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PEAK ACCELERATION SCALING STUDIES 

BY DAVID M. HADLEY, DONALD v. HELMBERGER, AND JOHN A. ORCUTT 

ABSTRACT 

An acceleration time history can be decomposed into a series of operations 
that transfers energy from each point on the fault to the recording station 

ACC(t) = 5* R* E* Q 

where 5 is the source time function, R represents rupture over a finite fault, E is 
the elastic propagation through the earth, and Q is the path attenuation, assumed 
to be linear. If these operators were exactly known, a deterministic approach to 
predicting strong ground motions would be straightforward. For the current 
study, E was computed from a velocity model that incorporates a stiff sedimen­
tary layer over a southern California crust. A range of realistic rupture velocities 
have been obtained by other investigators and is incorporated into the simula­
tion. Assumptions of the path averaged attenuation, Q, can be tested by com­
paring with observational data, as a function of distance, the parameters peak 
acceleration, and computed ML. This provides a check on both the high fre­
quency(- 5Hz) and long-period (-1 sec) behavior of E* Q. An average crustal 
shear wave Qfi of 300 is found to be compatible with observational data (ML = 
4.5 to 5.0). Assumptions of 5 can be avoided by using real sources derived from 
accelerograms recorded at small epicentral distances (epicentral distance/ 
source depth < 1 ). Using these operators, accelerograms have been simulated 
for strike-slip faulting for four magnitudes: 4.5; 5.5; 6.5; and 7.0. The shapes of 
the derived average peak ground acceleration (PGA) versus distance curves are 
well described by the simple equation PGA a [R + C(M)r 1

-
75

, where R is the 
closest distance to the fault surface and C(4.5) = 6, C(5.5) = 12, C(6.5) = 22, 
and C(7.0) = 36 km. 

INTRODUCTION 

The seismogram recorded by a strong motion accelerograph represents the 
accumulative effect of many complex processes that transfer seismic energy from 
the fault surface to the recording instrument. As the rupture front passes a point on 
the fault, each particle accelerates, reaches some peak velocity, and finally slows to 
a stop. As each point accelerates, it radiates seismic energy. Before this elastic 
energy is recorded at the station, it is filtered in several significant ways. The energy 
is absorbed by anelastic wave propagation and scattered by heterogeneities. Purely 
elastic propagation through the earth filters the signal (e.g., Heimberger and Malone, 
1975; Heaton and Heimberger, 1978). Finally, interaction with the recording site and 
the instrument results in further distortions. Each physical process can be repre­
sented by a filter or operator. The recorded seismogram can be viewed as a 
representation of the convolution of each operator. 

The operators describing the seismic source, attenuation, and wave propagation 
can be computed analytically or derived empirically. Provided the various operators 
are known in sufficient detail, the generation of synthetic time histories is fairly 
straightforward. Recent computational techniques for deriving synthetic seismo­
grams have proven to be powerful tools for studying earthquake source properties 
and for determining the details of the earth's structure (e.g., Burdick, 1977; Langston, 
1978). 
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In a recent study of the 1940 Imperial Valley earthquake, Hartzell (1978) found 
that the main shock seismogram recorded at El Centro could be simulated by the 
superposition of several of the major aftershocks. Physically this simulation is very 
attractive. The record for each aftershock is the cumulative result, for a portion of 
the fault, of all physical processes discussed above. To simulate the main shock 
requires only fairly simple scaling for moment. The lag time for the superposition of 
each aftershock record is determined by the progression of the rupture front. 
Kanamori (1979) has carried this technique further by using regional records from 
the M = 6.4 Borrego Mountain earthquake to simulate rupture along the San 
Andreas for an M = 8 earthquake. Since the Borrego Mountain data were not 
recorded over the full range of distances and azimuths that would be required to 
simulate ground motion, some scaling of the observed records was necessary. In 
particular, as the observed records were primarily surface waves, amplitudes were 
scaled for distance by r 1. Finally, the amplitudes were corrected for radiation 
pattern, and the scaled observed records were lagged in time to simulate the rupture 
process. 

The estimation of strong ground motion at short epicentral distances resulting 
from a large earthquake has also been studied with a simulation technique that 
relied heavily upon the more extensive data set from smaller earthquakes (Hadley 
and Heimberger, 1980). These investigators used the accelerograms of a well­
recorded smaller earthquake as Green's functions for the elements of a larger fault. 
However, application of this empirical simulation approach has several limitations. 
Few earthquakes have been well recorded over the range of distances and on 
comparable site conditions to define the necessary Green's functions required to 
simulate a large earthquake. Further, variations in source depth have a significant 
effect on the transfer functions. Without accelerograms from a range of source 
depths, the adequacy of the simulations will be suspect. 

