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There is experimental evidence that stress-induced microcracking near a macrocrack 
tip enhances thefraclUre toughness of brittle materials. In considering the interaction 
of the macrocrack with multiple microcracks using a discrete model, it is essential 
to use approximation methods in order to keep the amount of the computation to 
a tractable level. However, when crack distances are small, the results of the ap­
proximation methods can be significantly different from the numerical solution 
based upon the exact formulation. The results obtained by these approximation 
methods will be compared with the numerical solution to show the applicability 
ranges in which the errors are acceptably small. The use of results obtained by the 
approximation methods outside applicability ranges in literature is shown to lead 
to incorrect conclusions concerning microcrack shielding. 

1 Introduction 
There now exists experimental evidence that stress-induced 

microcracking near a macrocrack tip enhances the fracture 
toughness of brittle materials (Ruhle, et al., 1987; Cai, et al., 
1990; Faber, et al., 1990). Experimental studies by Riihle et 
al. (1987) have provided conclusive evidence of stress-induced 
microcracking toughening in a zirconia-toughened alumina. 
Recently, Faber et al. (1990) have shown a relationship between 
microcrack formation and an increase in toughness in SiC­
TiB2 composites with phases of different thermal expansion 
coefficient. The stress-induced microcracks near the macro­
crack tip shield the macrocrack from the applied stress, thereby 
increasing the fracture toughness. 

In addition to experimental studies, microcrack toughening 
has been also the subject of numerous modeling studies. The 
two basic approaches are continuum modeling (Evans and 
Faber, 1981; Clarke, 1984; Evans and Faber, 1984; Evans and 
Fu, 1985; Charalambides and McMeeking, 1987; Hutchinson, 
1987; Ortiz, 1987; Charalambides and McMeeking, 1988; Laws 
and Brochenbrough, 1988; Ortiz and Giannakopoulos, 1989) 
and discrete modeling (Hoagland and Embury, 1980; Bowling, 
et al., 1987; Montagut and Kachanov, 1988). The continuum 
models are beyond the scope of this paper and will not be 
discussed further . Discrete models require consideration of the 
interaction of a macrocrack with microcracks (Kachanov and 
Montagut, 1986; Rose, 1986b, Rubinstein, 1986; Chudnovsky, 
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et al ., 1987a; Chudnovsky, et al., 1987b; Hori and emat-
asser, 1987; Rubinstein and Choi, 1988; Gong and Horii, 

1989). For many microcracks necessary to treat the toughening 
problem, it is essential to use approximation methods to keep 
the amount of computation to a tractable level. Under certain 
conditions, the results of these approximation methods are 
very close to the exact solution. However, when the macro­
crack-microcrack and microcrack-microcrack distances are 
small, the results of the approximation methods can be sig­
nificantly different from the exact solution. Indiscriminate use 
of these results could inevitably lead to incorrect conclusions. 

The purpose of this work is to evaluate three approximation 
methods using various microcrack configurations, and to es­
timate the range within which the approximation methods are 
applicable. Before doing so, an iterative method to solve the 
interaction between a macrocrack and an array of microcracks 
is described . Then, the solution obtained by the iterative method 
will be checked for the case of a collinear microcrack, for 
which the exact analytical solution is available. 

2 The Iterative Method 
The present approach is based upon the same principle of 

superposition and the concept of self-consistency applied to 
the interaction of cracks. An approximate solution based upon 
this method is the use of an average traction over each mi­
crocrack. An alternative approximation approach is the use 
of a point representation of microcracks (Hoagland and Em­
bury, 1980; Rose, 1986b; Bowling, et al., 1987). We will present 
the solution in the context of a stationary macrocrack inter­
acting with microcracks in the absence of residual stresses. The 
analysis is limited to two dimensions to keep the numerical 
computation tractable for the problem of a macrocrack in­
teracting with many microcracks. 

