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Abstract— Optimum power allocation for the V-BLAST 

algorithm, which is based on various criteria (average and 

instantaneous block and total error rates (BLER and TBER)), is 

considered. Closed-form expressions are derived for high-SNR 

case in a Rayleigh fading channel. It is demonstrated that, in that 

case, the optimization “on average” is almost identical to the 

instantaneous one (while the former requires only the feedback 

“on average”, the latter requires instantaneous feedback and 

hence is of higher complexity). The BLER and TBER 

optimization criteria result in the same performance. Power 

optimization (of un-ordered BLAST) and optimal ordering 

result in the same performance improvement at high SNR. 

I. INTRODUCTION

The BLAST algorithm originally proposed by Foschini 

[1][2] has attracted significant attention in recent years as 

comparatively simple yet optimum solution (recall that the 

MMSE BLAST achieves the full MIMO capacity [1]). The 

algorithm however suffers from several drawbacks. Its 

computational complexity is still large for many applications, 

and also the algorithm BER performance is degraded by the 

effect of error propagation. Thus, some modifications have 

been proposed to improve the algorithm in these directions 

[3][4]. 

In the present paper, we consider an optimum transmit 

power allocation to improve the BLAST error rate 

performance using various optimization criteria from a 

unified perspective. The optimization criteria considered 

include instantaneous and average block error rate (BLER) 

and total error rate (TBER). It is shown that at high SNR 

mode, the optimization “on average” is almost identical (in 

terms of the average BER) to the instantaneous one for a 

Rayleigh fading channel, when either BLER or TBER used as 

the optimization criteria. Since the optimization “on average” 

does not require instantaneous feedback, its implementation 

complexity is much less as compared to the instantaneous 

one, especially in a fast-fading channel. 

Our optimization results are based on recent analytical 

performance evaluation of the BLAST [5][6][7], which allows 

us to derive compact closed-from expressions at high-SNR 

mode and also to prove the uniqueness of the solution (which 

facilitates the use of numerical techniques). A generic upper 

bound on the SNR gain of the optimization is derived. By 

considering the power-optimized BLAST without optimal 

ordering and comparing it to the unoptimized BLAST with 

the ordering, it is demonstrated that they have the same BER 

performance at high SNR. Hence, optimum power allocation 

can be used instead of the ordering, with much smaller 

complexity penalty. 

II. SYSTEM MODEL AND THE V-BLAST ALGORITHM

The following standard baseband MIMO system model is 

adopted in the present paper: 

1

m
i ii xy Hx h    (1) 

where 1 2[ , ,... ]Tmx x xx  and 1 2[ , ,... ]Tmy y yy  are the Tx 

and Rx vectors correspondingly, 1 2[ , ,... ]mH h h h  is the 

n m  channel matrix, i.e. the matrix of the complex channel 

gains between each Tx and each Rx antenna, ih  is the i-th 

column of H, n is the number of Rx antennas, m is the number 

of Tx antennas, n m , and  is the additive white Gaussian 

noise (AWGN), which is assumed to be 2
0(0, )I , i.e. 

independent and identically distributed (i.i.d.) in each branch. 

Additionally, we adopt the same basic assumptions as in [5]-

[7] (the channel is i.i.d. Rayleigh fading (the components of H

are (0, )I ), quasistatic, frequency independent; the Tx 

signals, noise and channel gains are independent of each 

other; perfect channel knowledge is available at the receiver; 

there is no performance degradation due to synchronization 

and timing errors). 

The detection of a Tx symbol in the V-BLAST algorithm 

proceeds in steps and includes 3 major procedures at each 

step: 1) interference cancellation from already detected 

symbols, 2) interference nulling from yet-to-be-detected 

symbols, 3) optimal ordering (based on after-detection SNR) 

(a more detailed description of the algorithm can be found 

elsewhere [1][2] and is omitted here). Since the optimal 

ordering procedure has a significant computational 

complexity and hence is one of the major obstacles to cost-

efficient implementation (and also is very challenging for 

analytical analysis), we exclude it from the algorithm and 

further demonstrate that an optimum per-stream power 

allocation at the Tx (based on the average BER) allows to 

achieve the same result without high complexity penalty. 