Within this study, the initial simulation discussed by Hadley and Heimberger 
(1980) has been extended to explicitly include the effects of a stiff sedimentary 
structure overlying a realistic crust and the effects of energy release over a range of 
source depths. This has been accomplished by computing the transfer functions 
directly from an earth model. Observational constraints, as discussed below, have 
been used in the development and verification of these functions. The following 
simulation technique is a hybrid approach as observational accelerograms are used 
to define the time function radiated from each grid element of the simulated fault. 
The size of the grid elements are scaled to be comparable with the source dimensions 
of the recorded earthquake. Scaling of the radiated time function for moment release 
within each element of the fault and the assumed stochastic character of the rupture 
process across the grid follow the previous work of Hadley and Heimberger (1980). 
Within the following sections, each operator utilized to produce the final simulated 
accelerograms is discussed in detail. 

PHYSICAL OPERATORS 

Crustal response. In a previous study of simulating strong ground motion (Hadley 
and Heimberger, 1980), the crustal transfer functions utilized were empirical. The 
data used were recorded on essentially hard rock sites located at epicentral distances 
ranging from of 5 to 33 km. Recorded accelerograms were scaled only for radiation 
pattern and hypocentral distance. The advantage of this technique is that real 
crustal transfer functions and real crustal attenuation are automatically incorporated 
into the simulation. The disadvantage is that the modeling is only appropriate for 
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a crust typified by the average of the suite of stations recording the earthquake. In 
addition, the simulation cannot be extended to distances much beyond the range of 
the recorded data. 

An obvious alternative approach to using empirical transfer functions is to 
compute the functions directly from a realistic earth model. The potential weakness 
of such an approach is that generally accepted attenuation models for the crust 
(frequency range 1 to 10 Hz) are not available. However, two distinct data sets can 
be used to decide if the attenuation for a given earth model is realistic. A high­
frequency constraint on the attenuation model is the observed behavior of peak 
acceleration versus distance at ranges greater than a few source dimensions. Seed et 
al. (1976) have reviewed the various empirical relationships between peak acceler­
ation and distance. The behavior of most of these functions varies as R-13 where f3 
ranges from 1.5 to 2.0. For comparison with the simulated accelerograms, an 
intermediate value of f3 = 1. 75 was chosen as being reasonably representative of the 
observational data. A second constraint is the stability of the calculated local 
magnitude, ML, as a function of distance. These constraints were applied to four 
attenuation models. The elastic velocity model is discussed below. The four atten­
uation values tested were: Q11 = oo; 300; 200; and 100, where Q13 is the shear-wave 
quality factor. In all cases, the attenuation was uniform throughout the model. The 
value QfJ = oo did not meet the constraints discussed above. However, only a slight 

TABLE 1 

EARTH STRUCTURE MODEL 

Thickness (km) a (km) /3(km) p (gm/cm') 

1.4 2.5 1.3 2.2 
2.1 4.8 2.8 2.6 
4.5 5.9 3.4 2.76 

18.0 6.5 3.7 2.8 
6.0 7.0 4.0 3.0 
00 8.2 4.7 3.3 

amount of attenuation was required in order to bring the transfer functions into 
good agreement with these constraints. 

The velocity model used to calculate the transfer functions is listed in Table 1. 
This velocity model has been adopted from a profile through the southern California 
Peninsular Ranges as discussed by Shor and Raitt (1956). The top few kilometers 
were altered to incorporate a sedimentary structure. The shear-wave velocity in the 
top layer was set at VfJ = 1.3 km/sec. This velocity corresponds to a very stiff or 
well-cemented seidment. The model does not incorporate a soft surficial layer with 
nonlinear properties. If such a layer were included, the effect on the derived 
attenuation relationship would be to systematically decrease the computed accel­
erations proportional to the absolute acceleration. 

The expense of computing transfer functions for a homogeneous half-space is 
much less than for the layered model defined above. However, there are several 
compelling reasons why a half-space model is not appropriate. The work of Heaton 
and Heimberger (1978) has clearly shown that elastic propagation through a layered 
earth alters the spectrum of the input pulse, whereas a homogeneous model results 
in a flat spectrum. Another consideration is initially downward traveling energy. In 
the homogeneous model, this energy never contributes to the accelerogram. In the 
simulations discussed below (see Figure 2), the amplitudes are appreciably increased 
beyond about 60 km by critical reflections from deeper layers. Without the lower 
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part of the model, it would not be possible to match observations at larger distances. 
If the simulations are expected to match the observations, a layered earth model 
must be used. 

