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In the finite blocklength regime
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Abstract—This paper finds new tight finite-blocklength bounds channel capacity and the source rate-distortion functiean a
for the best achievable lossy joint source-channel code mt available for a wide class of channels and sources, the yuxur
and demonstrates that joint source-channel code design IGs  f jyeing able to compute exactly (in polynomial time) the non
considerable performance advantage over a separate one ihd . o ) .
non-asymptotic regime. A joint source-channel code maps aldck asymptotic fundamental limit of interest is rare_rly affobtta
of k source symbols onto a lengthn channel codeword, and the Notable exceptions where the non-asymptotic fundamental
fidelity of reproduction at the receiver end is measured by te limit is indeed computable are almost lossless source godin
probability e that the distortion exceeds a given thresholdi. For [5], [6], and JSCC over matched source-channel pairslf
memoryless sources and channels, it is demonstrated that eéh general, however, one can at most hope to obtain bounds and

parameters of the best joint source-channel code must safis imati to the inf tion-th ti ot
nC — kR(d) ~ /nV + EV(d)Q " (¢), where C and V are the approximations to the Information-theoretic non-asyripto

channel capacity and channel dispersion, respectivelyi(d) and ~fundamental limits. . o
V(d) are the source rate-distortion and rate-dispersion functons; Although non-asymptotic bounds can be distilled from

and Q is the standard Gaussian complementary cdf. Symbol-by- classical proofs of coding theorems, these bounds areyrarel
symbol (uncoded) transmission is known to achieve the Shaon satisfyingly tight in the non-asymptotic regime, as stddie

limit when the source and channel satisfy a certain probabiktic al 191 in th texts of ch | codi dl
matching condition. In this paper we show that even when this [€], [] in the contexts of channel coding and lossy source

condition is not satisfied, symbol-by-symbol transmissioris, in  €oding, respectively. For the JSCC problem, the classical
some cases, the best known strategy in the non-asymptotiagiene.  converse is based on the mutual information data process-
ing inequality, while the classical achievability schermses

Index Terms—Achievability, converse, finite blocklength Separate source/channel coding (SSCC), in which the channe
regime, joint source-channel coding, lossy source codingiemo- coding block and the source coding block are optimized
ryless sources, rate-distortion theory, Shannon theory. separately without knowledge of each other. These conven-
tional approaches lead to disappointingly weak non-asgtitpt
bounds. In particular, SSCC can be rather suboptimal non-
asymptotically. An accurate finite blocklength analysieré:

In the limit of infinite blocklengths, the optimal achievebl fore calls for novel upper and lower bounds that sandwich
coding rates in channel coding and lossy data compresseon gghtly the non-asymptotic fundamental limit. Such bounds
characterized by the channel capadityand the source rate- yere shown in §] for the channel coding problem and in
distortion functionR(d), respectively f]. For a large class [9] for the source coding problem. In this paper, we derive
of sources and channels, in the limit of large blocklengthe tight bounds for the JSCC problem, which hold in full
the maximum achievable joint source-channel coding (JSCggnerality, without any assumptions on the source alphabet
rate compatible with vanishing excess distortion probighbil stationarity or memorylessness.
is characterized by the ratigi; [4]. A perennial question in  \while numerical evaluation of the non-asymptotic upper and
information theory is how relevant the asymptotic fundataen |ower bounds bears great practical interest (for exampldet
limits are when the communication system is forced to oeeratige how suboptimal with respect to the information-théiore
at a given fixed blocklength. The finite blocklength (delay)mit a given blocklengths code is), such bounds usually
constraint is inherent to all communication scenarios.aet,f jnyolve cumbersome expressions that offer scant conceptua
in many systems of current interest, such as real-time mulgisight. Somewhat ironically, to get an elegant, insightfu
media Communication, delayS are StriCtly Constrained,|@Vhiapproximati0n of the non_asymptotic fundamental ||m|t,eon
in packetized data communication, packets are frequemtly gyst resort to an asymptotic analysis of these non-asyiaptot
the order of 1000 bits. While computable formulas for thggunds. Such asymptotic analysis must be finer than that

_ _ _ _ _ based on the law of large humbers, which suffices to obtain
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rate which is strictly suboptimal with respect to the asymtipt that whenever the source and the channel are probabiligtica
fundamental limit is fixed, and the error exponent measuregtched so that symbol-by-symbol coding achieves the min-
the exponential decay of the error probability @oas the imum average distortion, it also achieves the dispersion of
blocklength increases. The error exponent approximatsonjoint source-channel coding. Moreover, even in the absefce
tight if the error probability a system can tolerate is extedy such a match between the source and the channel, symbol-
small. However, already for probability of error as lowlds®  by-symbol transmission, though asymptotically subopktima
to 10~ %, which is the operational regime for many high dataight outperform in the non-asymptotic regime not only
rate applications, the Gaussian approximation, which ggiveeparate source-channel coding but also our random-coding
the optimal rate achievable at a given error probability achievability bound.
a function of blocklength, is tightg], [9]. In the channel  Prior research relating to finite blocklength analysis c£@S
coding problem, the Gaussian approximation Bf(n,e), includes the work of Csiszarl{], [11] who demonstrated
the maximum achievable finite blocklength coding rate #hat the error exponent of joint source-channel coding out-
blocklengthn and error probability, is given by, for finite performs that of separate source-channel coding. Foredescr
alphabet stationary memoryless channéls [ source-channel pairs with average distortion criterioitg's?
. 1 achievability bound 17|, [13] applies. For the transmission
nf(n, €) = nC - VavQ (€) + O (logn) (1) of a Gausiian soulrc]e [ov]er F;p discrete channel under the
where C' and V' are the channel capacity and dispersiomverage mean square error constraint, Wyner’s achietabili
respectively. In the lossy source coding problem, the Ganssbound [L4], [15] applies. Non-asymptotic achievability and
approximation ofR*(k, d, €), the minimum achievable finite converse bounds for a graph-theoretic model of JSCC have
blocklength coding rate at blocklengthand probabilitye of been obtained by Csiszér(]. Most recently, Tauste Campo et
exceeding fidelityd, is given by, for stationary memorylessal. [17] showed a number of finite-blocklength random-coding
sources ], bounds applicable to the almost-lossless JSCC setup, while
Wang et al. 18] found the dispersion of JSCC for sources
kR (k,d,€) = kR(d) + VEV(d)Q™" () + O (log k) (2) g ?:hannelsllvlith finite aIphatF))ets.
where R(d) and V(d) are the rate-distortion and the rate- The rest of the paper is organized as follows. Section
dispersion functions, respectively. summarizes basic definitions and notation. Sectibhsand
For a given code, the excess distortion constraint, whichli¢ introduce the new converse and achievability bounds to
the figure of merit in this paper as well as if][is, in a the maximum achievable coding rate, respectively. A Ganssi
way, more fundamental than the average distortion comsfraiapproximation analysis of the new bounds is presented in
because varying! over its entire range and evaluating thé&ectionV. The evaluation of the bounds and the approximation
probability of exceedingl gives full information about the is performed for two important special cases: the transoriss
distribution (and not just its mean) of the distortion in@d at of a binary memoryless source (BMS) over a binary symmetric
the decoder output. Following the philosophy &, [9], in this channel (BSC) with bit error rate distortion (Sectigh) and
paper we perform the Gaussian approximation analysis of dbe transmission of a Gaussian memoryless source (GMS) with
new bounds to show that, the maximum number of sourcemean-square error distortion over an AWGN channel with a
symbols transmissible using a given channel blocklength total power constraint (Sectiovill). SectionVIIlI focuses on
must satisfy symbol-by-symbol transmission.

nC — kR(d) = /nV + kV(d)Q " (¢) + O (logn)  (3)

under the fidelity constraint of exceeding a given distartio ) ) )
level d with probability e. In contrast, if, following the SSCC A 0SSy source-channel code is a pair of (possibly random-

paradigm, we just concatenate the channel codé)iard the 12€d) mappingsf: M — & andg: Y — M. A distortion
source code in2), we obtain measured: M x M — [0, +4o0c] is used to quantify the per-

formance of the lossy code. A cost functionX — [0, +oc]
nC — kR(d) < mCiI<1 {VnVQ_l () + VEV(d)Q™! (O} may be imposed on the channel inputs. The channel is used
rese without feedback.

+ O (logn) (4)
Definition 1. The pair (f is a (d lossy source-

which is usually strictly suboptimal with respect t8)( channel code for{/r\)/l g(’ g)y M\( ]’;’Oé) P y o} if

In addition to deriving new general achievability and con, d(S,g(Y)) > d] < ; an’d eiicherlé[c(i(v)]v < le(élverage
verse bqunds for T]S(.:C gnd performing _thelr Ga_u53|an Wst constraint) orc(X) < « a.s. (maximal cost constraint),
proximation analysis, in this paper we revisit the dllgmMa heref(S) — X (see Fig.1). In the absence of an input cost
whether one .ShOU|d or should not code when operating un Bhstraint we simplify the terminology and refer to the code
delay constraints. Gastpar et ai] fave a set of necessary an s (d, ¢) lossy source-channel code
sufficient conditions on the source, its distortion meastive ’ '
channel and its cost function in order for symbol-by-symbol The special casé = 0 andd(s, z) = 1{s # z} corresponds
transmission to attain the minimum average distortionh&se to almost-lossless compression. If, in additié, is equiprob-
curious cases, the source and the channel are probahiligticable on an alphabet of cardinalityt| = M| = M, a(0, ¢, «)

matched. In the absence of channel cost constraints, we shlumgle in Definitionl corresponds to afl, e, «) channel code

II. DEFINITIONS
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Fig. 1. A (d,¢) joint source-channel code.

(i.e. a code withM codewords and average error probabitity
and cost). On the other hand, iPy| x is an identity mapping
on an alphabet of cardinality/ without cost constraints, a

(d,¢) code in Definitionl corresponds to afM,d, ¢) lossy
compression code (as e.g. defined 9.

As our bounds in Sectiori andlV do not foist a Cartesian
structure on the underlying alphabets, we state them inribe o
shot paradigm of Definitiod. When we apply those bounds W(R, a)

to the block coding setting, transmitted objects indeeabec
vectors, and Definitior2 below comes into play.

The dispersion, which serves to quantify the penalty on the
rate of the best JSCC code induced by the finite blocklength,
is defined as follows.