After the interference cancellation and nulling, the 

receiver forms the following decision variable at step i:
1

1

i
i i i i i j j ijr x xw h w h w  ,  (2) 

where + denotes Hermitian conjugate, i i iw h h  are the 

optimum combining weights that completely eliminate the 

inter-stream interference (ISI) from yet-to-be-detected 

symbols and maximize the output SNR, i i ih P h , iP  is the 

projection matrix on the sub-space orthogonal to that spanned 

by 1 2{ ... }i i mh h h : 1( )i i i i iP H H H H , where 

1 2[ ... ]i i i mH h h h , and ˆj j jx x x  represents 

demodulation error at step j, with 1ˆ j jx D r  being the 

demodulated symbol [6][7]. Based on (2), an exact BER 

analysis is possible in closed form [6][7]. We outline below 

the major results of this analysis, which further serve as a tool 

for optimization. 

Noise and error independence: It can be shown [6][7] that 

the optimum weights are orthogonal, 
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0i j i i j j i jw w h P P h  . Hence, for given channel H,

the after-combining noises at different steps are independent 

of each other, 
* 2 2 2

, , 0 0 0;  ~ (0, )p i p j i j ij pw w I     (3) 

where ,p i iw , and 2
0  is the noise variance (note that 

noise independence follows from zero correlation as the noise 

is Gaussian). Hence, the demodulation errors are independent 

too. This facilitates the error rate analysis.  

Instantaneous error rates: The block error rate (BLER), 

which is a probability to have at least one error in the 

demodulated Tx vector, can be expressed as 

11
1 (1 ( )) ( )

m m
B e i e iiiP P P         (4) 

where ( )e iP  is the (instantaneous, i.e. for given channel) 

conditional (no errors at the previous steps) error rate at step i, 
2 2

0/i ih  is the SNR (assuming unit power 

constellation). Evaluation of the BLER is comparatively 

simple as it is independent of the error propagation (and hence 

its quantification is not required). The (instantaneous) total 

error rate (TBER) etP , i.e. the error rate at the output stream 

to which all the streams are merged after demodulation, can 

be bounded using the BLER, 

1

1
/

m
B et ui Bm iP m P P P       (5) 

where uiP  is the unconditional (includes the error propagation 

from previous steps) error rate at step i.
Average error rates: It can be shown [5] that, in i.i.d. 

Rayleigh fading channels, 2
2( )~i n m i , where “~” means 

“equal in distribution”, and are independent of each other. 

This independence facilitates the evaluation of the average 

BLER BP ,

1
1 (1 )

m
B eiiP P                         (6) 

where ( )
MRC

ei n m iP P  is the average conditional error rate at 

step i, and the average error rate with (n-m+i) order maximum 

ratio combining (MRC) is ( )
MRC
n m iP , which is known for many 

modulation formats in closed form. For large average SNR 

( 2
0 01/ 1 ), 1 2 ...e e emP P P  due to increasing 

diversity order with step number, i.e. the 1st step error rate 

dominates. Thus, 

1 0  for  1B eP P                       (7) 

Average unconditional BER for BPSK: In the case of 

BPSK modulation, an exact expression for the average 

unconditional BER at each step and hence for the average 

TBER can be obtained [6][7]. For simplicity and due to the 

page limit, we consider further the case of 2m ; the 

analysis extends also to 2m  [7]. By observing that the last 

two terms in (2) represent “total noise” (the AWGN plus ISI) 

that is Gaussian, whose variance is 
22

0 1x , the 

unconditional (taking into account the error propagation from 

step 1) BER at step 2 for given 2h  (but averaged out over 1h )

is

2 2
1 12 2 2 2

0

2
( ) 2 1

4
e euP Q P Q Ph h

h      (8) 

where Q  is the well-known Q-function, and the average 

BER at step 1 is 
1 2

0
1 ( 1) 2

00

1 1
,

2 2 1

n knMRC k
e n n k

k
P P C  (9) 

where !/( !( )!)k
nC n k n k  are the binomial coefficients. 