Consider a single microcrack of length 2c and of arbitrary 

SEPTEMBER 1992, Vol. 59 / 497 



Fig. 1 Schematic of the main coordinate system and the microcrack 
coordinate system (adapted from Hoagland and Embury, 1980) 

orientation near the crack tip of a semi-infinite crack with an 
associated applied stress intensity (Kf' and K;i) in two-dimen­
sional space (Fig. I). The near-tip stress field due to the applied 
stress without the microcrack is given by the following expres­
sion (Kanninen and Popelar, 1985): 

(I) 

where u1 and u11 are the modes I and II crack-tip stress fields 
given by 

u22-iu12=</l'(z1)+</l'CZ1)+(z1 -z1) qi\ZIJ (7a) 

rT11 =4 Re (</l '(z1)J-u22 (7b) 

where Re indicates the real part of a complex number and a 
solid line over a complex number indicates its complex con­
jugate. 

The stress field in the presence of a traction-free microcrack 
is the superposition of the stress field given by the equations 
listed above and the stress field without the microcrack. In 
other words, the microcrack stress when added to the exiting 
stress field produces a traction-free microcrack. 

The microcrack stress field introduces tractions along the 
macrocrack face. To keep the macrocrack traction-free, an 
image stress field is introduced. The image stress field can be 
expressed in terms of a Green's function as derived by Hirth 
et al. (1974). The image stress at z can be expressed in terms 
of line integrals 

0 

CT21 - iu12 = ) (ip ' (z) + <p '(Z) + (z -Z)iO'TzJ]d~ (Sa) 
_.., 

0 

CT11 +CT22=) [4Re(ip ' (z)]]d~ (8b) 
_.., 

where 

ip(z) = _!_ lorim + i~Crn [ln(z1 '2 +iI~1 112)- ln(z112 - i I ~ 1112)], 
211" 

(9) 

and cl;{(~) is the microcrack stress field computed along the 
macrocrack line . The integrals are evaluated numerically to 
find the image stress field. The image stress field is then su-

CT/= _ I _ ((cos(8/2)[1 - sin(8/2)sin(38/ 2)] 

-J2-ITT- cos(8/2)sin(8/2)cos(38/2) 

cos(8/ 2)sin(8/ 2)cos(38/2) ) 

cos(8/2)[ I + sin(8/2)sin(38/2)] 
(2a) 

and 

1 (- sin(8/2)[2 + cos(8/2)cos(38/ 3)] 

uu= .../hr cos(8/2)[1 - sin(8/2)sin(38/ 2)] 

cos(8/2)[1 - sin(8/2)sin(38/2)]). 

sin(8/ 2)cos(8/2)cos(38/2) 
(2b) 

The initial traction on the microcrack is given by 

t = B•(n•CT) (3) 

where B is the matrix of orthogonal transformation, n the unit 
normal of the microcrack, and CT the existing stress along the 
microcrack line without the microcrack. The components of 
the stress are given in the main coordinate system, unless stated 
otherwise. The unit normal and the matrix of orthogonal trans­
formation are related to the microcrack orientation angle if 
by the following: 

n = (ni. ni) = (cosif, sini/!), (4) 

(5) 

The stress field of a microcrack can be computed using 
Muskhelishvili formalism (Rice, 1968; Muskhelishvili, 1977). 
The appropriate line integral for the finite crack of length 2c 
has been presented by Rice (1968), and is given as follows: 

I I+c . (c2-s2)1/2 
</l '(z1) 2 ( )112( + )112 lP2(s)-1p1(s)] ds 

irZ1-C Z1 C -e S-Zi 

(6) 

where i is the imaginary unit, z1 is the complex variable in the 
microcrack coordinate system and z1 = x1 + iy1 (refer to Fig. 
I), c is the half length of the microcrack, and p; = - t,{s). 
The terms, t1(s) and t2(s) are components of t, i.e., t(s) = 
[t1{s), t2(s)]. The stress components in the microcrack coor­
dinate system are: 
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perposed onto the existing stress field . In doing so, new trac­
tions are introduced to the once traction-free microcrack. These 
additional tractions are removed by applying Eqs. (6) and (7), 
and additional image stresses are computed using Eq. (8) . The 
process is repeated until the tractions on the microcrack and 
the macrocrack are lower than a specified small value which 
varies (from 10- 4 to 2 MPa) depending upon the accuracy 
required . The self-consistent stress field solution is then ob­
tained. 

The change in the stress intensity factor at the macrocrack 
tip is then computed: 

M
1
=.J(2/;r) fo ~(O d~ 

L..,R 
Mu=.J(2h) fo ~ d~. 

