As those authors noted in their paper, evident are single exponential decays,

double exponential decays, and decays with prominent beats modulating a single overall

decay rate. In the simple model presented here, sound intensity would be proportional to

the power dissipated by the “vertical” oscillator. And the three observed types of behavior of

the actual strings match the three qualitative behaviors of solutions of Eq. (4), corresponding

to the three regions of parameter space defined by the relative sizes of ε and γ/2 .

Even with just the naked eye, some of this behavior is typically visible on a stringed

instrument. In particular, there is usually at least one string that after a vigorous pluck

exhibits beats. Instead of decreasing steadily, its amplitude gets smaller and larger again a

couple or even several times before it dies completely. (Generally, each maximum is smaller

than the previous one.)

This phenomenon is actually a very important aspect of banjo sound. The banjo is an

instrument where the degeneracy is often four- and even six-fold, not just the two of a single

string. That is because, as normally tuned and played, the undamped strings are often in

unison or share harmonics (e.g., the second harmonic of one string is degenerate with the
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third harmonic of another). And the design of the bridge (the active terminus of the strings)

facilitates coupling between between all of the strings.

In the simple model of the plucked string presented, the sound volume is proportional to

the rate of energy lost to damping of the vertical motion of the particular string harmonic.

The instantaneous value of this lost power is Pinst = γẋ2(t)
2. In Fig. 3, the log of the

several-cycle-averaged ẋ2(t)
2 is plotted verus time for ε = 0.01 and γ = 0.01 with the t = 0

condition that the pluck is purely in the horizontal (undamped) direction. The horizontal

motion x2(t) is the lower component of x(t) ≡ y+1(t)− y+2(t).

The numerical parameter values in the Appendix were chosen for convenience of computer

entry, with the consideration that they be small but realistic for stringed instruments. (No

effort was made to match the data of Fig. 2.) Of these three pairs, the values used for

Fig. 3 are the ones that exhibit beats, i.e., there are two distinct oscillation frequencies with

the beat period being distinctly shorter than the damping time. And the horizontal pluck

was chosen for display because time must elapse after the pluck before the coupling to the

dissipative vertical motion is substantial. Hence, the power dissipated grows immediately

after the pluck before it subsequently decays. With a vertical pluck, the dissipation would

be evident from the start but would also exhibit the beats between the two eigenfrequencies.

The dissipated power for the other domains of ε-γ space would look like single or double

exponential decay without beats.

Appendix A: Exact/approximate eigenvalue comparison

Modern computer math packages include the exact solution for the roots of the general

quartic polynomial. Hence, their numerical evaluations of Eq. (3) are unassailable. The table

below gives comparison of the approximate eigenvalues from Eq. (4) to the exact eigenvalues

from Eq. (3) for ε = 0.01 and γ = 0.01, 0.02, and 0.03.
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TABLE I. Eigenvalue exact/approximate comparison

ε γ method Re[α] iIm[α]

0.01 0.01 exact -0.002504 ±i 0.995679

-0.002496 ±i 1.00431

0.01 0.01 approx -0.0025 ±i 0.995670

-0.0025 ±i 1.00433

0.01 0.02 exact -0.005352 ±i 0.9996

-0.004648 ±i 1.0003

0.01 0.02 approx -0.005 ±i

-0.005 ±i

0.01 0.03 exact -0.01309021 ±i 0.999856

-0.00190978 ±i 1.00001

0.01 0.03 approx -0.01309017 ±i

-0.00190983 ±i
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FIG. 2. Measured loudness in dB (log scale) vs. time for string harmonics, copied from Ref. 11
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FIG. 3. The calculated “sound” of a particular horizontal pluck
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