Definition 4. Fix « andd > d,;,. The rate-dispersion func-
tion of joint source-channel coding (source samples sqiliare
per channel use) is defined as

(Sl -

2log, %

R(n,d,e,a))2

V(d, &) = lim lim sup (11)

=0 pooo

where C'(«) and R(d) are the channel capacity-cost and
source rate-distortion functions, respectivély.

The distortion-dispersion function of joint source-chahn
coding is defined as

n (D (%) — D(nR,n,e, a))2
210&%

= lim lim sup
=0 poo

(12)
where D(+) is the distortion-rate function of the source.

Definition 2. In the conventional fixed-to-fixed (or block)

setting in whichX” and ) are the n—fold Cartesian prod-
ucts of alphabets4 and 5, M and M are the k—fold
Cartesian products of alphabetS and S, and dj: S* x
S = [0, +0c], cu: A" = [0,+0c], a (d,e,a) code for
{8k, A", B", S*, Pgx, d, Pynjxn, c,} is called a

(k,n,d,e,«) code (or a(k,n,d,e) code if there is no cost

constraint).

If there is no cost constraint, we will simplify notation by
droppinga from (5), (6), (7), (8), (11) and (2).
Definition 5 (d—tilted information P]). For d > duin, the
d—tilted information ins is defined a%

1
exp (A\*d — \xd(s, Z*))]

g5, d) = log 7 (13)

Definition 3. Fix ¢, d, « and the channel blocklength. where the expectation is with respect B+, i.e. the uncon-

The maximum achievable source blocklength and coding r&h

tional distribution of the reproduction random variabfleat

(source symbols per channel use) are defined by, respactiv&fhieves the infimum i(®), and

k*(n,d,e, ) = sup {k: (k,n,d, e, ) code (5)
(6)

Alternatively, fixe, «, source blocklengthk and channel
blocklengthn. The minimum achievable excess distortion
defined by

D(k,n,e, ) = inf {d: 3(k,n,d, e, a) code

1
R(n,d,e,a) = —k*(n,d, €, a)
n

()

Denote, for a givenPy x and a cost functiort: &'
[0, +00],
Cla)

sup I(X;Y)
Px:
Ele(X)]<a

(8)

and, for a givenPg and a distortion measuke M x M
[0, +o2],

Rs(d) inf I(S;2) 9

N Z|S ¢

E[d(S,2)]<d
We impose the following basic restrictions é%-|x, Ps, the
input-cost function and the distortion measure:

(@) Rg(d) is finite for somed, i.e. dyin < 0o, where
dmin = Inf {d: Rg(d) < o0}; (10)

(b) The infimum in @) is achieved by a uniquéy- s;
(c) The supremum ing) is achieved by a uniqu@x-.

A" = —Rg(d) (14)

The following properties ofl—tilted information, proven in
[19), are used in the sequel.

is 15(s,d) = 15,2+ (s;2) + A*d(s,z) — A\*d (15)
E[7s(s, d)] = Rs(d) (16)
E [exp (\*d — A*d(S, 2) + 75(S,d))] < 1 (17)

where (5) holds for P;-almost everyz, while (17) holds for
all ze M, and

dPz|5=s
P (%)
Z
denotes the information density of the joint distributifg
at (s,z). We can define the right side ofl§) for a given
(Pz|s, Pz) even if there is naPs such that the marginal of
PsPz s is Pz. We use the same notatiap, for that more
general function. To extend Definitidh to the lossless case,
for discrete random variables we defipnilted information as

(19)

15:2(8; 2) = log (18)

75(8,0) = 15(s)

Iwhile for memoryless sources and chann€l¢n) = C() and R(d) =
Rs(d) given by @) and @) evaluated with single-letter distributions, it is
important to distinguish between the operational defingiand the extremal
mutual information quantities, since the core results is ghaper allow for
memory.

2All log’s andexp’s are in an arbitrary common base.



where

15(8)

= log (20)

Ps(s)
is the information in outcome € M.
The distortiond-ball centered at € M is denoted by

Ba(s) = {z € M:d(s,2) < d}. (21)

Given (Px, Py|x), we writt Px — Pyx — Py to
indicate thatPy is the marginal ofPx Py x, i.e. Py (y) =
erx PY\X(?J|5U)PX (2). 3

So as not to clutter notation, in Sectiofls and IV we

assume that there are no cost constraints. However, altsesu
in those sections generalize to the case of a maximal cost
constraint by considerin’ whose distribution is supported

on the subset of allowable channel inputs:

Fla)y={z e X:c(zx) < a} (22)

rather than the entire channel input alphafiet

IIl. CONVERSES

A. Converses vid-tilted information

Our first result is a general converse bound.

Theorem 1 (Converse) The existence of &l, ¢) code forS
and Py x requires that

€ > inf sup { supP [15(S,d) — 1x.7(X;Y) > 7]
Pxisy>0 (| Py ’
~exp (=) | @3)
> sup{supE [inf P [15(S,d) —ix.y(2;Y) > 7| S}]
>0 Py rEX ’

- exp (=) | (24)

where in(23), S — X — Y, and the conditional probability
in (24) is with respect taY” distributed according taPy | x—,
(independent of), and

APy |x—g

log W (y) (25)

ZX;Y('r;y)

Proof: Fix v and the(d,¢) code (Px|g, Pz|y). Fix an
arbitrary probability measur@y on ). Let Py — Py —

SWe write summations over alphabets for simplicity. Unletstesl other-
wise, all our results hold for abstract probability spaces.

Pz. We can write the probability in the right side &3) as

+ P 1s(S,d) —1x.v(X;Y Z%d(S,Z)<d} (26)
<e
+ZPS ZPX|SUC| Z Z Pyy(z|y)
seM TEX y€Y z€By(s)
- Pyix (y|2)1 { Pyix (ylz) < Py (y) exp (3s(s.d) — )}
(27)
<e+exp(— ZPS s)exp (ys(s,d)) ZPY
seEM yey
> Pay(zly) Y Pxs(als) (28)
zEBg/(s) rEX
=e+exp(— ZPS s)exp (1s(s,d)) ZPY
seM yeY
Z Pzy (2ly) (29)
z€By(s)
=c+exp(— Z Ps(s)exp (35(s,d)) Pz(Bq(s)) (30)
seM
< e+exp( Z P;(z Z Ps(s
zeM sEM
- exp (9s(s,d) + X*d — X\*d(s, 2)) (31)
<e+exp(—y) (32)

where (2) is due to (7). Optimizing overy > 0 and Py,
we get the best possible bound for a given encdders. To
obtain a code-independent converse, we simply chdagg
that gives the weakest bound, ar8)(follows. To show 24),
we weaken 2Z3) as

{

—exp (—7) }

sup inf P [75(S,d) —

1.y (X;Y) > 7]
Py Pxis

€ > sup
v>0

(33)

and observe that for angy,

inf P [35(5, d) —1x.y(X;Y) > 7]

Pxs
> Ps(s
seEM

> Pyix(yla)l {Js(s, d) — x5 (z59) > v}
yey

> Ps(s)

seM

- nf §PY|x<y|x>1 {15(s,d)
Y

_ . o (e >
E ngip [75(S,d) —1x.7 (V) >~ | 5]

(34)

—ix.y(zy) > v} (35)
(36)



An immediate corollary to Theorem is the following Write

result.
P [15(S,d) —1x, Y|W(X' Y|W) > 4]
Theorem 2 (Converse) Assume that there exists a distribution
Py such that the distribution of .y (2;Y) (according to < e+ Z Ps(s ZPW\S t|s) Z Pxs,w(z|s,t)

Py |x—,) does not depend on the choicexo X. If a (d, ) seM zeX
code forS and Py |x exists, then . Z Pyxw(ylz,t) Z Pyy (z]y)
yey zEBd S)
- 1{ Py x,w(ylz, t) < Py (y) exp (35(s,d) = 7)}
€ sup {P [15(S,d) —1x,9(2;Y) > 7] —exp (—7) } (41)
v
(37)
<e+exp(— ZPS s)exp (1s(s,d)) ZPW‘S t|s)
seM t=1
for an arbitrary z € X. The probability measur® in (37) is Z Pe
: viw (Y[t) Z Pzy(2]y) Z Pxs,w(zls,t)
generated byPs Py|x—- e € Ba(s) =
Proof: Under the assumption, the conditional probability (42)
in the right side of 24) is the same regardless of the choice
of z € X. m Scetexp(- ZZPS Jexp (75(5,d)) 3 Pryw (ylt)
The next result generalizes Theoreln When we apply [mhseM ey
Theorem3 in SectionV to find the dispersion of JSCC, we ° Z Pzy (2ly) (43)
will let T be the number of channel input types, and we will let =€Ba(s)
W be the type of the channel input block.If= 1, Theorem
3 reduces to Theorerh. <e+texp(— Z Z Ps(s)exp (1s(s,d)) Pzjw—:(Ba(s))
t=1 seM
Theorem 3 (Converse) The existence of &1, ¢) code forS (44)
and Py | x requires that
< e+exp(— ZZPS ZPZ“,Vt
t=1 se M
e> inf max { ~ Texp(—) exp s d) + Xd— A, 2)) (45)
Py|s v>0,T
<e+Texp(—7) (46)
+ ;1;{]/;) Pl15(5,d) = v w (G YIW) 2 ﬂ} where @6) is due to (7). Optimizing overy, 7 and the
S—(X,W)-Y distributions of the auxiliary random variablésand W, we

(38) obtain the best possible bound for a given enco#ers.