Averaging out (8) over 2h , one obtains: 

2 2 1 21 11u e e eP P P P P               (10) 

where 2 ( )
MRC

e nP P , and 2
21 ( ) 01/( 4)

MRC
nP P  is the 

average probability of error propagation. The average TBER 

and BLER can be immediately evaluated using (5)-(10). 

Large SNR approximations for 2n  are especially simple, 

1 2 21 2 1
2

0 00

1
21

0

1 3 1 1 1
,  ,  ,  

4 5 5 2016

1
1

2 7

e e u e

e
et

P P P P P

PP P
  (11) 

By comparing etP  in (11) to that without error propagation, 

1 0/ 2 1/(8 )et eP P , one concludes that the effect of error 

propagation is to increase the average TBER by 14%, i.e. not 

catastrophic at all. However, as the comparison of 2eP  and 

2uP  demonstrates, the error propagation has a profound effect 

on the 2nd step BER (reducing the diversity order from 2 to 1). 

III. OPTIMUM POWER ALLOCATION

Under the total Tx power constraint, individual (per Tx or 

stream) powers can be optimally allocated in such a way as to 

minimize the TBER or the BLER, either instantaneous or 

average. While the instantaneous (i.e. for each channel 

realization) power allocation requires an instantaneous 

feedback channel (to supply the Tx end with the optimum 

allocation for each channel realization), the average power 

allocation does not require instantaneous feedback (only the 

average SNR needs to be known at the Tx end) and hence 

does not incur significant penalty in complexity. 

To account for unequal Tx power distribution, let us 

introduce the power allocation vector 1 2[ , ,... ]m . The 

total power constraint is 

1

m
ii m                                 (12) 

and uniform (unoptimized) power allocation considered above 

corresponds to 1 2 ... 1m . The analysis in Section 

II has to be modified by introducing new step SNRs i i i
so that 

1
( ) 1 (1 ( ))

m
B e iiP P                    (13) 

where we have explicitly indicated the BLER as a function of 

 (it is of course a function of 0  as well). Similarly, 

( )et etP P , 1( ... )ui ui iP P , and the same relations hold 

true for the average error rates. Eq. (9) is modified by the 

substitution 0 1 0 : 1 ( 1) 1 0( )
MRC

e nP P , and  

(10) is modified to 

2 2 1 21 11 2 2 1 1 2 1( , ) ( ) 1 ( ) ( , ) ( )u e e eP P P P P  (14) 

where 2
21 ( )1 2 0 1( ) /( 4 )

MRC
nP P , 2 ( ) 2 0( )

MRC
e nP P .

Eq. (11) is also modified in the same way. 
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Optimum power allocation using the average BLER: For 

this optimization, the average BLER is minimized under the 

constraint (12). Using the Lagrange multiplier technique for 

constrained optimization with the Lagrangian 

1
( ) ( )

m
B iiL P m ,     (15) 

the optimum  are found from 

( ) ( ) 0,  1...Bi iL P i m ,  (16) 

where  is the Lagrange multiplier, which is found from the 

constraint (12) (i.e., (16) and (12) are considered together as a 

system of equations).  

Uniqueness of the solution: We first show that (15) has a 

unique solution, which is a minimum (in terms of ( )BP ), for 

BPSK modulation. Indeed, let us prove the following Lemma
1:

1
( ) log(1 ( ))

m
ei iiz P  is concave in  for BPSK 

modulation. Proof: Consider the instantaneous BER of BPSK 

( ) ( 2 )eP Q ; it can be verified by direct computation that 

2 2( ) 0ed P d ,      (17) 

which is a sufficient condition for ( )eP  to be convex [8]. 