It is useful to regard the accelerogram recorded at any distance as the convolution 
(or product in the frequency domain) of three distinct operators 

(1) 

where Tezastic is the purely elastic transfer function for the model discussed above, 
the Q is the attenuation operator, and source is the time function radiated by the 
earthquake source. The transfer functions represent the displacement time history 
at a point on the surface that results from a step dislocation at depth. A primary 
goal of this section is to select a reasonable Q model that is consistent with 
observations over the frequency range of interest for modeling strong ground motion. 
By previously choosing a velocity model based on refraction and reflection surveys 
in southern California, the velocity model is fixed. Similarly, if real earthquake 
source-time functions are used, then the frequency content of the source cannot be 
traded off with the attenuation model in order to match the constraints on A CC(R). 
Real, nearly pure source functions have been recorded for a few earthquakes. As 
seen from equation (1), a recorded accelerogram will represent the source-time 
function if the product of Tezastic*Q is a delta function. This condition is approxi­
mately true if the accelerogram is recorded at very small epicentral distances 
(epicentral distance/source depth< 1) and if the source-to-station path is uniform 
and high Q. These conditions were ideally met for several recordings of an ML = 4.8 
earthquake in southern California [Horse Canyon, Peninsular Ranges studied by 
Kanamori (1976) and Hartzell (1978)]. For this study, the most significant acceler­
ogram was recorded at station Terwilliger, located on hard rock. The epicentral 
distance for this earthquake (a = 5. 75lun) was approximately half of the hypocentral 
depth. Hence, by convolving together the transfer functions computed from the 
elastic layered earth model discussed above and the Terwilliger accelerograms, 
accelerograms for a perfectly elastic earth, Q = oo, can be computed for any 
epicentral distance or source depth. These simulated accelerograms can also be 
filtered with the instrument response of a Wood-Anderson seismograph, and local 
magnitudes (ML) can be computed at each distance (Kanamori and Jennings, 1978). 
An example of the strike-slip transfer functions for SH energy, computed using the 
elastic-layered earth model described above, and the simulated accelerograms and 
Wood-Anderson responses, are shown in Figure 1. The computation of these transfer 
functions is discussed by Heimberger and Malone (1975). The behavior of the peak 
acceleration versus distance curve for these simulated accelerograms can be directly 
compared with the trend of the observational data (Figure 2). This comparison 
clearly shows that the peak acceleration or zero-period response of the simulated 
accelerograms, for the purely elastic earth, decays too slowly with distance. In 
addition, the ML calculated from the records systematically increases with distance 
(Figure 3). These two comparisons show that the response at zero period and 1 sec 
are not in good agreement with the observations. 

The complete computation of transfer functions for a given velocity and atten­
uation model is a rather costly process. In searching for an attenuation model that 
meets the above discussed constraints, it is desirable to use an approximate but 
efficient method for incorporating anelasticity. Attenuation can be added to the 
elastic transfer functions in an approximate manner by convolving the entire elastic 
response with a single attenuation operator (Carpenter, 1966). Since the peak 
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acceleration and the maximum excursion of the Wood-Anderson response is con­
trolled primarily by the largest arrival, the appropriate attenuation operator is 
defined by the travel time of that arrival and a value of Qp. For a constant Q earth 
model, this approach adds too much attenuation to the early part of the record and 
too little to the late part. However, for the point of maximum interest, the technique 
accurately attenuates the pulse. Two values of Qp were examined: Qp = 100 and 200. 
It should be emphasized that attenuation in all of the modeling was both linear and 
uniform throughout the model. The behavior of peak acceleration versus distance 
for these attenuated transfer functions and the computed ML, for each simulated 
accelerogram, are shown in Figure 4. These approximately attenuated transfer 
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FIG. I. The Green's functions represent the 8H displacement time history at a point on the surface 
of the earth that results from a step dislocation at a depth of 6.5 km. A simulated accelerogram can next 
be constructed by convolving together these Green's functions with an observational source function. 
The first row shows the observed accelerogram, ML = 4.8, recorded on a hard rock site, that was used in 
this simulation (see discussion in text). The convolution of the accelerogram with the response of a 
Wood-Anderson seismograph results in the final seismogram. The local magnitude, ML, is then calculated 
from this final record. 

functions show much better agreement with the observational constraints and 
further indicate that fairly high crustal Q11 values are compatible with the observed 
behavior of peak acceleration and ML. 

By selecting a macroscopic velocity model and using a real earthquake source, 
the Q operator was bounded with the observations of the behavior of ACC(R). 
However, the bounds on the Q model are sensitive to the earthquake source function 
used in the application of equation (1). For instance, if the earthquake source 
function was enriched in long-period energy, relative to an "average" earthquake of 
the same magnitude, then Q would have to be reduced in order to obtain the 
observed decay of peak acceleration. On the other hand, if the source function was 
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enriched in high frequencies, Q would have to be increased so that the computed 
peak acceleration would not decay too quickly with distance. The Horse Canyon 
source function was enriched in high-frequency energy (Hartzell, 1978). Hence, the 
value of Qp = 100 to 200 may represent a larger value of Q than would be derived 
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). 