Y
E
5
5

NS0T { Px|s that gives the weakest bound, ar@B) follows. To show
(39, we weaken 38) by restricting thesup to W satisfying
+ Sup E[ inf P[5(S,d) — 1x, 7w (2; Y W) > 7 | 5]} } S — X —W and changing the order aff andsup as follows:

39 max su inf 47
(39) max  sup  jnf (47)
S—(X,W)-Y
whereT" is a positive integer, the random variabl® takes Soxw -
values on{1,...,7T}, and Observe that for any legitimate choice Bfand W,
gn‘fs P [15(S,d) — iy w (XY W) > 7] (48)
Py x—2w= .
i (@ylt) = log —5="E=L(y)  (40)
YW=t = Z Ps( ll‘flf Z Px‘s (E| pr‘x tl(E
seM s=¢
and in (39), the probability measure is generated by . ZPYIX-W(QWJ 1{35 s,d) —1x.yw(z;ylt) > v}
Ps Py | x—o Py | x=2,w- yey
: : _ (49)
Proof: Fix a possibly randomized(d,e¢) code
{Pxs,Pz)y}, a positive scalary, a positive integer _ Ps( mf Py x (tz P .t
T, an auxiliary random variableW that satisfies Z s( Z wix (1 y%;, vixw (v, )
S — (X, W) —Y, and a conditional probability distribution
( ) P Y -1 {35(81 d - ZX;Y|W(:E; y|t > ’7} (50)

PY\W: {1, T} — ). Let PY|W:t — Pz‘y — PZ|W:t’
ie. Pyw—(2) = > ey Pziy(2ly)Pyw=(y), for all t. which is equal to the expectation on the right side 38)( m

To obtain a code-independent converse, we simply choose



Remarkl. Theoremsd, 2 and3 still hold in the casel = 0 and (has a continuous distribution), it is reasonable to(et be
d(z,y) = 1{z # y}, which corresponds to almost-losslesthe Lebesgue measure.

data compression. Indeed, recallirig), it is easy to see that Any converse for list decoding implies a converse for
the proof of Theoreni applies, skipping the now unnecessargonventional decoding. To see why, observe that ahy)

step B1), and, therefore,23) reduces to lossy code can be converted to a list code with list error
probability not exceedingby feeding the lossy decoder output
€> gnf sup{ sup P [zS(S) —ix.y(X;Y) > 7] to a function that outputs the set of all source outcomes
XS y>0 Py

within distortion d from the outputz € M of the original
—exp (=) } (51) !ossy dec_oder. In this sense, the set (_)f(dj_le) lossy code_s i_s
included in the set of all list codes with list error probéil

Similar modification can be applied to the proof of Theoreri € @nd list size

> L = max Qs ({s: d(s,2) < d}) (55)
Remark 2. Our converse for lossy source coding if, [ zEM

Theorem 7] can be viewed as a particular case of the resu'benote by

in Theorem2. Indeed, if X = Y = {1,...,M} and

Pyx(m|m) = 1, Py(1) = ... = Py(M) = %, then @7) Bo(P,Q)= min QW =1 (56)
becomes Mfyz‘)f];a

€ > supP [j5(S,d) > log M + ] — exp (=7) (52) the optimal performance achievable among all randomized

o e i tests Py x : X — {0, 1} between probability distribution®
which is precisely {, Theorem 7]. andQ on X (1 indicates that the test choosg%.? In fact, Q
need not be a probability measure, it just needs toiaite
B. Converses via hypothesis testing and list decoding in order for the Neyman-Pearson lemma and related results to
hold.

To show a joint source-channel converse in][ Csiszar ) ) )
used a list decoder, which outputs a list &f elements _ 1he hypothesis testing converse for channel codiag [

drawn from M. While traditionally list decoding has only 1n€0rem 27] can be generalized to joint source-channehgodi
been considered in the context of finite alphabet sources, Wih list decoding as follows.

generalize the setting to sources with abstract alphalvetslr - Theorem 4 (Converse) Fix Ps and Py|x, and letQs be

setup, the encoder is the random transformatii, and the 3 ;-finite measure. The existence of &nL,Qs) list code
decoder is defined as follows. requires that

Definition 6 (List decoder) Let L. be a positive real number, inf

. ’ 5 _(PsPx\sPyx,QsPx|sPy) < L 57
and let Qs be a measure ooM. An (L,(Qs) list decoder 1;;1‘55;1551 (PsPxisPyix, QsPxisPy) < 7)
is a random transformationP,-, where S takes values on
Qs-measurable sets wit) g-measure not exceeding

@s (S) <L (53) Proof: Fix Qs, the encoderPx s, and an auxiliaryo-

Even though we keep the standard “list” terminology, thfinite conditional measur@y|x s. Consider the (not necessar-
decoder output need not be a finite or countably infinite séiy OPtimal) test for deciding betweeRsxy = PsPx|sPy|x
The error probability with this type of list decoding is theétNd@sxy = QsPx|sQy|xs which choosessxy if S be-

probability that the source outconfedoes not belong to the longs to the decoder output list. Note that this is a hypathet
decoder output list fob’: test, which has access to both the source outcome and the

decoder output.
1= Y > Psy(3ly)Pyx (ylz)Pxs(z]s)Ps(s)  According to P, the probability measure generated by
TEX YyEY 5eM(L) SEF (54) Psxy, the probability that the test choosé¥ xy is given
54 by

where M) is the set of allQs-measurable subsets gt P {S € 5} >1—e€ (58)
with Qg-measure not exceeding

where the supremum is over all probability measuigs
defined on the channel output alphabét

Definition 7 (List code) An (¢, L, Qs) list code is a pair SinceQ |S € S| is the measure of the event that the test

of random transformationéPy; s, Pgy) such that(53) holds choosesPsxy when Qsxy is true, and the optimal test
and the list error probability(54) does not exceee cannot perform worse than the possibly suboptimal one that
_ . ~ we selected, it follows that
Of course, lettingQs = Us, where Ug is the counting

measure onM, we recover the conventional list decoder f;_.(PsPx|sPy|x,QsPx|sQy|xs) < Q [Se S’} (59)
definition where the smallest scalar that satisfig8) (s an

integer. The almost-lossless JSCC settiig=(0) in D_ef'n't'on 4Throughout, P, Q denote distributions, whered® Q are used for the
1 corresponds td. = 1, Qs = Ug. If the source is analog corresponding probabilities of events on the underlyingbpbility space.



Now, fix an arbitrary probability measui®, on ). Choosing For all s € M, = € X, we have
Qy|xs = Py, the inequality in §9) can be weakened as PW* = 1S = s, X = 4]

follows.
E [P [W* =1X=28=sY] (69)
Q [5 < 5} E[P[W*=1]S =s1x7(X;Y) =1xy(x:Y)]] (70)
= Pr(y) Y Py Gly)d Qs(s) D Pxs(x Py x (yl2) Py s,y o (xiv) (s, iy (259)) - (T1)
yey seM(L) SES zEX yey
(60) P[W* =1[S = s] (72)
=D Pr(y) Y Pyy(ly) > Qs(s) (61) and
= " W= 1S =8 X—a]=QW* =1|S=3s (73)
<SP Y PayGlyL 62 ’
yeY FeMD) where
=1L (63) e (70) is due to £8),

o (71) uses the Markov property — X — Y,
Optimizing the bound ovePy- and choosing’x 5 that yields o (72) follows from the symmetry assumption on the dis-
the weakest bound in order to obtain a code-independent tribution of 2y ¢ (x,Y),

converse, §7) follows. | o (73) is obtained similarly to {2).
Remark3. Similar to how Wolfowitz's converse for channelSince {2), (73) imply that the optimal test achieves the same
coding can be obtained from the meta-converse for chaniérformance (that is, the sanfeglV* = 1] andQ [W* = 1))
coding [, the converse for almost-lossless joint sourcéegardless ofx|s, we chooseé’x s = 1x (z) for somer € X
channel coding in §1) can be obtained by appropriatelyin the left side of §7) to obtain 7). u
weakening §7) with L = 1. Indeed, invoking §] Remark4. In the case of finite channel input and output
alphabets, the channel symmetry assumption of Thedem
Ba(P,Q) > l ( _Pp {dp D (64) holds, in particular, if the rows of the channel transition
T aQ probability matrix are permutations of each other, d@id, is

] ) ) ~ the equiprobable distribution on the-fimensional) channel
and leting Qs = Us in (57), where Us is the counting oyiyt alphabet, which, coincidentally, is also the cayaci
measure on\{, we have achieving output distribution. For Gaussian channels with

) equal power constraint, which corresponds to requiring the

1> lgilfs S;Pﬁlfé(Pst\SPYleUSpXISPY) (65)  channel inputs to lie on the power sphere, any spherically-
oy 1 symmetric Py satisfies the assumption of Theoré&m

> inf supsup — (1 — € — P [1x.5(X;Y)—15(5) >log7])

P o
X|s Py v>0"7 (66) IV. ACHIEVABILITY

Given a source cod@M), g§M>) of size M, and a channel

which upon rearranging yield&J). code (féM),gEM)) of size M, we may concatenate them to
obtain the following sub-class of the source-channel codes

In general, computing the infimum irb7) is challengin
g P 9 0 ging. Btroduced in Definitionl:

However, if the channel is symmetric (in a sense formalizé
in the next result)3;_.(PsPx|sPy|x,UsPx|sPy) is inde- Definition 8. An (M,d,¢) source-channel code is &, )
pendent ofPxs. source-channel code such that the encoder and decoder map-

Theorem 5(Converse) Fix a probability measuré”-. Assume pings satisfy

that the distribution ofiy.y(z;Y") does not depend om € f =) o (M) (74)

X under githerPy‘X:z_or Py. Then, the existence of an g = ggM) oggM) (75)
(e, L,Qg) list code requires that
where
_ o) <
ﬁl—e(PSPY|X_m7QSPY) <L (67) fS(M) MH{L,M} (76)
wherez € X is arbitrary. FM: {1, M} X (77)
g™y {1,..., M} (78)

Proof: The Neyman-Pearson lemma (e.@0]) implies T
that the outcome of the optimum binary hypothesis test gM. {1, M}y— M (79)
betweenP and Q only depends on the observation through
dg In particular, the optimum binary hypothesis tégt for
deciding betweerPs Px|s Py|x andQsPx|sPy satisfies Note that an(M, d, ¢) code is an(M + 1,d, ¢) code.

The conventional separate source-channel coding paradigm
W* —(S,1x.¢(X;Y)) — (S, X,Y) (68) corresponds to the special case of Definit®in which the

(see Fig.2).