L..,v-~ 

(IOa) 

( !Ob) 

where o':J<O is the microcrack stress field evaluated along the 
macrocrack line. The integrals are evaluated numerically. The 
mode I stress intensity at the macrocrack tip can be written as 

K1=Kf'+M1. {II) 

Generally, this problem cannot be solved analytically, except 
in the case of collinear microcracks, the solutions of which 
have been presented by Rubinstein (1985) and Rose (1986a). 
Therefore, numerical methods are necessary to find the so­
lution for a microcrack of arbitrary location and orientation. 
The numerical solution above does not represent a problem 
for the case of one or a few microcracks, but the computation 
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becomes lengthy for multiple microcracks. The approximation 
methods which follow provide an alternative practical ap­
proach to the solution. 

The first approximation method involves the use of average 
tractions on each microcrack, where the traction on a micro­
crack is averaged over the microcrack length. The stress field 
of a microcrack subject to a uniform surface traction can be 
simply expressed in terms of the Westergaard stress function 
(Westergaard, 1939; Sih, 1966; Eftis and Liebowitz, 1972). 
The appropriate stress function is 

1 
Z(z1) ..j 1 - (c/ z1)2 

(12) 

where z1 is the complex variable in the microcrack coordinate 
system. The microcrack stress field in the microcrack coor­
dinate system can be expressed as 

0 11 = t1[2lmZ+ y 1ReZ,J + t2[ReZ-Y1ImZ,,] (13a) 

(13b) 

0 12 =11[ReZ-y 1lmZ,,] + 12[ - Y1 ReZ,,] (13c) 

where 11 is the shear component and t2 is the normal component 
of traction ton the microcrack surface, Z,, is the first derivative 
of z with respect to zi. and Im and Re indicate the imaginary 
part and the real part of a complex number, respectively. 

Further simplification of the average traction method leads 
to another approximation method involving the use of a point 
representation of microcracks. In this approach, the traction 
on a microcrack is simply computed at the microcrack center. 
This approximation approach has been used in previous dis­
crete modeling of microcrack shielding (Hoagland and Em­
bury, 1980; Rose, 1986b; Bowling, et al., 1987). 

3 The Approximation Method by Kachanov and Mon­
tagut 

Kachanov and Montagut (1986) used an approximation 
method to consider a semi-infinite crack and an array of mi­
crocracks. This method is based on the superposition technique 
and the ideas of self-consistency applied to the average trac­
tions on individual cracks (or microcracks in the case of in­
teraction of a macrocrack with M microcracks). The stress 
field was represented as a superposition: 

M 

o(x) = K,u/..x) + Ku<Tu(.x) + b o,{x) (14) 
i = 1 

where o1 and ou are the modes I and II asymptotic crack-tip 
fields given in Eq. (2), respectively, and o,{x) is the stress field 
of ith microcrack loaded by average traction < t, >. The trac­
tion is induced along the microcrack line by other microcracks 
and the macrocrack stress field, and the average traction is 
given by 

( t;) =K[ll ,o(o1),+Kun,• ( ou); + b Ak;(tk) (15) 
k 

where D; is the unit normal of ith microcrack, (o1) ; and (ou), 
are the average near-tip stress fields along the microcrack line, 
(tk), is the average traction on the microcracks, and A k; is the 
transmission factor (the average traction induced on ith mi­
crocrack by kth microcrack subject to unit traction). 

There are M vectorial unknowns, ( l;), and two unknown 
scalars, K 1 and Ku. With two additional conditions charac­
terizing the effects of microcracks on the stress intensity of 
the macrocrack tip, 

fo 1 M 

K1 - K/=...f(2hr) L.., R ~ ~)22(nd~ (16a) 

and 

(16b) 
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(a) 
2c 

I· · I 
macrocrack ~I microcrack 

(b) 

===============-'1 H 
Fig. 2 Microcrack configurations used to evaluate the approximation 
methods 

Table 1 Comparison of the results of the stress intensity by the nu· 
merical Iterative method and the analytical solution 

<Ki. Kj"YKj 

l/2c Numerical Analytical Error (%) 

0.05 0.6497 0.6.539 0.65 
0.10 0.3859 0.3873 0.40 
0.15 0.2729 0.2737 0.31 
0.20 0.2087 o.~ 0.26 
0.25 0.1671 0.1675 0.23 
0.30 0.1379 0.1382 0.21 
0.35 0.1164 0.1166 0.20 
0.40 0.0999 0.1001 0.19 
0.45 0.0870 0.0871 0.17 
0.50 0.0765 0.0766 0.17 

all of the unknowns can be evaluated. In Eq. (16), K 1 and K 11 
are the stress intensities at the macrocrack tip; Ki and KU are 
the applied stress intensities, and d~>v<n is the stress of ith 
microcrack evaluated along the macrocrack line. 