from an "average" earthquake source. The behavior with distance of the parameter 
ML is not particularly sensitive to the source since the Wood-Anderson instrument 
filters all input signals with a response that is peaked at 0.8 sec. By comparison with 
the variable width of the peak acceleration pulse, or its frequency content, the 
period of the maximum pulse of the Wood-Anderson instrument is fairly stable. 
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The selection of Q in the model will essentially control how much high-frequency 
energy released from more distant sections of a fault will arrive at any particular 
site. Hence, for simulating peak ground acceleration, the Q model must be accurate. 
The approximately attenuated synthetic accelerograms computed using a uniform 
crustal Q13 of 100 to 200, are in fairly good agreement with the data. The next step 
in the process of selecting a Q model is to compute the transfer functions with a 
more exact technique. Functions for five source depths and 18 distance ranges (d 
= 5 to 90 km) were calculated with w - K integration (Apsel, 1979). The w - K 
integration technique correctly introduces the attenuation into the transfer func­
tions. A uniform Q model of Q13 = 300 and Q" = 600 was selected for testing at this 
stage of the study. Examples of these transfer functions for one source depth are 
shown in Figure 5. 

Again, the comparison between the simulated peak acceleration and the calculated 
behavior of ML, for each depth and distance range, and the observational data must 
be performed. The simulated peak acceleration versus distance curve, ML = 4.5 to 
5.0 (since the source-time function came from an ML = 4.8 event), is shown in Figure 
6. The calculated variation of ML with distance is shown in Figure 7. 

In recent studies of ML, computed from near-field accelerograms, Kanamori 
(personal communication) has found a systematic dip of -0.2 units at 20 km in the 
measured value of ML. The ML simulations plotted on Figure 7 show that the 
computed response for the crustal model is in very good agreement with this 
observation. The confirmation of trends found in the simulations with observational 
data strengthens the credibility of the modeling. The combined results suggest that 
the standard ML amplitude corrections are slightly in error. As the simulations are 
for strike-slip faulting, the model results must be extended in future studies to 
include dip-slip earthquakes. 

Matching the zero period and 1-sec response of these transfer functions to the 
observational data is crucial since the larger strike-slip faults simulated below will 
be developed by adding together fault elements typified in areal extent and moment 
by earthquakes with ML - 5. The good comparison between the computed transfer 
functions and observational data indicate that the following simulations should be 
very realistic. These transfer functions, convolved with real earthquake source 
functions, will be used in a manner exactly analogous to that described by Hadley 
and Heimberger (1980) to simulate accelerograms from larger earthquakes. 

Source-time functions. In the hybrid simulations discussed in Hadley and Helm­
berger (1980) and in this study, the term source-time function represents the time 
history of the energy radiated by an element of the simulated fault. This function 
represents the convolution of the fault rupture process with a distribution of particle 
rise time~>. In an idealized model, rupture across the grid would modulate the 
radiated function; each azimuth would record a slightly different time history. 
Inclusion of these effects into the modeling require assumptions on the micro behav­
ior of eacp fault element. The limited constraints on the high-frequency behavior of 
the fault surface and the wide range of proposed fault models (e.g., Brune, 1970; 
Andrews, 1980) restricts the general applicability of a purely deterministic approach. 
The herein proposed model uses observational data to construct a function that, on 
the average, describes the energy radiated by a fault element. Neglecting the 
microeffects of rupture across each element by using an average representation of 
the source time function implies that the simulations should not display the full 
dispersion of observed values of peak ground acceleration. However, as the primary 
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goal of this study is to estimate the mean behavior and not the dispersion, this detail 
is probably not significant. 

In the preceding section, the source-time function used in the verification of the 
computed transfer functions came from the Horse Canyon earthquake. The moment 
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FIG. 5. Examples of the transfer functions computed from the velocity model listed in Table 1 and a 

uniform, linear Q1, = 300. The column on the left is for P-SV, and the column on the right is for SH. The 
source depth is 6.5 km. 

of this event was Mo- 3 X 1023 dyne-em (Kanamori, 1976; Hartzell, 1978). In order 
to reduce the scaling required to simulate larger events, and to use an earthquake 
source function that is closer in magnitude to the events of interest in this study, 
source functions from a larger earthquake are desirable. A candidate earthquake for 
obtaining a good source-time function is the ML- 5.7 Coyote Lake earthquake that 
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occurred near Hollister on 6 August 1979. Some of the details of this earthquake 
have been discussed by Lee et al. (1979). This event was well recorded in the near­
field by several accelerographs. In particular, Station 6 and Coyote were located 
within about one source depth of the earthquake. Both stations were located on the 
approximate projection of the fault plane. From studies of the near-field records, 
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and from consideration of the locations of the main shock and aftershocks, rupture 
initiated near Station Coyote and ruptured south toward Station 6. In order to use 
this event for simulating strong ground motion, the parameters seismic moment and 
source duration must be estimated. To obtain this information, the tangential 
velocity pulse from the six near-field stations that recorded this event have been 
modeled. Using the focal mechanism and location of Lee et al. (1979), a moment of 
4.5 X 1024 dyne-em and a source duration of -1.3 sec results in synthetic seismograms 
that are in fair agreement with the observations. This moment was obtained by 
Langston (personal communication) from modeling of teleseismic data, and is in 
good agreement with the determination by Uhrhammer (1979). 