S [ e {1,.... M} ) X Y[ o 1L M) (M>i roughly exp (kR(d)) distinct messages, which allow to rep-

— f —1 Py x— gt g T
: : resent most of the source outcomes within distortioffrrom
ST U RO P[d(S,2)>d < the channel coding theorem we know that there exists a
channel code that is capable of distinguishing, with high
Fig. 2. An (M, d, ) joint source-channel code. probability, M = exp (kR(d)) < exp (nC') messages when

equipped with the maximum likelihood decoder. Therefore,
a simple concatenation of the source code and the channel
code achieves vanishing probability of distortion excegdi
Py x and the channel CodeéM)’ggM)) is chosen without d, for a}nyd > D (%) However, at finiten, the outppt of
knowledge of Ps and the distortion measuré A pair of the optlmu_m source encoder need not be nearly equiprobable,
source and channel codes is separation-optimal if the sour® ther_e IS no reason t_o ‘?XpeCt that a separated scl_weme
code is chosen so as to minimize the distortion (avera g‘lploylng a r_naxmum-hkehhood chann_e_l_decoder, Wh'f:h
or excess) when there is no channel, whereas the chan & not_ exploit unequal message probabiities, Wogldeaehl
code is chosen so as to minimize the worst-case (over sou?@@r'om'mal n(_)n-asymptptlc performance._ Indeed, in e n
distributions) average error probability: asymptotlc regime the gain afforded by taking into accohat t
residual encoded source redundancy at the channel decoder
max P U;«éggM)(Y)} (80) is appreciable. The following achievability result, obid
Pu using independent random source codes and random channel

where X — f(M)(U) and U takes values or{1 M), If codes within the paradigm of DefinitioBy capitalizes on this

both the source and the channel code are chosen separaﬂfEJW—'t'on'

optimally for their given sizes, the separation principleag Theorem 7 (Achievability). There exists a(d,¢) source-
antees that under certain quite general conditions (whighannel code with

encompass the memoryless setting, s&g)[the asymptotic

fundamental limit of joint source-channel coding is achiev €< » Pinfp {E [GXP (— lix,y (X;Y) — log W|+)}
able. In the finite blocklength regime, however, such SSCC Smemwls

source code(f§M),g§M)) is chosen without knowledge of

construction is, in general, only suboptimal. Within theC&S +E [(1 _ PZ(Bd(S)))W} } (82)
paradigm, we can obtain an achievability result by further
optimizing with respect to the choice af: where  the expectations are with  respect to

. . . Ps Px Py|x Pz Py |s defined onM x & x ) x M x N, where
Theorem 6 (Achievability, SSCC) Fix Py |x, d and Ps. N is the set of natural numbers.

Denote by* (M) the minimum achievable worst-case average

error probability among all transmission codes of sikg and Proof: Fix a positive integerM . Fix a positive integer-

the minimum achievable probability of exceeding distortio valued random variablé? that depends on other random

with a source code of siz&l by e*(M, d). variables only througltt' and that satisfie$l” < M. We will

Then, there exists &l, €) source-channel code with construct a code with separate encoders for source andehann

and separate decoders for source and channel as in Definition

(81) 8. We will perform a random coding analysis by choosing

N N . random independent source and channel codes which will lead

Bounds ore” (M) ande” (M, d) have been obtained recentlyto the conclusion that there exists @, d, €) code with error

n éﬂf%ntqof]érzzzzca\cl)?l)f le out choosing the source Coo%robabilitye guaranteed in82) with W < M. Observing that
Nt u u 'ng u reasingM can only tighten the bound in82) in which

nc
based on the knowledge dt|x or the channel code basedW is restricted to not exceedl/, we will let M — oo and

on the knowledge ofPs, d and d. One of the interesting : .
. : . . - conclude, by invoking the bounded convergence theorer, tha
conclusions in the present paper is that the optimal digpers .
: . o the support ofi¥ in (82) need not be bounded.
of JSCC is achievable within the class @¥/,d,¢) source- : . .
. . e . Source EncoderGiven an ordered list of representation
channel codes introduced in Definitié& However, the dis- _ . IY; =M .
points 2" = (z1,...,2m) € M™, and having observed

?aegtsg)unb(?;t?rfgle d by the conventional SSCC approach 'Sthe source outcomes, the (probabilistic) source encoder

To shed light on the reason behind the suboptimality gteneratesW from Py)s—, and selects the lowest index

. o . S 1,... such thats is within distanced of z,,. If
SSCC at finite blocklength despite its asymptotic optlnyalltm € {L, . W} s “
we recall the reason SSCC achieves the asymptotic fundg- such index can be found, the source encoder outputs a
- . ymp fe-selected arbitrary index, e.fyf. Therefore,
mental limit. The output of the optimum source encoder

is, for large k, approximately equiprobable over a set O;(M) ) {min{m,W} d(s,zm) <d < min 1d(s,zi)
) s) = v

e< II]ltifn{E*(M) +e*(M,d)}

=1,....m—
5As the maximal (over source outputs) error probability ainipe lower M d < minj—1,.. wd(s, 2)
than the worst-case error probability, the maximal errebpbility achievabil- (83)

ity bounds of f] apply to bounde* (A7). Moreover, the random coding union | g gOOd(M, d, e) JSCC code)M would be chosen so Iarge

(RCU) bound on average error probability ¢f],[ although stated assuming . . .
equiprobable source, is oblivious to the distribution of $ource and thus that with overwhelmmg prObab”'ty’ a source outcome would

upper-bounds the worst-case average error probalalitp/) as well. be encoded successfully within distortieh It might seem



counterproductive to let the source encoder 83) (give up does not choosaM)( S), so
before reaching the end of the list of representation ppints ( MMy

in fact, such behavior helps the channel decoder by skewing ’

the distribution off{*" (9).

P m
Channel EncodeiGiven a codebookzy,...,xzy) € XM, — mz::l vz (mlz")
the channel encoder outputs, if m is the output of the source .y
encoder: B Py zm (§12") Py x (Y25) il x =
fM (m) = (84) T | Puizae (m]2) Py x (Y |2m) —

+ Pyizm (U > W[M) (90)
We now average9Q) over the source and channel codebooks.

Averaging them-th term of the sum in9q0) with respect to
the channel codebook yields

U PU|ZM (J|Z ) (Y|X ) >1
j#m Py zm (m|ZM)PY|X(Y|Xm -
Having observeq € ), the channel decoder chooses arbitrar- (91

ily among the members of the set: whereY, X1,..., X, are distributed according to

Channel Decoder.Define the random variabld/ ¢
{1,..., M + 1} which is a function ofS, W and 2 only:

_ RS d(sg(f(9) <d (@5)
M +1 otherwise PU|zM(m|Zm)P

g (y) =mearg_ {maXM}PU\ZM (412™) Py x (yla5) Pyx,..x, (Y, 21, 2m) = Pyix,, (y2m) 17:[ Pl
JFm
(86) (92)

A MAP decoder would multiply Py x (y|z;) by Px(z;). Letting X be an independent copy & and applying the
While that decoder would be too hard to analyze, the produstion bound to the probability in9(), we have that for any
in (86) is a good approximation becaus z (j|=*) and given (m, z'),

Px (z;) are related by .
! P U Py zm (]lZ]]Z)PY|X(Y|Xj) >1
Pyjzm (m[2M) Py x (Y] Xom)

J#m

Px(x;) = Z Pyzm (m|z™)

m: Tm=1T;

+ Py (M +1|2M)1{j = M} (87) < E[mm{L

so the decoder ir8g) differs from a MAP decoder only when Pz (j]2M) Py x (Y] X)

either several,, are identical, or there is no representation ZP Py zv (m]2M) Py x (Y]X) 21Xy }
point among the firsi¥ points within distortiond of the =1 93
source, both unusual events. ~ (93)
Source DecodeiThe source decoder outputs, if m is the . Z Pz (j12M) E [Py x (Y|X)|Y]
output of the channel decoder: = < Pyjzm (m]zM) Py jx (Y]X)
g™ (m) = 2 (88) _ 54
. Pyizm(jlz™)  Py(Y)
Error Probability AnalysisWe now proceed to analyze the = E [min {1’ Z Py (m]2M) Py x (Y] X) (95)
performance of the code described above. If there were no L 7=1
source encoding error, a channel decoding error can occur if LI . P [U <W | zZM = ZM] Py (Y)
min
and only if I Py zm (m]zM) Py x(Y]X)
37 #m: (96)
' . 1 Py(Y)
oM ) M = E
Pyjzm (§127) Py | x (Y) = Pyjzm (m|z )Ple(YW(“é)g) _mm{ " Pyjzm 1 u<wy(m]zM, 1) Py|x(Y|X)H
(97)

Let the channel codebodK;, . .., X)) be drawn i.i.d. from Where @4) is due tol{a > 1} < a.
Py, and independent of the source codebédk, ..., Zy), Applying (97) to (90) and averaging with respect to the
which is drawn i.i.d. fromP;. Denote bye(z, M) the Source codebook, we may write

excess-distortion probability attained with the sourcxdaatmok E[e (xM, ZM)] <E[min{1,G}|+P[U >W] (98)
M and the channel codeboak’. Conditioned on the event _ _
(S, g.(f(S)) < d} = {U < W} = {U # M + 1} (no fail- where for brevity we denoted the random variable
ure at the source encoder), the probability of excess distor G 1 Py(Y)

is upper bounded by the probability that the channel decoder N Pyizm aqu<wy(UIZM 1) Py x (Y]X)

(99)
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The expectation in the right side 09§) is with respect to source error probability* (M, d) upper bounded using the
Pyt Py zm Py zm Px Py x . It is equal to random coding achievability bound of][
E[ [min{l GY| XY, ZM 1{U < W}H Rgmark?. Weaken_ing 82 by Iettir)g W = M we obtain a
o slightly looser version ofi07) in which M —1 in the exponent
[min {LE[G | X,Y, 2", 1{U <W}}]]  (100) is replaced byM. To get a generally tighter bound than that
[m { (YY) H (101) afforded by SSCC, a more intelligent choiceldf is needed,

Py|X(Y|X) as detailed next in Theoref
=E [ex (— lox, v (X;Y) —logW| )} (102) Theorem 8 (Achievability). There exists a(d,¢) source-
channel code with
where
o (100 applies Jensen’s inequality to the concave function €<
min{1,a} . +
. (10]) USESPU|X.,Y,ZM.,1{U§W} = PU\ZM.,l{USW}; Px,IIDI;f,'y>O {E eXp | — ZX§Y(X; Y) - 1Og PZ(Bd(S))
o (102 is due tomin{1,a} = exp (— \1og%\+), wherea
is nonnegative. + e 7} (108)

To evaluate the probability in the right side &8j, note that
conditioned onS = s, W = w, U is distributed as:

p(8)(1 —p(s)™ 1t m=1,2,...,w

where the expectation is with respectito Px Py x Pz defined
onM x X x)Y x M.

