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We disagree with virtually all of what Jurdy & Stefanick 
have written. Part of our disagreement stems from personal 
opinions about what is ‘simple’, ‘arbitrary’, ‘artificial’, 
‘undesirable’, etc., but other disagreements are more 
profound and reveal a very different understanding of finite 
rotations. Jurdy & Stefanick raise two basic objections. One 
concerns statistical questions that were not meant to be part 
of Chang ef al. (1990). The other addresses the main issue of 
our paper, the parametrization of uncertainties of rotations. 
They suggest that both our approach is flawed and that 
theirs, outlined in Jurdy & Stefanick (1987), is better. 
Except possibly for their opinion of what constitutes a 
covariance matrix, we try not to indulge the reader with 
long discussions of questions of personal preference, but 
instead to confine our response to these basic questions. 

Jurdy & Stefanick are clearly annoyed that we did not 
acknowledge that Jurdy & Stefanick (1987) used a 
‘covariance matrix’ to describe uncertainties in reconstruc- 
tions. Because the purpose of our paper was to discuss how 
to parametrize the uncertainty, not how to calculate 
covariance matrices, there seemed no need to review their 
discussion of covariance matrices (Jurdy & Stefanick 1987), 
or Chang’s (1987, 1988). In fact, the use of covariance 
matrices has been standard statistical practice for decades. 
We apologize to Jurdy & Stefanick for somehow giving 
them the impression that we introduced the concept of a 
covariance matrix to this problem. At the same time, the 
question of covariance matrices is rendered additionally 
complicated by our disagreement with Jurdy & Stefanick 
that their covariance matrix is, in fact, a statistically 
rigorously defined and meaningful covariance matrix. 
Indeed, as discussed below, their covariance matrices 
exhibit certain anomalous behaviour which would indicate 
that a statistical justification for it does not exist. This 
disagreement was communicated in a letter from Chang to 
Jurdy in 1987, but their comment forces us to make the 
disagreement public. 

A statistically meaningful uncertainty of an inferred 
quantity obviously depends upon the uncertainties in 
measured quantities, which are usually estimated from 
misfits or deviations from predicted values. To use such 
uncertainties to estimate an uncertainty in an inferred 
quantity, requires the deduction, or more likely the 
assumption, of a probability distribution for the errors in the 
measurements. In the context of plate reconstructions, a 
statistical analysis must include both (i) a discussion of the 
assumed probability distribution for the positions of 
magnetic anomalies and fracture zones, or whatever data 
are used to infer the rotation, and (ii) a reasonably plausible 

derivation of how errors in the data are transmitted to errors 
in the rotation. 

The discussion of the probability model (i) is not simply 
an arcane point for the amusement of the mathematicians. 
Most statistical techniques rely on an assumption of 
independence of the errors of the data points (differences 
from their true values). Otherwise step (ii) becomes much 
more difficult. When the data points consist of selected 
points on the plate boundaries, the assumption of their 
independence is quite possibly false. Consider, for example, 
the use of interpreted intersections between magnetic 
lineations and fracture zones. Since the neighbouring 
intersections are interpreted from partially shared data, the 
assumption of their independence is clearly untenable (see 
Fig. 1). It follows that statistical analyses, such as those in 
Chang (1987), based upon an assumption of independence 
of interpreted intersections of magnetic anomalies and 
fracture zones can only be considered crude first 
approximations. On the other hand, assumed independence 
of the original identifications is much more reasonable. For 
this reason, we are now using the analysis given in Chang 
( 1988). 

The uncertainty in a multi-dimensional quantity is fully 
specified by its covariance matrix. For a random vector t ,  
the covariance matrix is defined to be; 

cov (t) = E(ttT) - E( t )E( t )T ,  (1) 
where, E ( t )  and E(ttT), the expected values of t and ttT, are 
the weighted averages of t and ttT with the weights 
determined using the probability distribution for t. For a 
representation of a rotation using a pseudo-vector t, the 
probability distribution for t clearly depends, intimately and 
directly, on the probability distribution of the data. 
Consequently, if the rotation is parametrized by the 
pseudo-vector t, the probability distribution for t cannot be 
asserted, but must be derived from an assumed probability 
distribution of the data. 