Accelerograms from either Station Coyote or Station 6 approximately meet the 
criteria discussed above as candidates for the source-time function. An examination 
of the accelerograms (Figure 8) suggests that these records contain some effects 

COYOTE PEAK ACCELERATION = 160.0 emf sec! sec 

ARRAY6 PEAK ACCELERATION = 420.0 emf sec! sec 

COMB I NED SOURCE, PEAK ACCELERATION = 278. 3 em/ sec/ sec 

L_____L_j 

0 1 2 sec 

FIG. 8. Coyote, Station 6, and the composite accelerograms. 

from local site conditions. A data set recorded on hard rock sites would reduce this 
contamination. The response spectra, damping = 5 per cent, for Station 6 and 
Coyote are shown on Figure 9. Comparison of the response spectra over the period 
range 0.1 to 0.6 sec shows a greater acceleration amplification for Coyote. On the 
other hand, by normalizing the two records to a common zero-period response, the 
long-period response (> 1 sec) at Station 6 exceeds the response at Coyote. An 
average or composite source-time function was obtained by aligning the S-wave 
pulses and averaging the records at each time point. The composite time function 
is shown on Figure 8, and its response spectrum is depicted on Figure 9. This figure 
shows that the composite source is a good average of the two extreme cases 
represented by Coyote and Station 6. 

The composite source-time function represents the average time history of energy 
radiated from a section of the fault surface. This implies that the grid size used in 
the simulation of larger events must be compatible with the observed source 
duration. The selected grid size of 2 km vertically and 3 km horizontally is approx-
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imatefy compatible with the duration of 1.3 sec and a rupture velocity of 90 per cent 
of the shear-wave velocity. The short duration implies a much smaller source 
dimension than indicated by the extent of the aftershock sequence (Lee et al., 1979). 
It is possible that the strong ground motion data represents the effects of localized 
failure or rupture across an asperity similar to that observed for the Horse Canyon 
earthquake (Hartzell, 1978). 



PEAK ACCELERATION SCALING STUDIES 971 

A final consideration in the adoption and use of the accelerograms from the 
Coyote Lake earthquake is the effect of attenuation along the path from the 
hypocenter to Station 6 or Coyote. The transfer functions discussed above explicitly 
include attenuation. Hence, the use of real accelerograms include intrinsic attenua­
tion twice-once in the real earth and once in the simulation. For the Coyote Lake 
earthquake geometry, this is equivalent to adding an extra attenuation operation to 
equation (1), defined by a total path length of -10 km (hypocenter to the station) 
and a Q13 = 300. The effect or significance of this redundant operator is easily 
estimated by calculating the decrease in amplitude of the high-frequency compo­
nents of the accelerogram. For instance, the decrease in the amplitude of 5 Hz 
energy is 2.5 per cent. As this error is an order of magnitude less than the standard 
deviation of the peak accelerations generated from a range of geometries, as 
discussed below, the effects of the slightly redundant attenuation operator are 
insignificant. 

Within the last two sections, operators have been developed that describe the 
crustal response and the average energy radiated from a patch or grid element of a 
larger fault. The adequacy of the crustal response functions has been tested through 
comparisons with observations of the behavior of peak acceleration and ML. The 
next stage in the modeling of the peak acceleration is to use these functions as 
elements for simulating a larger earthquake. 

ATTENUATION RELATIONSHIPS FORM- 4.5, 5.5, 6.5, AND 7.0 

Earthquake ground motions are influenced by source effects, propagation effects, 
and by site effects. Empirically d~rived relationships for characterizing ground 
motion (e.g., peak acceleration) have typically been related to these parameters by 
simple expressions. These functions use magnitude to represent source effects, 
distance to represent propagation effects, and site effects are either ignored or 
separate expressions are derived for each general site condition. For example, peak 
ground acceleration (PGA) has been expressed in the most general way as 

PGA(Ms, R) = B(Ms)·(R + C(Ms))-13 (2) 

where R is closest distance to the fault trace, B and C are assumed functions of 
magnitude, M s, and f3 controls the far-field (R >>C) decay of PGA. This functional 
form of an attenuation relationship was first proposed by Esteva (1970), and in its 
general form has been widely used by various investigators (Idriss, 1978). The 
principal guiding philosophy in selecting the functional form of any equation used 
to describe data has been that it uses a minimum number of parameters. An 
arbitrarily selected form cannot, in general, accurately model the phenomenon; 
instead, it can only represent mathematically the empirical effects of the phenom­
enon. A major goal of the present study is to evaluate the behavior of peak 
acceleration in the near-field of large earthquakes. The term (R + C)-fi simply 
describes the near-field trend. If C(M) = 0 peak acceleration increases without 
limit asR approaches zero. For C(M) =constant (other than zero), peak acceleration 
is bounded. Finally, if C(M) increases with magnitude, peak acceleration tends 
toward saturation as magnitude increases. 