Py|s,w(m|s,w) = { Proof: We fix an arbitraryy > 0 and choose

(1—p(s))™ m=DM+1
(103) |
where we denoted for brevity W= Lp (S)J (109)
p(s) = Pz(Ba(s)) (104) Wherep(:) is defined in {04). Observing that

Therefore, (1- p(s))LﬁJ <(1- p(s))$7 (110)
P[U>W]=E[P[U>W|S, W] (105) < e PG (111)

=k [(1 - p(S))W} (106) <el ™ (112)

Applying (102 and (06 to (98) and invoking Shannon’s we obtain {08 by weakening&2) using (09 and (12. &

In the case of almost-lossless JSCC, the bound in Theorem

random coding argumen_IBZ) follows. ] . 8 can be sharpened as shown recently by Tauste Campo et al.
Remark5. As we saw in the proof of Theorerd, if we 117,

restrict W to take values on{l,..., M}, then the bound

on the error probabilitye in (82) is achieved in the class Theorem 9 (Achievability, almost-lossless JSCC1). There
of (M,d,e) codes. The code sizd/ that leads to tight €Xists a(0,¢) code with

achievability bounds following from Theorehis in general € <InfE [exp (—|exy (X;Y) —15(5)[1)] (113)
much larger than the size that achieves the minimun8i. ( Px

In that caseM is chosen so thdbg M lies betweerk2(d) where the expectation is with respect B3 Px Py|x defined
and nC so as to minimize the sum of source and channeh M x X x ).

decoding error probabilities without the benefit of a chdanne

decoder that exploits residual source redundancy. In asitr V. GAUSSIAN APPROXIMATION

Theorem8 is obtained with an approximate MAP decoder that |n addition to the basic conditions)(c) of Sectionll, in

allows a larger choice folog M, even beyonchC'. Still we  this section we impose the following restrictions.

can achieve a goo(ll, ¢) tradeoff because the channel code (i) The channel is stationary and memoryles;-

employs unequal error protection: those codewords withdrig IXs

Pyxx...x Pyx. If the channel has an input cost function

probabilities are more reliably decoded. o then it satisfies, (") = %Z? Lc(xi)
Remark6. Had we used the ML channel decoder in lieu of(ii) The source is stationary and memorylegs,: = Ps x
(86) in the proof of Theoren¥, we would conclude that a ... x Ps, and the distortion measure is separable,
(d, €) code exists with di(s*, 2F) = %Zle d(si, 2i).
. (i) The distortion level satisfiegl i, < d < dpax, Where
c< inf {IE [exp (= foxay (X:Y) — log(M = )| ) ] duin is defined in 10), and dyas — inf._ < E[d(S, 2)],
Px,Pz,M . . ze8 .
where the average is with respect to the unconditional
+E [(1 — PZ(Bd(S)))M} } (107) distribution ofS. The excess-distortion probability satis-
fies0 < e < 1.
which corresponds to the SSCC bound &1)(with the worst-  (iv) E [dQ(S, Z*)] < oo Where the average is with respect to
case average channel error probabitity)M') upper bounded Ps x Pz« and Pz is the output distribution corresponding

using the random coding union (RCU) bound &f and the to the minimizer in 9).



The technical conditioni) ensures applicability of the Gaus-
sian approximation in the following result.

Theorem 10 (Gaussian approximation)}under restrictions
(i)(iv), the parameters of the optimék, n, d, ¢) code satisfy

nC — kR(d) = /nV +kV(d)Q " (e) + 60 (n)  (114)
where
1. V(d) is the source dispersion given by
V(d) = Var [35(S, d)] (115)

2. V is the channel dispersion given by:

a) If A and B are finite and the channel has no cost

constraints,
V = Var [y (X*;Y")]
APy |x=z
prem()
Yx

where X*, Y* are the capacity-achieving input and
output random variables.

(116)

e (239) = log (117)

b) If the channel is Gaussian with either equal or maximal

power constraint,

1
V==:
2

L 2
(1—m> 10g e

where P is the signal-to-noise ratio.
3. The remainder termi(n) satisfies:

(118)

a) If A andB are finite, the channel has no cost constraints

andV >0,
—clogn+0 (1) <0 (n) (119)
< clogn +loglogn+ O (1) (120)
where
=14~ 5 (121)
/ *
R e 02

In (122, ()" denotes differentiation with respect #q
Az«(s, \) is defined by

1
[exp (Ad — \d(s, Z*))]
(cf. Definition5) and A* = —R/(d).

Az« (s, ) = log B (123)

b) If A and B are finite, the channel has no cost constraint

andV = 0, (120 still holds, while(119) is replaced with
0 (n)

n

lim inf >0 (124)

n—r00

c) If the channel is such that the (conditional) distributio
of +%.y(x;Y) does not depend on € A (no cost

constraint), therc = 1. 6

d) If the channel is Gaussian with equal or maximal pow&{nd variancet

1

constraint,(120 still holds, and(119 holds withc = 3.

6 Note added in proof: we have shown recently that the symaitgtri
condition is actually superfluous.
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e) In the almost-lossless case(d) = H(S), and provided
that the third absolute moment @f(S) is finite, (114
and (119 still hold, while (120) strengthens to

0 (n) < %10gn+0(1) (125)

Proof:

AppendicesC-A and C-B show the converses 19
and (24 for casesV > 0 andV = 0, respectively,
using Theoren8.

Appendix C-C shows the converse for the symmetric
channel 8¢) using Theoren?.

Appendix C-D shows the converse for the Gaussian
channel 8d) using Theoren?.

AppendixD-A shows the achievability result for almost
lossless coding3g using Theoren®.

AppendixD-B shows the achievability result i1 20 for
the DMC using Theorers.

Appendix D-C shows the achievability result for the
Gaussian channeB¢) using Theoren8.

Remark8. If the channel and the data compression codes are
designed separately, we can invoke channel codijgahd
lossy compressiond] results in () and @) to show that (cf.

(4)
nC — kR(d) < min

n+¢<e

+ O (logn)

{VavQ™ () + VIV(@Q™ (0}
(126)

Comparing 126) to (114), observe that if either the channel
or the source (or both) have zero dispersion, the joint ssurc
channel coding dispersion can be achieved by separategzodin
In that special case, either thitilted information or the
channel information density are so close to being detestiini
that there is no need to account for the true distributions of
these random variables, as a good joint source-channel code
would do.

The Gaussian approximations of JSCC and SSCQ id)(
and (L26), respectively, admit the following heuristic in-
terpretation whenn is large (and thus, so is): since
the source is stationary and memoryless, the normalized
tilted information.J = 1 )5. (S*,d) becomes approximately
Saussian with mearf R(d) and variancet Y} | jkewise,
the conditional normalized channel information dendity=
%z}n;yn (z™; Y™) is, for largek, n, approximately Gaussian
with meanC and variance% for all z™ € A™ typical accord-
ing to the capacity-achieving distribution. Since a good en
coder chooses such inputs for (almost) all source readizsti
and the source and the channel are independent, the random
variablel —.J is approximately Gaussian with meébr%R(d)
L (LY(d) + V), and (14 reflects the intuition
that under JSCC, the source is reconstructed successfully
within distortiond if and only if the channel information den-
sity exceeds the sourcktilted information, that is{I > J}.
In contrast, in SSCC, the source is reconstructed sucdlyssfu
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with high probability if (1, J) falls in the intersection of half-  Specifying the nature of the power constraint in the sub-
planes{I > r} N {J < r} for somer = M which is script, we remark that the bounds for the maximal constraint
the capacity of the noiseless link between the source and ta be obtained from the bounds for the equal power constrain
channel code block that can be chosen so as to maximize e the following relation

probability of that intersection, as reflected ih2¢). Since . . .

in JSCC the successful transmission event is strictly farge keq(n:dy€) < Fiax(n, dy €) < keq(n +1,d; €) (134)

than in SSCC, i.e{l >r} N{J <r} C {I > J}, separate yhere the right-most inequality is due to the following idea
source/channel code design incurs a performance loss. ”déﬁing back to Shannon: @, n,d,¢) code with a maximal
worth pointing out that{7 > J} leads to successful recon—power constraint can be converted to/an + 1,d,¢) code
struction even within the paradigm of the codes in Definitiofy;, 4n equal power constraint by appending @n+ 1)-th

8 because, as explawg} in Remévlunlike the SSCC case, it ¢oordinate to each codeword to equalize its total power to
is not necessary thdt2 ™" lie between/ and.J for successful no P. From (134 it is immediate that the channel dispersions

reconstruction. for maximal or equal power constraints must be the same.
Remark9. Using Theoreni(, it can be shown that

C V(d 1 0 VI. LOSSY TRANSMISSION OF ABMS OVER ABSC
R(n,d,€) = —— — \/QQ*1 (€) — _L 6n) (127) . . . . : :
T R(d) n R(d) In this section we particularize the bounds in Sectitihs

where the rate-dispersion function of JSCC is found as ureclay and the approximation in Sectidf to the transmission of

a BMS with biasp over a BSC with crossover probability

Definition 4), The target bit error rate satisfigs< p.
_ R(d)V +CV(d) The rate-distortion function of the source and the channel
V(d)= ————= (128) . : .
R3(d) capacity are given by, respectively,
Remark10. Under regularity conditions similar to those i, [ R(d) = h(p) — h(d) (135)
Theorem 14], it can be shown that C =1 h(s) (136)
D(nR,n,e) =D ¢ +,/MQ*1 (6)+iD g\ o) The source and the channel dispersions are givershy 9]:
T R n OR~ \R ( n \ .
129 B _ 21l—p
where the distortion-dispersion function of JSCC is givgn b V(d) =p(1 —p)log ) (137)
1-9¢
o _(C\\’ C V =6(1—6)log? —— (138)
- (Yp(x = 0
W(R) (aRD (R)) (V+RV (D (R))) (130)

where note that 137 does not depend om. The rate-

Remark 11 If the basic conditionsk) and/or €) fail so dispersion function in¥29 is plotted in Fig.3.
that there are several distributio#%. s and/or severalPx-

that achieve the rate-distortion function and the capaci
respectively, then, foe < 1,

V(d) < minVz«.x«(d) (131)
W(R) < min Wz«.x«(R) (132)

where the minimum is taken ovef.s and Px-, and
Vz+.x+ (d) (resp.Wz«.x«(R)) denotes 128 (resp. (30) com-
puted with P7.s and Px-. The reason for possibly lower
achievable dispersion in this case is that we have the fraed
to map the unlikely source realizations leading to high prob
bility of failure to those codewords resulting in the maximu
variance so as to increase the probability that the chan
output escapes the decoding failure region.

Remarkl1l2 The dispersion of the Gaussian channel is give
by (118, regardless of whether an equal or a maximal power
constraint is imposed. An equal power constraint corredporFig. 3. The rate-dispersion function for the transmissibra 8MS over a

: ) L . the tra @ BM
to the subset of allowable channel inputs being the pow@fC Withd = 0.11 as a function of(3, p) in (0, 3) x (d, 5). It increases
sphere: unboundedly ag — d, and vanishes a& — % or (5,p) — (0, 1).