Jurdy & Stefanick’s equation (4) is simply a rewrite of (1) 
above, but neither in their present comment, nor in Jurdy & 
Stefanick (1987), do they discuss the probability model (i) 
for the data. Jurdy & Stefanick (1987) simply took 
uncertainties in rotations that Stock & Molnar (1983) used 
to illustrate geometric aspects of the uncertainties, and then 
fed them to their ‘covariance matrix’. As a result their, 
Molar & Stock (1985), uncertainties in pole positions and 
rotation angles have the peculiar property that the addition 
of data would not decrease the eigenvalues of the covariance 
matrix (i.e. the sizes of their confidence region would not 
change). This behaviour is contrary to all statistical 
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Figure 1. vl, v2, and v3 (open circles) represent identified crossings 
of a magnetic anomaly lineation segment. u1 and u2 (closed circles) 
are the 'interpreted' endpoints of the segment. u, and u2 are both 
determined in part through the use of v,. v2, and v3 and hence 
cannot be independent. Independence of the errors in v I ,  v2, and v3 
is a more reasonable assumption. 

experience except in pathological cases. Thus we suspect 
that their failure to consider (i) and (ii) is not just an 
unimportant omission of some mathematical formalism, but 
has resulted in their producing an answer which is incapable 
of being justified with any statistical reasoning. Because 
their approach is not statistical, they should not use the term 
covariance matrix. 

The purpose of Chang et al. (1990) was to demonstrate 
that the uncertainty in plate reconstructions is best 
parametrized by small perturbations to the estimated 
rotation, not as uncertainties in the parameters usually used 
to describe the rotation: the pole position and the rotation 
angle. For Chang, the main justification for this approach is 
that it allowed him to prove theorems that relate assumed 
probability distributions of the observable quantities to 
uncertainties in reconstructions (Chang 1986, 1988). 
Accordingly, the parametrization in terms of perturbing 
rotations was simpler for him, for he could not prove such 
theorems with other parametrizations such as that used by 
Jurdy & Stefanick. One of the reasons that Stock & Molnar 
prefer a parametrization in terms of perturbing rotations is 
that it eliminates asymmetries in the calculated uncertainties 
of reconstructed points on plates. These asymmetries result 
from the non-commutativity of matrix multiplication and are 
inherent to the problem. We find it ironic that the word 
'asymmetry', modified by 'arbitrary' and 'artificial', figures 
so prominently in Jurdy & Stefanick's criticism. Below we 
discuss the significance of the asymmetry that seems to 
trouble Jurdy & Stefanick. 

Consider a plate L reconstructed to a fixed plate R by a 
rotation A. One first forms an estimate A, or best fit, by 
some criterion. Then one uses misfits of data to estimate the 
uncertainty in the rotation. We used the misfit to estimate 
the family of rotations that combined with A to yield an 
uncertainty in A, while Jurdy & Stefanick advocate using the 
misfits to determine uncertainties in the pole position and 
angle. (They call this process 'jiggling' when it applies to our 
approach, but not to theirs, and point out that our 

procedure involves two steps. They fail to note that their 
approach also requires two steps, as do virtually all 
estimates of uncertainties based on misfits of data from 
those expected from the estimated parameters.) Because 
matrix multiplication is not commutative, the perturbing 
rotations that can be combined with A without degrading 
the fit significantly are different from those that can be 
combined with the inverse rotation AT to cause the same 
degradation. Thus, there is an asymmetry in the way we 
represent the uncertainties, as Jurdy & Stefanick state. Let 
us consider the origin of this asymmetry, and how 
profoundly it affects the uncertainties in reconstructions. 

Because the perturbing rotations are small, the pseudo- 
vectors that parametrize them do obey vector algebra 
without significant error, a quality denied finite rotations of 
a few degrees or more. k t  hA represent the pseudo-vector 
describing a small periurbing rotation and *(hA) represent 
that rotation, so A = A@(h,). We relate uncertainties and 
misfits of data to h, by its covariance matrix: covh,. 
Obviously if we held plate L fixed and estimated the 
rotation AT = A-' that brought plate R to it, the perturbing 
rotation hAT and cov hAT would be different from h, and 
covh,. For each pseudo-vector h,, there would be a 
corresponding pseudo-vector hAT such that: 

@(hAT) = A - @(LA) . A-l, 

which merely states that hAT is the same pseudo-vector as A, 
rotated (by A) from plate L to plate R. Similarly, the 
covariance matrices for h, and hAT are related by 

COV hAT = A COV hA A-'. (2) 
The preceding algebra and discussion are meant to show 

that the asymmetry called 'arbitrary' and 'artificial' by Jurdy 
& Stefanick is nothing more than the arbitrary, but not 
artificial, decision of which plate is held fixed and which is 
moved in the reconstruction. In one sense, this asymmetry is 
very large: if plate L is held fixed and plate R is rotated, the 
positions of all but at most two points on plates L and R will 
lie in different positions from those for the case where plate 
R is fixed and L rotated. We are not aware of any scientific 
question, however, whose solution is dependent on the 
choice of which plate is held fixed. Thus, we see nothing 
profound in Jurdy & Stefanick's concern about this 
asymmetry. 

