Supporting information

Substrate dependent solar water oxidation performance of ultrathin α -Fe₂O₃ electrodes

Omid Zandi, Joseph A. Beardslee, Thomas Hamann*

Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

*Email: hamann@chemistry.msu.edu

Figure 1S. *J-V* curves of ~ 18 nm hematite electrodes with (solid dark blue) and without (dashed red) Ga₂O₃ underlayer, under water oxidation condition in dark.

Figure 2S. *J-V* curves of ~18 nm hematite electrodes with 1 (dash-dotted orange), 2 (solid dark blue) and 4 nm (dashed green) Ga_2O_3 underlayer, under water oxidation condition and 1 sun illumination.

Figure 3S. *J-V* curves of ~18 nm hematite electrodes with a 2 nm (18 ALD cycles) Ga_2O_3 underlayer (dark blue) and the same thickness of hematite without underlayer but doped with the same ALD cycles of Ga_2O_3 (green). *J-V*s obtained under water oxidation condition in pH 7 and 1 sun illumination.

Figure 4S. Transmittance of FTO (dashed red) and FTO coated with 2 nm Ga_2O_3 (solid dark blue).

Figure 5S. Absorbance spectra of ~ 18 nm hematite with (solid dark blue) and without (dashed red) a Ga₂O₃ underlayer.

Figure 6S. XPS depth of hematite films with (dashed lines) and without (solid lines) Ga_2O_3 underlayer deposited on SnO_2 coated Si wafer.

Figure 7S. a) Absorptance spectra of 18 nm hematite films with (pink) and without (red) Nb₂O₅ underlayer before (dashed lines) and after (solid lines) annealing in 500 °C.

Figure 8S. IPCE of 60 nm hematite electrodes with (dark blue squares) and without (red circles) Ga_2O_3 underlayer under the condition of back (solid shapes) and front side (open shapes) illumination at 1.78 V vs RHE.

Figure 9S. Raman spectrum of a 60 nm hematite (red) film deposited on FTO overlaid with that of the FTO substrate (grey).

Figure 10S. SEM images of 18 nm hematite on FTO with 2 nm Nb_2O_5 underlayer. Scale bar is 100 nm.

Figure 11S. SEM images of 18 nm hematite on FTO with (a and b) and without (c and d) a Ga_2O_3 underlayer. The scale bar is 20 nm in each case.

Figure 12S. Experimental and Gaussian fit of two Raman phoneme modes for 18 nm hematite films deposited on different underlayers. A table of fit FWHM values is also shown.