The exponent of the assumed attenuation relationship controls the decay of the 
curve at distances where R >>C. With increasing distances, it is commonly observed 
that seismograms systematically shift to a longer dominant period. In the far-field, 
the amplitude of the long-period pulse from an earthquake scales with moment. 
Hence, a reasonable and fairly common assumption (e.g., Esteva, 1970; Donovan, 
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1973) is that the exponent is either independent or only very weakly dependent on 
the magnitude. This assumption is also well-supported by a study involving 2900 
accelerograms recorded over the distance range 1 to 600 km from nuclear events 
ranging in yield from 1 to 1200 kt (Murphy and Lahoud, 1969). 

The technique used in the following sections to simulate the larger events (M -
6.5 and 7.0) is described in Hadley and Heimberger (1980). However, instead of 
having only 12 accelerograms from one earthquake recorded over the epicentral 
range 5 to 33 km, a library of effective 360 records has been developed by convolving 
together source-time functions with the computed crustal response functions. This 
library represents simulated accelerograms for strike-slip earthquakes for five source 
depths, (2.5, 4.5, 6.5, 9, and 11 km) and 18 evenly spaced epicentral distances (A = 
5 to 90 km) and two magnitudes (Horse Canyon and Coyote Lake). 

M - 4.5 to 5.0. Simulated accelerograms in this magnitude range were computed 
by convolving together the various crustal response functions discussed above with 
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FIG. 10. Summary of normalized attenuation curves derived in this simulation study. 

a source function. For eight distances (5, 10, 15, 20, 30, 40, 50, and 70 km) and five 
source depths, accelerograms for SV and SH were simulated with the source function 
from the Horse Canyon earthquake. The simulated peak acceleration data shown 
on Figure 6 indicates the range of computed values. A simple regression curve of the 
form (R + C)-1.75 was fit to the data. The best-fitting value of C was 6 km and the 
standard error was 52 per cent. The curve shown in Figure 10, labeled M = 4.5, 
shows the shape of the derived attenuation relationship. Because the evaluation of 
the shape of the attenuation relationship is of primary interest in the present study, 
the curves shown on Figure 10 have been normalized to a common value at 10 km. 

M - 5.5 to 6.0. The attenuation relationship for earthquakes in this magnitude 
range was evaluated by convolving the composite Coyote Lake source-time function 
(ML = 5.7) with the crustal response functions discussed in the previous sections. 
Figure 11 shows the behavior of the peak acceleration curve for a source depth of 
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6.5 km for the Coyote source. Also shown in this figure are the corresponding points 
forM- 4.5. Both sets of points have been normalized to 100 cm/sec2 at an epicentral 
range of 10 km. It is interesting to note that the points for M - 5.5 systematically 
show higher peak accelerations. In addition, the separation between the two sets of 
points increased with distance. As the crustal response functions used to compute 
both sets of points are identical, the explanation of this observation must involve 
the different source functions (Horse Canyon versus Coyote Lake). An obvious 
explanation is that the composite Coyote Lake source represents a much larger 
earthquake (the ratio of the moments of these two events is -15) and the long­
period excitation of the structure by this source is correspondingly greater. Diffrac­
tion effects from wave propagation through the crustal structure are not as effective 
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FIG. 11. Peak acceleration versus distance for ML = 4.8 and 5.7. The transfer functions used for each 
distance are identical. Note that the attenuation relationship for the larger source is distinctly different 
from the curve computed from the Horse Canyon source, even though both sets of points have been 
normalized to 100 cm/sec2 at 10 km. The longer period energy from the larger source interacts with the 
earth structure such that the decay of peak acceleration at short distances is not as severe as for the 
higher frequency, smaller earthquakes. 

in smoothing long-period pulses (Heaton and Heimberger, 1978) and the effects of 
energy loss to the medium from intrinsic attenuation is diminished. Hence, the 
decay of peak acceleration at short distances is not as severe for the larger magnitude 
source. The curve shown on Figure 10, labeled M = 5.5, has been developed exactly 
as described above for the case M = 4.5. The best-fitting value of C was 12 km, and 
the standard error was 4 7 per cent. 