The same asymmetry perceived by Jurdy & Stefanick 
applies to three plates. Suppose plate L is rotated by B to 
plate M, which is rotated to plate R by A, so that plate L is 
rotated to R by C = A B. Chang ef nl. (1990) and Chang 
(1988) write 

cov hc = 6-l cov hAB + cov h,. (3) 

This merely states that covh,, which is measured in the 
frame fixed to plate M, must be rotated to plate L before it 
is added to cov he. Alternatively, we could rotate plate R to 
M by A-' and then to L by B-', corresponding to the 
rotation of R to L by C-' = B-'A-'. In order to account for 
the changes in reference frame, the proper condition for 
symmetry is 

(4) COV h,y = COV hAr + A COV hgT A-'. 

Indeed it is easily shown that in light of equation (2), 
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equations (4) and (3) are equivalent. The apparent 
asymmetry for the combined reconstruction of three plates, 
which again troubles Jurdy & Stefanick, is nothing more 
than the asymmetry associated with choosing one plate as 
fixed. 

We also deny Jurdy & Stefanick’s claim that the ‘moving 
exponential parametrization’ which we use limits the 
geometries that can be analysed. In the ‘moving exponential 
parametrization’ independent estimates of the same rotation 
can be combined to form an optimal estimate using a 
formula which has a formal resemblance to the correspond- 
ing formula in Jurdy & Stefanick (1987). Triple junctions 
can be analysed and in fact better analyses than that 
proposed by Jurdy & Stefanick are available. 

The cleanest approach to the triple junction problem is to 
estimate simultaneously the rotations for all three limbs. 
This yields information not only about the errors in each of 
the constituent reconstructions, but also about how the 
errors in the three reconstructions are related. It is possible 
for the reconstructions of any two limbs to be individually 
(statistically) feasible, but for the pair to be jointly 
impossible. The simultaneous estimation of the triple 
junction recovers information about the joint distribution of 
the two reconstructions. 

An example of both of these techniques, the combination 
of independent estimates of the same rotation and the 
simultaneous estimation of the triple junction, appears in 
Royer & Chang (1991). 

Jurdy & Stefanick further imply that an estimate A and its 
associated estimated ‘moving exponential parametrization’ 
covariance matrix X is @sufficie_nt information to express the 
errors of the estimate A when A is constructed using a chain 
of rotation links. Instead they state that the interpretation of 
A and X requires knowledge of the data and the rotation 
links used. This is simply not true. The matrix Z can be 
converted to a confidence region of permjssible small 
rotations which is then left multiplied by A. Graphical 
techniques for visualizing this confidence region are 
available and have been used in Chang (1987) and Royer & 
Chang (1991). 

Jurdy & Stefanick propose that when their error ellipsoids 
are used, different ellipsoids constructed by alternate chains 
and/or by possibly different authors can be compared by 
visually checking to see if they intersect. Since our 
confidence regions can be graphically presented, the same 
tool is available when ‘moving exponential’ confidence 
regions are constructed. 

We feel bound to emphasize, however, that this 
approach, although simple and heuristic, is statistically 
incorrect for checking the consistency of two estimates. It is 
true that if two 95 per cent regions do not intersect, the 
estimates are inconsistent (although at only an approximate 
90 per cent level). The converse assertion that intersection 
implies consistency is false. This can easily be seen for even 
the simplest statistical prpcedure; The proper approach to 
reconcile two estimates Al and A, involves calculating the 
covariance matrix of A;’A, and then checking to see if the 
null rotation is consistent with it. If the estimates A, and A, 
are independent, meaning that they are derived from 
entirely separate data, this is quite routine. Otherwise a 
detailed knowledge of the data and chain of rotation links is 
required. 

Jurdy & Stefanick question if it is not desirable to be able 
to compare two different rotation estimates without needing 
to know the data or chains of rotation links used in the 
estimates. We maintain that, unlike the interpretation of a 
single estimate, the comparison of two estimates inevitably 
requires this knowledge. If the same data and the same 
chains are used, the two estimates should be very close. On 
the other hand if different chains are used, somewhat larger 
differences are reasonable. Thus we cannot tell whether a 
difference between two estimates is reasonable without 
knowing the extent to which similar data have been used in 
their construction. Furthermore, if a statistically significant 
difference in the estimates is found, its interpretation clearly 
depends upon the approaches used to derive the estimates. 
For example, when different chains are used, such a 
difference might be due to a mistake in the assumed 
underlying plate geometry. This possibility is precluded if 
the same data and chains are used. 

Jurdy & Stefanick explicitly question the desirability of 
tying error estimation to the data. This attitude is a 
complete repudiation of the philosophy underlying statistics. 
The Jurdy & Stefanick approach is simply not statistics. 
They should not have used terms such as ‘covariance’ which 
have established and widely used precise statistical 
definitions. 
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