13
2" 2 : . .
2 = nP (133)  Throughout this sectionw(a’) denotes the Hamming
N weight of the binary/-vectora’, and 7). denotes a binomial
wherecy is the noise power. In a maximal power constraintandom variable with parametefsand «, independent of all

(133 is relaxed replacing=" with * <’ other random variables.

F(P) = {x" cR™:



13

For convenience, we define the discrete random variatsleme distribution ag%. Therefore, the log-likelihood ratio for
Ua,p by testing betweerPSkP2 n|xn—zn andQgr Py« has the same

( N ) 1_ ) 1-6 distribution as (~’ denotes equality in distribution)
Uap = (T, — kp)log + (T% —nd) log (139)
(T3 0 o Pgic(S%) Py nxn—gn (Y™)
In particular, substitutingy = p and § = § in (139, we & Qgr(S*) Py ns (Y™)
observe that the terms in the right side 89 are zero-mean = txniyne (27 Y™) — 161 (S*) + klog 2 (147)
random variables whose variances are equél@l) andnV,
respectively quabiel) andn ~ nlog2 = nh(d) = kh(p)
Furthermore, the binomial sum is denoted by _ JUps underPgiPyn|xn_gn (148)
i ‘o U%é underQ gx Py n«
=> (. (140) : .
¢ i SO (1 —c(Psk Pyn|xn—zn, QgrPyn+) is equal to the left side

=0 of (145. Finally, matching the size of the list to the fidelity

A straightforward particularization of the-tilted informa- f reproduction using55), we find thatL is equal to the right
tion converse in Theorer leads to the following result. side of (L45). m

Theorem 11 (Converse, BMS-BSC)Any (k, n, d, ¢) code for  If the source is equiprobable, the bound in Theoréth
transmission of a BMS with bias over a BSC with biag ©ecomes particularly simple, as the following result dstai

must satisfy Theorem 13 (Converse, EBMS-BSC)For p = 3, if there
exists a(k, n, d, €) joint source-channel code, then
€ > sup { P[Ups > nC — kR(d) + ] — exp (=) } (141) N
v>0 n n n—k
< 2 149
A(r*+1)+<r*>_<\_kdj> (149)
Proof: Let Py = Py«+, Which is the equiprobable where
distribution on{0,1}"™. An easy exercise reveals that ,
. n t n—t
jsk(Sk,d):Zsk(Sk)_kh(d) (142) r —max{r. Z(t)6 (1—5) Sl—e} (150)
t=0

150 (s*) = kh(p) + (w(s*) — kp) log 1=

(143) andi e [0,1) is the solution to

Ly (275 y") = (log 2 = h(9)) - * :
o 1—5 > (")5t(1—5)"‘t+A5T 1o _1( S ) =1-e

— (" —a") —nd)log ——= (144) G55\ o (151)
Sincew(Y™ — z™) is distributed asIy* regardless oft™ €
{0,1}", and w(S*) is distributed asI¥, the condition in S - - iculari
Theorem2 is satisfied, and3?) becomes 141). m The achievability result in Theore® is particularized as

The hypothesis-testing converse in Theokeparticularizes follows.

to the following result: Theorem 14 (Achievability, BMS-BSC) There exists an

Theorem 12(Converse, BMS-BSC)Any (k, n, d, €) code for (K, 7, d; €) joint source-channel code with

transmission of a BMS with bigs over a BSC with biag . N -
must satisfy €< ;I;fo {E [GXP (— |U —log| )} +e 7} (152)

P[Uyy <r|+P[Uy, =] < ¥ Nk (145) where
2:3 2:3 Ung . 1—-5
where0 < X\ < 1 and scalarr are uniquely defined by U =nC — (T — nd)log —— —log (TF) (153)
PUps <]+ AP[Ups=71] =1—¢ (146) andp: {0,1,...,k} — [0,1] is defined as
)= L(T,t)¢'(1 — q)*? 154

Proof: As in the proof of Theorenll, we let Py, be p(T) ; (T (1 -a) (154)
the equiprobable distribution ofD, 1}", Pyn = Pyns. Since ith
under Pyn|xn—zn, w (Y™ —2") is distributed asTy', and wi
under Pyn«, w (Y™ — 2™) is distributed asT'y, irrespective —kd<T<t+kd 155
of the choice ofz™ € A", the distribution of the information otherwise (155)
density in (44 does not depend on the choice :gf under
either measure, so Theorefhcan be applied. Further, we to = FH'T kd] (156)
chooseR ¢« to be the equiprobable distribution ¢f, 1}* and
observe that undePs:, the random variables(S*) in (143 g= —d (157)

has the same distribution 53’; while underQgq: it has the 1 —2d
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Converse 141)

Proof: We weaken the infima ovePy» and Py« in (108  °°|) Converse 149 |

by choosing them to be the product distributions generat \ e ]
by the capacity-achieving channel input distribution ahd t
rate-distortion function-achieving reproduction distrion, re-
spectively, i.e.Px~ is equiprobable o{0,1}", and P, =
Pz« X ... X Pz«, wherePz.(1) = ¢q. As shown in P, proof of
Theorem 21],

Achievability, JSCC 113

Approximation, JSCC114)

k k
Pz (Ba(s")) = plw(s")) (158) Achievability, SSCC 107) 8

On the other handY™ — X", is distributed ady*, so (152 Approximation, SSCC126)

follows by substituting 144) and (L58) into (108). % ]

In the special case of the BMS-BSC, Theoréthcan be
strengthened as follows.

0.2

Theorem 15 (Gaussian approximation, BMS-BSCyhe pa-

rameters of the optima(lk, n,d, ¢) code satisfy(114) where o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

R(d), O, V(d), V are given by(135), (13()), (13n’ (13&, 0 100 200 300 400 5(:? 600 700 800 900 1000
respectively, and the remainder term (ih14) satisfies

Fig. 4. Rate-blocklength tradeoff for the transmission &MS with bias
0 (1) <0 (n) (159) p = 0.11 over a BSC with crossover probability=p = 0.11 andd = 0,
= e=10"2

<logn+loglogn+ O (1) (160)

' ‘N ¢

if 0<d , and C
Sy 0.9 Converse 141 R(d) |

—% logn+ 0O (1) <0 (n) (161)

0.8

logn+ O (1) (162)

0.7

if d=0. 056

Proof: An asymptotic analysis of the converse boun. Converse 149

in Theorem12 akin to that found in §, proof of Theorem

23] leads to 159 and (61). An asymptotic analysis of the o,

achievability bound in Theorerhi4 similar to the one found )

in [9, Appendix G] leads to160. Finally, (162 is the same 03 |||

as (125. [ il
The bounds and the Gaussian approximation (in which v O'Zﬁ"

taked (n) = 0) are plotted in Fig4 (d = 0), Fig.5 (fair binary 4,1

source,d > 0) and Fig.6 (biased binary source] > 0). A

source of fair coin flips has zero dispersion, and as antetha o0 a0 aw  sw w0 o s o 1000

in Remark8, JSSC does not afford much gain in the finite n

bloc_klengt_h regime (F|g5). MoreO\_/er' in that case the JSCCFig. 5. Rate-blocklength tradeoff for the transmission dhia BMS over

achievability bound in TheorerB is worse than the SSCCa BSC with crossover probability = d = 0.11 ande = 10~ 2.

achievability bound. However, the more general achieitgibil

bound in TheorenY with the choicelW = M, as detailed in

Remark7, nearly coincides with the SSCC curve in Fhy. « the MSE distortion exceeds< d < o2 with probability

051

Approximation, JSCC = SSCCL{4) i

Achievability, SSCC 107)

Achievability, JSCC 152

providing an improvement over Theore8n The situation is no greater tham < e < 1;
different if the source is biased, with JSCC showing sigaific « each channel codeword satisfies the equal power con-
gain over SSCC (Figure$ and 6). straint in (L33.7
The capacity-cost function and the rate-distortion fuorcti
VII. TRANSMISSION OF AGMS are given by
OVER AN AWGN CHANNEL 1 5

In this section we analyze the setup where the Gaussian R(d) = 3108 <%S) (163)
memoryless source; ~ N(0,02) is transmitted over an 1
AWGN channel, which, upon receiving an inptft, outputs C(P) = 3 log (1 + P) (164)

Y™ = 2"+ N", whereN™ ~ N(0,0%I). The encoder/decoder
must Sa.USfy two constraints, the fidelity constraint arelebst  7gee Remark2in SectionV for a discussion of the close relation between
constraint: an equal and a maximal power constraint.
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Converse 141) —
Converse 145) R(d)
Achievability, JSCC 152)

Approximation, JSCC1(14)

15

~
1k
Achievability, SSCC 107)
05 1
Approximation, SSCC126)
/
/
/
0 L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
n
Fig. 6. Rate-blocklength tradeoff for the transmission &MS with bias

p = 0.11 over a BSC with crossover probabilily= p = 0.11 andd = 0.05,
e=10"2.

The source dispersion is given b¥]{

V(d) = %logQ e (165)

while the channel dispersion is given by1@) [8].

In the rest of the sectionkV’{ denotes a noncentral chi-

square distributed random variable withdegrees of free-
dom and non-centrality paramet&y independent of all other
random variables, angFWz denotes its probability density
function.

A straightforward particularization of the-tilted informa-
tion converse in Theorer? leads to the following result.

Theorem 16 (Converse, GMS-AWGN) If there exists a
(k,n,d,€) code, then

€> sup{ P[U > nC(P) — kR(d) + ] — exp (—7) }
v=>0
(166)
where
_loge ;4 loge P "
U= 5 (W5 —k) + 5 <1+PW > (167)

Observe that the terms to the left of the’‘sign inside the

probability in (166 are zero-mean random variables whose U =nC(P) —

variances are equal o) (d) andnV, respectively.
Proof: The spherically-symmetri€y.. = Pyns = Py X
. X Py«, whereY* ~ N(0,0%(1 + P)) is the capacity-
achieving output distribution, satisfies the symmetry agsu

tion of Theoren?2. More precisely, it is not hard to show (see

[8, (205)]) that for allz™ € F(a), txn,;yns(x
same distribution undePy .| xn_,» as

(P

":Y™) has the

')

loge
2

—W"

n
" log (14 P) —
g log(1+P) 1+ P

(168)

15

The d-tilted information ins* is given by

k. o2 |sk |2 loge
k 9s
g9k (s, d) = 21 J —i—( p —k 5 (169)
Plugging (68 and (69 into (37), (166 follows. |

The hypothesis testing converse in Theorgm particular-
ized as follows.