M - 6.5. Simulation of an earthquake with physical dimensions larger than either 
the Horse Canyon or Coyote Lake earthquakes requires a careful definition of the 
source properties. The Borrego Mountain earthquake of 9 April 1968 has been 
selected as a model event. The various magnitudes for this event are: Ms = 6.7; mb 
= 6.1; M Pasadena = 6.4; M L (from strong motion records, Kanamori and Jennings, 
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1978) = 6.9. Following the study of Burdick and Mellman (1976), a moment of 1 X 

1026 dyne-em and fault dimensions of 24 km by 10 km (8 X 5 grid elements) have 
been used. The fault dimensions are very comparable with the 1979 Imperial Valley 
earthquake, M L (Pasadena) = 6.6. In order to obtain a robust estimate of the mean 
and standard deviation of the simulated peak accelerations at each distance, four 
different fault rupture geometries have been examined. These various geometries 
are shown on Figure 12 and represent the extremes in possible rupture configura­
tions. For the case of bilateral rupture initiating at the closest epicentral distance, 
geometry 3, accelerograms for rupture initiating at both the top and bottom of the 
fault have also been simulated. Hence, for each distance, 10 time histories (radial 
and transverse) and five values of maximum peak acceleration were derived. 

The simulation of the rupture front through the grid is described in Hadley and 
Heimberger (1980). A random number generator is used to select a position within 
each grid element for the calculation of the travel-time and rupture initiation. This 
minimizes the introduction of a strong periodicity into the simulations that would 
result if each grid element were turned on exactly when the rupture front reached 
the edge of the element. Because of the introduction of a stochastic aspect to the 
turn-on location in each element, the simulation is composed of a fault that has 
some patches breaking nearly simultaneously and others that are distributed. In 
effect, the code partially captures the physics of asperities distributed randomly 
over the fault plane. However, by changing the seed in the random number 
generator, the asperities will be distributed differently and the simulated earthquake 
will exhibit slightly different characteristics. Hence, a single calculation of time 
histories and peak accelerations for one rupture station geometry and one seed in 
the random number generator is not sufficient to define a robust estimate of the 
attenuation relationship. In order to examine the overall stability of the mean for 
the different rupture geometries, over the distance range 5 to 70 km, the seed in the 
number generator was changed and the entire simulation for all rupture geometries 
at all distances was recomputed. For each distance, the average difference of the 
mean for the first run (five values) compared to the mean for the two runs, was less 
than 3 per cent. From this, it is concluded that the mean from one complete run is 
a good representation of the true mean. Equation (1) was combined with the 80 
simulated peak accelerations (8 distances, 10 values of peak acceleration) in a 
standard regression. Figure 13 shows the simulated peak acceleration points and the 
derived regression line. As C was increased from 0 km, the standard error of the 
best-fitting line decreased from 156 to 24 per cent at C = 22 km. The standard error 
is fairly flat over the range 20 km ;:;2 C ;:;2 30 km. The standard error for this 
magnitude range is less than found for M - 5.5. For the smaller events, the larger 
range of accelerations resulted from the effects of source depth, i.e., peak accelera­
tions from shallow and deep sources were combined in the regression. Fot the large 
distributed faults simulated for M - 6.5, the effects of source depth are somewhat 
homogenized and the standard error reflects the effects of rupture geometry and 
randomness in the rupture process. As discussed in Hadley and Heimberger (1980), 
the absolute position of this curve is sensitive to the rupture velocity or dynainic 
similarity conditions. The normalized results of this simulation are summarized on 
Figure 10. 

M - 7.0. As with the simulation of the M - 6.5 earthquake, the physical 
dimensions of the M - 7.0 event must be carefully selected. This selection has been 
based on the data discussed by Slemmons (1977). The necessary parameters to be 
extracted from these data are fault length and displacement. The regressions 
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FIG. 12. Rupture geometries used in the simulation studies. 
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discussed by Slemmons are in the form M = a + b log x. However, given Ms, the 
fault parameters must be selected (log x = a + b Ms)- Therefore, using the data 
discussed by Slemmons, a new regression curves for strike-slip earthquakes, for fault 
length, and fault displacement have been derived. For Ms = 7.0, the appropriate 
fault length was computed to be 45 km (15 by 5 grid elements). The derived ratio of 
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the fault displacement (Ms = 7.0 toMs= 6.5) was 1.55 to 2.45 for the maximum and 
average curves, respectively. The moment was computed from the product of the 
ratios of fault length, fault displacement, and moment of the M = 6.5 event: Mo = 
3.8 X 1026 dyne-em. As with the simulations for Ms = 6.5, the rupture geometries 
shown in Figure 12 were used for simulating Ms = 7.0. The regression curve that 
best fits the simulated peak accelerations is shown on Figure 10. As C was increased 
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FIG. 13. Simulated peak acceleration points for the magnitude M = 6.5. 
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from 0 km, the standard error decreased from 252 to 24 per cent at C = 36 km. The 
standard error is fairly flat over the range 34 ~ C ~ 50. 