4 Verification of the Numerical Solution 
The numerical solution (based upon the exact formulation) 

obtained by the iterative method for a collinear microcrack of 
length 2c ahead of a macrocrack with an associated applied 
stress intensity of Ki (Fig. 2(a)) is verified by comparing it to 
the analytical solution presented by Rubinstein (1985) and Rose 
(I 986a). We consider a range of distances, L, between the 
microcrack tip and the macrocrack tip from 0.05 to 0.5, that 
is, the macrocrack-microcrack tip distance is 1/20 to 1/2 of 
the microcrack length. The stress intensity at the macrocrack 
tip and the stress field at various points were computed. The 
results of the stress intensity are compared with values com­
puted from the analytical solution in Table 1. The maximum 
relative error in the range considered is 0.65 percent which is 
likely due to numerical computation (see Table 1). Better results 
can be obtained by refinement of the numerical computation. 

S Evaluation of Approximation Methods 
The approximation methods: the iterative method with av­

erage traction (iterative-average), the iterative method with 
point representation of microcracks (iterative-point) and the 
approximation method by Kachanov and Montagut (1986) are 
compared with the numerical solution for certain microcrack 
orientations. The main emphasis is placed upon the mode I 
stress intensity, as mode I shielding is of particular interest. 

To see the range within which the approximation methods 
are applicable, the distance between the macrocrack and mi­
crocrack is varied and the results obtained are compared. The 
two configurations considered are a collinear rnicrocrack (Fig. 
2(a)) and a horizontal microcrack parallel to the macrocrack 
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Fig. 3 Comparison of the change in the mode I stress intensity as a 
function of the normalized macrocrack·microcrack distance computed 
using the numerical solution, Iterative-average traction, iterative·point 
representation, and the approximation method by Kachanov and Mon· 
tagut for the collinear microcrack shown in Fig. 2(a). 
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• • • Iterative-point representation 
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Horizontal Microcrack Center: 
x/2c=0, y/2c=Hl2c 

-1.5 .....__ __ .__ __ ......._ __ ....._ __ ......_ _ __, 
0.0 0.2 0.4 0.6 0.8 1.0 

H/2c 
Fig. 4 Comparison of the change in the mode I stress intensity as a 
function of the normalized macrocrack·microcrack distance computed 
using the numerical solution, iterative-average traction, Iterative-point 
representation, and the approximation method by Kachanov and Mon· 
tagut for the horizontal microcrack shown In Fig. 2(b) 

and centered just above the macrocrack tip (Fig. 2(b)). Com­
parisons of the results are shown in Figs. 3 and 4 for the 
collinear microcrack and the horizontal microcrack cases, re­
spectively. For the collinear microcrack as shown in Fig. 3, 
the results obtained by the approximation method by Kachanov 
and Montagut represent overestimates of antishielding, while 
those by the iterative-average traction method and the iterative­
point representation method represent underestimates of an­
tishielding. For the horizontal microcrack as shown in Fig. 4, 
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Table 2 Range of applicability for approximation methods 

Applicable Range 

Approximation Collinear Horizontal 
Method microcrack microcrack 

Iterative-average U'2c > 0.1 H/2c > 0.3 

Iterative-point U'2c > 0.3 H/2c > 0.9 

Kachanov-Montagut U'2c > 0.2 H/2c >LO 

the results obtained by the approximation method by 
Kachanova and Montagut represent undererstiamtes of shield­
ing, while those by the iterative-point representation method 
represent overestimates of shielding. In both cases, the results 
obtained by the iterative-average traction method are closest 
to the numerical solution based upon the exact formulation. 
If we use the conventional definition of the relative error for 
the normalized change in stress intensity (K, - K;')/ Ki, and 
arbitrarily determine that errors of ten percent or less are 
reasonable for the applicability of the approximation methods, 
we can compare the range within which the approximation 
methods are applicable for mode I stress intensities (see Table 
2). 