Theorem 17 (Converse, GMS-AWGN)
o0 d
k—1 n 2
k/o rk-1p [PWH(H%) +h5r’ < m} dr <1 (170)

wherer is the solution to
Pl

Proof: As in the proof of Theorenl6, we letY” ~
Y™ ~ N (0,08 (14 P)I). UnderPy . x»_,n, the distribution
of 1 ynx (2 Y) is that of 168), while underPy-»., it has
the same distribution as (cf3[ (204)])

loge "

2 (PWH(H%) -n)
Since the distribution ofy .y« (2™; Y"*) does not depend on
the choice ofr™ € R™ according to either measure, Theorem
5 applies. Further, choosingg. to be the Lebesgue measure
onR*, i.e.dQq. = ds*, observe that

dpsk (Sk)
dsk

TP (171)

Wﬁ—i—Wé“SnT}:l—e
P

g log(1 + P) — (172)

loge

Bk
22

log fgr(s*) = log = —g log (2770%)
(173)

Now, (170 and (L71) are obtained by integrating

1{ log fgr (sk) +axnyne (25y") >

loge
2

(174)

with respect tals*d Py« (y") and dPsx (s*)dPy-n|xn—yn (y"),
respectively. [ |
The bound in TheorerB can be computed as follows.

Theorem 18 (Achievability, GMS-AWGN) There exists a
(k,n,d,€) code such that

¢ gvix;fo{E [exp{—|U—10g7|+H +el_7} (175)

k
glog(l +P)+ gloge ~3 log(27mad) —

where
loge F
_Wn “log ——_
2 <1+P > o WE)
(176)
n_ (t
= max —F——— < X0
F Jwzp () (177)
neNteRT fo, (L)
0 1+P

andp: Rt +— [0,1] is defined by

- G ()T
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where Numerical evaluation of the bounds reveals that JSCC
noticeably outperforms SSCC in the displayed region of

d d
0 r<i\/oz 1%z blocklengths (Fig?).
1 r—,/1- ;d; > a—dg'
L(r) = ) 5 s (179) ! N ¢
14r2—2-4 v
< i “3) otherwise ool Converse 166) R(d) i

Converse 170

S~
Y
—
|

me‘ R
N
3

N

0.81-

Proof: We compute an upper bound td08 for the
specific case of the transmission of a GMS over an AWG
channel. First, we weaken the infimum ouves. in (108 by
choosing P« to be the uniform distribution on the surface
of the k-dimensional sphere with center @&t and radius

ro = Vkoy/1— U%. We showed in 9, proof of Theorem 37]

s
(see also 14], [27]) that 0.4 Approximation, SSCC126)

Py (Ba(s")) > p (1) (180) .|| / Achievability, SSCC 107) 1

which takes care of the source random variableli®g|. | y
We proceed to analyze the channel random variak °% a0 20 a0 a0 s0  e0 70 w0 w0 100

1xny(X™Y™). Observe that sinc&™ lies on the power "

sphere and the noise is spherically symmetfic’|*> = Fig 7. Rate-blocklength tradeoff for the transmission oGBS with

|X™ 4+ N™|? has the same distribution &g + N"|?, where -% = 0.5 over an AWGN channel with? = 1, e = 102

xy is an arbitrary point on the surface of the power sphere.

Lettingzj = onVP (1,1,...,1), we see thag- |25+ N"|* =

2
Dy (U—BNl + VP has the non-central chi-squared distri- S o _
bution Withn degrees of freedom and noncentrality parameter OUr goal in this section is to compare the excess distor-

nP. To simplify calculations, we express the informatiofion Performance of the optimal code of rateat channel
density as blocklengthn with that of the optimal symbol-by-symbol

code, evaluated aftet channel uses, leveraging the bounds
dPyn (y") (181) in Sectionslll and IV and the approximation in Sectiow.
dPyn+ We show certain examples in which symbol-by-symbol coding

where Y™ ~ AN(0,03(1 + P)I). The distribution of is, in fact, either optimal or very close to being optimal.
sy (T YT is the game as169. Further, due to the A 9eneral conclusion drawn from this section is that even

spherical symmetry of bothy. and Py.., as discussed when no coding is asymptotically suboptimal it can be a very
above, we have (recall that' denotes equality in distribution) &ttractive choice for short blocklengths] |

0.7/

VIIl. T O CODE OR NOT TO CODE

LXnyn (ng" U”) = axnyn (IZ)L, Un) _ log

dPyn Y1)~ fwp, Wip) (182) A. Performance of symbol-by-symbol source-channel codes
dPyn- fwy (‘fﬁi) Definition 9. An (n,d,e,«) symbol-by-symbol code is an

o ) . ) (n,n,d,e, ) code (f,g) (according to Definition2) that
which is bounded uniformly im: as observed ind, (425), gatisfies

(435)], thus 1.77) is finite, and (175 follows. [ .
The following result strengthens Theorei in the special f(s") = (fu(s1),- .-, fi(sn)) (185)
case of the GMS-AWGN. gly™) = (g1(y1), .-, 81(yn)) (186)

Theorem 19 (Gaussian approximation, GMS-AWGNYhe for some pair of function§ : S — A andg;: B +— S.
parameters of the optimdk, n, d, ¢) code satisfy(114) where The minimum excess distortion achievable with symbol-by-
R(d), C, V(d), V are given by(163, (164, (165, (118, symbol codes at channel blocklength excess probability

respectively, and the remainder term ({h14) satisfies and costa is defined by
O (1)< 6(n) (183) Di(n,€ ) = inf {d: 3(n,d, ¢, ) symbol-by-symbol codle
<logn +loglogn + O (1) (184) (187)

Proof: An a;ymptotic analysis_of the converse bound iByefinition 10. The distortion-dispersion function of symbol-
Theorem17 similar to that found in §, proof of Theorem by-symbol joint source-channel coding is defined as
40] leads to 183. An asymptotic analysis of the achievability

. Do . 2
bound in Theoreml8 similar to [9, Appendix K] leads to Wi (@) = lim lim sup n (D (C(a)) Dll(n,e,a))
(184) u =0 nsoco 210ge <

(188)
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where D(+) is the distortion-rate function of the source. Theorem 22 (Gaussian approximation, optimal symbol-

- - 3 * _
As before, if there is no channel input-cost constrainEy s_ymbql code) Assumek [d (5,2 )] < oo Under re
rictions (i)-(v),

(c"(2™) = 0 for all 2™ € A™), we will simplify the notation S

and write D1 (n, ¢) for Di(n, e, «) and W, for Wy (). Wi(a) 01(n
In addition( to r)estrictio(nsiI—(i\)/) of SectionV, vse)assume Diy(n,e,0) =D (C(a)) + #Q N+ #
that the channel and the source are probabilistically neatch (193)
in the following sense (cf. 7). Wi () = Var [d(S, Z*)] (194)
(v) There existo, Px«|s and Pz«y such thatPx. and Pz« s h
generated by the joint distributio®s Px. s PyxPrepy e e
achieve the capacity-cost functiod'(a) and the 61(n) <O(1) (195)
distortion-rate functionD (C'(«)), respectively. Moreover, if there is no power constraint,
Condition /) ensures that symbol-by-symbol transmission at- D'(R)
tain§ the minimum average (over source realizations) diero_ 01(n) > 72 O(n) (196)
achievable among all codes of any blocklength. The follgwin Wy = W(1) (197)

results pertain to the full distribution of the distortiarcurred
at the receiver output and not just its mean. whered(n) is that in TheorentO.

Theorem 20 (Achievability, symbol-by-symbol code)under I Var[d(S,Z27)] > 0 and S, S are finite, then

restrictions(i)-(v), if 61(n) > O (1) (198)
P> d(Si, Zf) > nd] <e (189)
i=1 Proof: Since the third absolute moment afS;, Z) is
where Py« jgn = Pgejs % ... x Pyus, and Pz.|s achieves finite, the_ achievability part of the result, name_ly,%) with
D (C(w)), then there exists afn, d, e, a) symbol-by-symbol the remainder satisfyingl@5), follows by a straightforward
code (average cost constraint). application of the Berry-Esseen bound #89), provided that

) Var [d(S;, ZF)] > 0. If Var [d(S;, Z)] = 0, it follows trivially
Proof: If (v) holds, then there exist a symbol-by-symbokom (189).
encoder and decoder such that the conditional distribuifon 14 show the converse in96), observe that since the set of
the output of the decoder given the source outcome coincidgs ;, 1, 4, ¢) codes includes al(n, d, ¢) symbol-by-symbol
with distribution F7.s, so the excess-distortion probability ofcodes, we haveD(n,n,e) < Di(n,€). Since Q= (e) is
this symbol-by-symbol code is given by the left side 89). positive or negative depending on whether % ore > %
B using 030 we conclude that we must necessarily hal@7,

Theorem 21 (Converse, symbol-by-symbol coddynder re- Which is, in fact, a consequence of conditiory, ((c) in
striction (i) and separable distortion measure, the paramete@ectionll and ). Now, (196 is simply the converse part

of any (n, d, ¢, «) symbol-by-symbol code (average cost cof (129. _ _ _
straint) must satisfy The proof of the refined converse i198 is relegated to

AppendixE. |

In the absence of a cost constraint, TheoZ&shows that
if the source and the channel are probabilistically matched
in the sense of ]|, then not only does symbol-by-symbol
transmission achieve the minimum average distortion, lsat a
the dispersion of JSCC (se&9?). In other words, not only

Proof: The excess-distortion probability at blocklength do such symbol-by-symbol codes attain the minimum average

distortiond and costx achievable among all single-letter codeglistortion but also the variance of distortions at the decsd

> inf P d(S;, Z;) > nd 190
> inf lz; (Si, Zi) >n 1 (190)
1(S2)<C(a)  ='7

WherePZn|Sn = PZ|S X ... X PZ\S-

(PX|57 PZ|Y) must satisfy output is the minimum achievable among all codes operating
. n on at that average distortion. In contrast, if there is an ayera
€2 PX‘SI,I}—"E‘Y: Pldn (5", 27) > d] (191) cost constraint, the symbol-by-symbol codes considered in
?Efg((;)]tf Theorem 22 probably do not attain the minimum excess
- n on distortion achievable among all blocklengthcodes, not even
2 px‘sl,l}oiw; Pldn(5",2%) > d] (192) asymptotically. Indeed, as observed ind], for the trans-
I(g_[;gi)}(ﬁqu) mission of an equiprobable source over an AWGN channel

under the average power constraint and the average blamk err
where (92 holds sinceS — X — Y — Z implies I(S;Z) < probability performance criterion, the strong conversesdaot
I(X;Y) by the data processing inequality. The right side dfold and the second-order term is of orders, notn~z, as
(192 is lower bounded by the right side ol90 because in (193.