Since the average BER is obtained by integration of ( )eP
with non-negative weight function (the pdf of ), it follows 

[8] that 0( )eP  is also convex for any diversity order and any 

combining technique, including the MRC. Thus, 

( ) 0( ) ( )
MRC

ei n m ii iP P  is convex and, consequently, 

(1 ( ))ei iP  is concave. Since log of a concave function is 

concave [8], log(1 ( ))ei iP  is concave and, consequently, 

( )z  is also concave Q.E.D. As a concave function, ( )z  has 

a unique maximum under the constraint (12) [8], which 

corresponds to the unique minimum of ( )BP  since 

( ) log(1 ( ))Bz P  and log is a unique monotonically 

increasing function. We would like to note that this 

uniqueness result extends to any diversity combining 

technique (and not only the MRC), and also to any 

modulation format whose instantaneous BER can be 

expressed as either ( )aQ b  or exp( )a b  (or any linear 

combination of those with non-negative coefficients) for some 

constants a and b (and can be also applied to symbol rather 

than bit error rate). 

Using a numerical algorithm, the (globally) optimum 

power allocation can be found. The uniqueness of the solution 

facilitates numerical evaluation as there is only one global 

minimum. For high SNR, (13) is approximated as 

2 1

1 04

im
i

B n m i
i i

C
P  (18) 

and a compact and accurate analytical solution to (16) can be 

obtained (using the Newton-Raphson method; the details are 

omitted due to the page limit), which is especially simple (and 

insightful) for 2m ,
1

1
1 2 1

1
0

3
2 1 , 2 ,  

8( 1)( 1)

n

n
n

c nc
nn

 (19) 

Fig. 1 compares the approximate solution above with the 

accurate numerical solution. Clearly, the approximate solution 

is accurate for 0 10dB . Additionally, since the average 

BLER (and also the TBER) is not very sensitive to small 

variations in , the approximate solution results in almost the 

same average BLER (TBER) as the accurate numerical one 

also for 0 10dB . Thus, (19) can be used for the whole 

range of 0  without significant performance degradation. 

Fig. 1. Optimum power allocation for 2x2 V-BLAST with BPSK 

modulation for various optimization strategies.  

Fig. 2. Average TBER of 2x2 V-BLAST with BPSK modulation for 

various optimization strategies. 

It follows from (19) that 1 2  (i.e. almost all the power 

goes to the 1st Tx) as 0 , and 1  is quite close to 2 for 

finite 0 . Referring to (11), this is explained by the fact that 

1st step has lowest diversity order (n-1) and hence its error 

rate dominates. The power allocation algorithm tries to reduce 

the BLER by allocating more power to the 1st stream and thus 

reducing the 1st step BER. 

SNR gain of optimization: Comparing the optimized 

average BLER to non-optimized one in Fig. 2, one concludes 

that at high SNR the optimization brings about 3 dB SNR 

gain (for 2m ). This can be explained by the following 

simple argument. The average BLER of the optimized system 

can be bounded as follows, 

1 12( , ,..., ) ( ) ( ... 1)
opt opt opt

B B Bm mP m P P (20) 

where opt  is the optimum power allocation vector. The 

upper bound is the non-optimized BLER and the lower bound 

is the optimized BLER for which 1  is increased to m (which 

cannot increase the BLER). Additionally, since 1B eP P ,

1 1 1 2( ) ( , ,..., )
opt opt

e B mP m P m      (21) 

Substituting (7) and (21) in (20), one obtains 
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1 11 1 1( ) ( ) ( ... 1) ( 1)opt
e B B emP m P P P , (22) 

from which one concludes the SNR gain of the optimization 

is bounded as 

m      (23) 

Since the lower bound in (22) is tight at high SNR, 

0  for  1m    (24) 

It should be noted that this conclusion hold true for any 

modulation format. It also holds true if the power allocation is 

optimized instantaneously rather than on average, as the 

optimized system cannot perform better than a hypothetical 

one for which all the power is allocated to the 1st Tx and an 

additional power source is used to supply power to the other 

Txs to keep their BER low enough. 