6 Discussion 
In all the cases, the solutions obtained by approximation 

methods deviate from the exact solution as the distance between 
the macrocrack and microcrack decreases (Figs. 3 and 4) . This 
is unfortunate because the microcracks nearest to the macro­
crack tip have the greatest effects on the stress intensity of the 
macrocrack tip . 

From Table 2, we can see that the iterative-average traction 
method offers the best accuracy among the three approxi­
mation methods discussed. With this method, the defined low­
est range is L /2c = 0.1 for the collinear microcrack case, and 
H/2c = 0.3 for the horizontal microcrack case . 

In the case of a collinear microcrack, the iterative method 
with point representation of microcracks underestimates the 
effect of the microcrack on the macrocrack; as a result, it 
underestimates antishielding (Fig. 3). In the case of a horizontal 
microcarck, it overestimates shielding (Fig. 4). Therefore, it 
tends to overestimate shielding. 

In the case of the horizontal microcrack, the defined lower 
limit of applicability for the approximation method by 
Kachanov and Montagut is unexpectedly high. On the other 
hand, the defined lower limit of applicability is as low as LI 
2c = 0.2 for the case of collinear microcrack. This favorable 
configuration of a collinear microcrack was used as the test 
case for the approximation method by Kachanov and Mon­
tagut (1986), and it was concluded that the error remains small 
for L/2c as small as 0.1 to 0.2. This conclusion does not bold 
for the case of the horizontal microcrack. 

In the approximation method by Kachanov and Montague, 
two approximations are involved in solving for the macrocrack­
microcrack interaction. The first is the use of the average 
traction induced on a microcrack. The second approximation 
is the use of the near-tip stress field in computing the super­
posed stress field (Eq. (14)) . Consider the strong interaction 
of a macrocrack with a microcrack close to the macrocrack 
tip. In this case, the superposed stress field obtained by the 
second approximation is only good for Ix I << I Xm I, where Xm 

is the coordinate of the microcrack. Consequently, the use of 
this approximation in computing the traction on the micro­
crack is not good because Ix I "" I Xm I . 

In the particular configuration of collinear microcrack in 
the Kachanov-Montagut treatment, the use of the average trac­
tion would results in an underestimate for the change in the 
stress intensity. On the other hand, the use of the increased 
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--
stress intensity value at the macrocrack tip (Kr) to compute 
the effect of the macrocrack on the microcrack (refer to Eq. 
(J4)) leads to an overestimate. This overestimate is, in part, 
compensated by the underestimate due to the use of the average 
traction. With this compensation, the results obtained by the 
approximation method by Kachanov and Montagut method 
turn out to be good for L/2c as low as 0.1 to 0.2, as shown 
in Fig. 3. 

For the horizontal microcrack in the Kachanov-Montagut 
treatment, the use of the average traction underestimates the 
change in the stress intensity. At the same time, the use of the 
reduced stress intensity value at the macrocrack tip (K r) to 
compute the effect of macrocrack on the microcrack also re­
sults in an underestimate. With this compounded underesti­
mate, the results obtained by this method deviate from the 
exact solution quickly as H /2c becomes small as shown in Fig. 
4. We have observed that, in many cases, the approximation 
method by Kachanov and Montagut results in overestimates 
of antishielding, and underestimates of shielding, a feature 
also observed by other researchers (Rubinstein and Choi, I 988). 
This could explain, in part, why Kachanov and Montagut did 
not predict appreciable shielding from microcracks (Kachanov 
and Montagut, 1986; Montagut and Kachanov, 1988). 

7 Summary 
We have compared the results by the approximation methods 

with the numerical solution based upon the exact formulation 
for a number of cases. The following summary can be made: 
(I) Approximation methods should be applied with caution 
when the crack distance is small. Outside the applicable range, 
the results are misleading. 
(2) Among the three approximation methods discussed, the 
iterative method with average tractions generally offers the 
best results. 
(3) In many cases, the approximation method by Kachanov 
and Montagut overestimates antishielding, and underestimates 
shielding when the macrocrack-microcrack distance is small. 
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