DISCUSSION 

Figure 10 shows the summary of the normalized attenuation curves developed 
from average peak accelerations at eight distances and four magnitudes. Each curve 
represents the end result of many physical processes that include the source-time 
function, various rupture geometries, propagation through a realistic crustal struc-
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ture, and absorption by intrinsic attenuation. The trend toward flattening or 
saturation of the attenuation curve with increasing magnitude is obvious in the 
summary (Figure 10). The trend toward saturation is well known for other peak 
parameters in seismology. Classic examples include Ms, mb, and ML as measured 
against moment. 

Several physical arguments can be advanced to describe why peak ground 
acceleration should saturate. The adequacy of these arguments and the results of 
these simulation studies must be tested against observations. In this study, acceler­
ograms from smaller earthquakes are superposed to simulate a large event. The 
longer period components of each contributing accelerogram will add together in 
phase, whereas the high-frequency components will have essentially random phase. 
Hence, with increasing magnitude the long-period component of the accelerogram 
should increase. Diffraction effects from wave propagation through the crustal 
structure are not as effective in smoothing or reducing the amplitude of longer 
period pulses (see Heaton and Heimberger, 1978), and the effects of energy loss to 
the medium from intrinsic attenuation are diminished. These factors should lead to 
an attenuation curve that is less severe for larger magnitude earthquakes. 

For a long and narrow strike-slip fault, a second physical constraint also leads to 
the saturation of peak ground acceleration. Each element of the fault contributes to 
the observed accelerogram with amplitudes that vary as - R-u5

• The maximum 
contributions to the final accelerogram are, therefore, derived from the section of 
the fault that is closest to the station. Sections of the fault that are two or more 
times further from the accelerograph than the closest fault elements contribute very 
little to the final record. This consideration suggests that at a given distance, peak 
ground acceleration is sensitive to the dimensions of faulting, with a characteristic 
length defined by the fault-station separation. Saturation of peak ground accelera­
tion should be most observable for strike-slip faults where the width of the fault 
does not increase with magnitude. 

A recent regression analyses of near-field peak ground acceleration data by 
Campbell (1981) is ideally suited for testing trends derived in this study. The 
functional form of the regression curve used by Campbell is 

(3) 

The data set used included 229 values of horizontal acceleration recorded from 27 
earthquakes ranging in magnitude from 5.0 to 7.7. The investigation involved two 
primary analyses. In the first study, all coefficients of equation (3) were adjusted to 
best fit the observations. Because the data set was truncated at a distance of 50 km, 
strong tradeoffs exist between the far-field behavior (d) and the influence of 
magnitude saturation [ C1 exp( C2M)]. Summary results from the unconstrained 
model are listed in Table 2. The constrained regression study imposed two restric­
tions. After analysis of additional data and review of other studies, the parameter d 
was fixed at 1.75 (the same value as used in this study). A second constraint was 
derived from a physical consideration. Particle acceleration near the rupture surface 
should be controlled by the local properties of the rocks and not by the overall 
rupture dimensions (Brune, 1970; Hanks and Johnson, 1976; Hanks and McGuire, 
1981). This constraint was imposed by assuming C2 = b/d. This last constraint 
effectively assumes a model of saturation of peak ground acceleration. However, the 
magnitude of the saturated value is not constrained. The model space clearly 
includes solutions with only slight magnitude dependence and very large values of 
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near-field acceleration. The summary values for the parameter C [i.e., C1 exp( C2M)] 
from the constrained model and the results from this study are listed in Table 2. 

An examination of Table 2 shows a consistent magnitude dependence for the 
parameter C. Because of the assumed far-field behavior of R-1.75 used in this study, 
column 2 of Table 2, from the constrained analysis, is most appropriate for direct 
comparison with the results from this study. Both observations and simulations 

TABLE 2 

BEHAVIOR OF C FROM SIMULATIONS AND 

OBSERVATIONS 

C(M)(km) 

Magnitude 
Unconstrained* Constrained* Simulation 

4.5 1 4 6 
5.5 3 8 12 
6.5 6 17 22 
7.0 8 25 36 

* From Campbell (1981). 

show a uniform increase in C with magnitude. The observational results are 
systematically 30 per cent smaller than the simulated values. In part, this may 
reflect the inclusion of large, dip-slip events in the regression analysis. This study 
has been restricted to the more sensitive case of long and narrow strike-slip faults. 
From this comparison, we conclude that the trends derived from the simulations are 
in good agreement with observations. 

This modeling study has not investigated the effects of source orientation and 
crustal structure on the derived simulations. These effects may alter the shape of 
the scaling curves. Application of these results to geometries and crustal structure 
conditions significantly different than those used in this study should be done with 
caution. 
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