For 2m , the SNR gain of the optimum power 

allocation is roughly the same, at high SNR, as that of the 

optimal ordering procedure (see [5] for details). The 

computational complexity, however, of the former is much 

less than that of the latter. Hence, the average power 

optimization can be used instead of the optimal ordering with 

the same performance (in terms of the average BLER/TBER). 

Average vs. instantaneous optimization: Since the average 

power allocation achieves the upper bound in (23) and since 

the instantaneous allocation cannot perform worse than the 

average one, one concludes that the average and instantaneous 

optimizations are equivalent (in terms of average BLER) at 

high SNR. Clearly, the average allocation is preferable to use 

as its complexity is much less both in terms of computations 

and the feedback channel required (only one computation of 
opt  is required as long as 0  stays the same and only 0

needs to be fed back to the Tx end) compared to instantaneous 

one (each channel instant requires its own optimization and 

feedback session). As the detailed analysis below 

demonstrates, these conclusions also hold if TBER is used as 

an optimization criterion. 

Optimum power allocation using average TBER:  In a 

similar way, the average TBER can be used (in (15)) as a goal 

function in the Lagrange multiplier technique to find the 

optimum power allocation. Numerical analysis demonstrates 

that, for 2m , the TBER is convex in  and hence the 

optimum solution is unique for arbitrary SNR. This solution 

can be found numerically, and for high-SNR mode an 

approximate (but accurate) closed-form analytical solution 

can be obtained using the Newton-Raphson method. In this 

mode, the average TBER (assuming BPSK modulation) can 

be approximated as (a proof is omitted due to the page limit), 

2 1

1 0

3 2
,

2( ) 4

im
i i

et in m i n m i
i i

C m iP
m

 (25) 

Since ( )etP  is convex (because each term in the sum is 

convex), the solution to the optimization problem is the 

unique global minimum. For the case of 2m , the solution 

is particularly simple: 
1

1
1 2 1

1
0

2 1 ,  2 ,  
4( 1)( 1)

n

n
n

c nc
nn

 (26) 

Clearly, this power allocation is close to that in (19), which is 

also obvious from Fig. 1 and hence the choice of the 

optimization criteria (either BLER or TBER) does not affect 

significantly the final result. This is not a surprise as the 1st

step error rate is dominant (due to the lowest diversity order) 

in terms of both the average BLER and TBER and hence most 

of the total Tx power goes to the 1st Tx. 

Optimum power allocation using instantaneous 
BLER/TBER: Similarly to the average power optimization 

above, the instantaneous power can be optimally allocated 

using either BLER or TBER as the optimization criteria. 

Since an analytical solution is challenging, a numerical 

technique can be used. The optimum allocation in terms of 

BLER is unique for any modulation whose BER can be 

represented as linear combination (with non-negative 

coefficients) of ( )Q a  and/or exp( )b  (this follows 

directly from the proof above in terms of the average BLER, 

by observing that the averaging does not affect the argument). 

The uniqueness of the TBER-based optimum power 

allocation is an open problem (numerical evidence suggests 

that this allocation is unique). 

Fig. 2 compares the average BER of instantaneous and 

average power optimization. Clearly, the results are quite 

close to each other, especially for 0 20dB . Essential 

difference between these two is that the former achieves the 

maximum SNR gain (as in (24)) for smaller SNR (and, of 

course, the instantaneous optimization performs better in 

terms of instantaneous BER, especially for some channel 

realizations that do not favor the average power allocation). 

Our main conclusion here is that the average power 

optimization can be used instead of instantaneous one at high 

SNR without any visible BER penalty but with much less 

complexity. 
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