I(X;Y) < C(«) holds for all Px with E [c(X)] < «, and the ~ Two conspicuous examples that satisfy the probabilistic
distortion measure is separable. B matching conditiony\), so that symbol-by-symbol coding is
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optimal in terms of average distortion, are the transmiseica
binary equiprobable source over a binary-symmetric chiann
provided the desired bit error rate is equal to the crossow
probability of the channelZ4, Sec.11.8], 25, Problem 7.16],
and the transmission of a Gaussian source over an additi
white Gaussian noise channel under the mean-square er
distortion criterion, provided that the tolerable souramnal-
to-noise ratio attainable by an estimator is equal to theadig
to-noise ratio at the output of the channél], We dissect
these two examples next. After that, we will discuss twc
additional examples where uncoded transmission is optimal

B. Uncoded transmission of a BMS over a BSC

In the setup of SectioN!I, if the binary source is unbiased
(p=1),thenC = 1-h(d), R(d) = 1-h(d), andD(C) = 4.
If the encoder and the decoder are both identity mapping
(uncoded transmission), the resulting joint distributsatisfies
condition §). As is well known, regardless of the blocklength,
the uncoded symbol-by-symbol scheme achieves the minimum
bit error rate (averaged over source and channel). Here, v
are interested instead in examining the excess distortio-p
ability criterion. For example, consider an applicationend
if the fraction of erroneously received bits exceeds a gerta
threshold, then the entire output packet is useless.

Using (130 and (194), it is easy to verify that

W(1) = Wy = §(1 - §) (199)

that is, uncoded transmission is optimal in terms of didpars
as anticipated in197). Moreover, the uncoded transmission
attains the minimum bit error rate threshdldn, n, €) achiev-
able among all codes operating at blocklengthegardless of
the allowede, as the following result demonstrates.

w
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Rate-blocklength tradeotf) for the transmission of a fair BMS
over a BSC with crossover probability= 0.11 andd = 0.22. The excess-
distortion probabilitye is set to be the one achieved by the uncoded scheme

and whose decoder always outputs the all-zero vectokifo.
It achieves, at blocklength and excess distortion probability

0.15F
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Approximation, JSCC
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Distortion-blocklength tradeoff for the transmdss of a fair BMS

over a BSC with crossover probability=0.11 and R = 1, e = 107 2.

Theorem 23(BMS-BSC, symbol-by-symbol codefonsider
the the symbol-by-symbol scheme which is uncoded>ifd

1 1
e, regardless ob <p < 5,4 < 3,

Dl (TL, E) =
Lnd]

n
min ¢ d: min{p, 6}/ (1 — min{p,s})" t>1—¢
> () minto. 071~ mingy )
(200)
Moreover, if the source is equiprobab(e = 1),

Di(n,e) = D(n,n,e) (201)
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probability to vanish sufficiently slowly, the JSCC curvewia
1 have approached the Shannon limitras— oo. However, in
Figure 9(a) the exponential decay in is such that there is

7 indeed an asymptotic rate penalty as predictedlij. [
| For the biased binary source with = % and BSC with

crossover probability).11, Figure10 plots the maximum dis-

0.28
0.281- 0.26
0.24

0.26
0.22

0.18

022l |l 0.16 S tortion achieved with probabilitg.99 by the uncoded scheme,
: 0.14 which in this case is asymptotically suboptimal. Nevertks|
= oozr . 0.12 ] uncoded transmission performs remarkably well in the dis-
| LENS p 0 o 200 played range of blocklengths, achieving the converse almos

n i exactly at blocklengths less thaif0, and outperforming the
AChie"ab”"Xcﬁisesa%if:nJSCC sz |  JSCC achievability result in Theorefi at blocklengths as
y long as 700. This example substantiates that even in the
absence of a probabilistic match between the source and
the channel, symbol-by-symbol transmission, though asymp
S* totically suboptimal, might outperform SSCC and even our
o Approimaton, JscCley random JSCC achievability bound in the finite blocklength

0 100 200 300 400 500 600 700 800 900 1000 reg | me
™ .

0.16

0.14-

Converse 145 No coding @00)

Fig. 10. Distortion-blocklength tradeoff for the transsie of a BMS _hyu ; ieci
with p — 2 over a BSC with crossover probabiliy = 0.1 and 1 — 1, C. Symbol-by-symbol coding for lossy transmission of a GMS

e=10"2. over an AWGN channel
In the setup of SectioWIl, using (63 and (64), we find
. . . that
Proof: Direct calculation yieldsZ00). To show @01), let a o2
us comparel* = D1 (n,¢) with the conditions imposed o D(C(P)) = 1+ P (204)

by Theore.zml.S. Comparing QOQ to ElSQ’ Wf see that either The next result characterizes the distribution of the diito
(a) equality in ROQ is achieved,r” = nd*, A = 0, and jhcyrred by the symbol-by-symbol scheme that attains the

(pluggingk = 7 into (149) minimum average distortion.
< " > < < K > (202) Theorem 24 (GMS-AWGN, symbol-by-symbol code)The
nd- [nd] following symbol-by-symbol transmission scheme in whieh t
thereby implying that! > d*, or encoder and the decoder are the amplifiers:
(b) r* =nd* -1, A > 0, and (49 becomes Po2
n " " fi(s) =as, a®> = —} (205)
i) a1 = () 09 :
nd* nd* — 1 [nd] ac?
gi(y) = by, b= > (206)

which also impliesd > d*. To see this, note that < d*
would imply [nd| < nd*—1 sincend* is an integer, which
in turn would require (according ta203) that A < 0,
which is impossible.

2,2 2
aas+aN

is an (n,d, ¢, P) symbol-by-symbol code (with average cost
constraint) such that

] PWSD(C(P)) >nd] =€ (207)

For the transmission of the fair binary source over a BS(V:\/h

Fig. 8 shows the distortion achieved by the uncoded scheme,
the separated scheme and the JSCC scheme of Thelgtem

versusn for a fixed excess-distortion probability = 0.01. Note that R07) is a particularization of{89. Using @07),

The no coding / converse curve in Figjdepicts one of those we find that

ereW" is chi-square distributed with degrees of freedom.

singular cases where the non-asymptotic fundamental limit Wy (P) = 0732 (208)
can be computed precisely. As evidenced by this curve, the (1+P)
fundamental limits need not be monotonic with blocklengthgp, the other hand, using30, we compute

Figure 9(a) shows the rate achieved by separate coding ,
whend > ¢ is fixed, and the excess-distortion probability . og 1
shown in Fig.9(b), is set to be the one achieved by uncoded w1, P) = 2(1 + p)2 (2 B (1+ p)2> (209)
transmission, namely200. Figure9(a)highlights the fact that > Wy (P) (210)

at short blocklengths (say < 100) separate source/channel

coding is vastly suboptimal. As the blocklength increaseghe difference betweer210 and (L97) is due to the fact that
the performance of the separated scheme approaches thahefoptimal symbol-by-symbol code in Theor&# obeys an
the no-coding scheme, but according to Theo2Bnit can average power constraint, rather than the more stringert ma
never outperform it. Had we allowed the excess distortiamal power constraint of Theorer0, so it is not surprising
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that for the practically interesting case< % the symbol- erasure distortion measure is the DEC, whose single-letter
by-symbol code can outperform the best code obeying thransition probability kernePyx: A +— {A, e} is
maximal power constraint. Indeed, in the range of blockigag
displayed in Figurell, the symbol-by-symbol code even P _J1=0 y=x 215

. ) Yix=x(Y) = B (215)
outperforms the converse for codes operating under a maxima ) y=e

ower constraint.
P and whose capacity is given iy = log | A| — d, achieved by

equiprobablePx-. For Ps equiprobable orS = A, we find
that D(C') = dlog|S]|, and

1 Wy =6 (1 - 06)log?|S| (216)

Achievability, SSCC 107)
0.8 “‘
Achievability, JSCC 175
075 1 E. Symbol-by-symbol transmission of a DMS over a DEC

Converse 170 i ’
under logarithmic loss

A imation, JSCC12 .. .
pproximaton @ Let the source alphabétbe finite, and let the reproduction
alphabetS be the set of all probability distributions @h The
single-letter logarithmic loss distortion measureS x S —

RT is defined by 24, [29]
d(s, Pz) =1z(s) (217)

0.65F

0.6

Curiously, for any0 < d < H(S), the rate-distortion
function and thed-tilted information are given respectively
by (213 and @14), even if the source is not equiprobable. In
fact, the rate-distortion function is achieved by,

No coding @07)
Approximation, no coding1(94)

05 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

n

s P; =P
Ppsjs—s(Pr) = ¢ BV 7273 (218)
‘ 1- ZIO)] Pz = 1s(s)

Fig. 11. Distortion-blocklength tradeoff for the transeien of a GMS over

an AWGN channel withty =1 andR =1, e = 10~ 2, . .
N and the channel that is matched to the equiprobable source

under logarithmic loss is exactly the DEC i21(5). Of course,
unlike SectionVIlI-D, the decoder we need is a simple one-

D. Uncoded transmission of a discrete memoryless souf@©ne function that outputss if the channel output is, and

(DMS) over a discrete erasure channel (DEC) under erasufé (y) otherwise, wherg 7 e is the output of the DEC. Finally,
distortion measure it is easy to verify that the distortion-dispersion funatiof

symbol-by-symbol coding under logarithmic loss is the same

For a discrete source, the single-letter erasure distortigS that under erasure distortion and is given 236
measure is defined as the following mappéhgS x {S, e} — '

.8
[0, 00}: 0 I IX. CONCLUSION
ds,z) = L H(S) z—e (211) In this paper we gave a r?on-asymptotic_analy_/isis of joint
, source-channel coding including several achievability @on-
o0 otherwise verse bounds, which hold in wide generality and are tight
For any0 < d < H(S), the rate-distortion function of the eno_ugh to determine_ th_e dispersion of joint source-channel
equiprobable source is achieved by codlng_ for the transmission of an abstract memoryless sourc
over either a DMC or a Gaussian channel, under an arbitrary
1— % z=s fidelity measure. We also investigated the penalty incubned
Prejs=s(2) = _d_ z—e (212) separate source-channel coding using both the sourcexehan
HS) dispersion and the particularization of our new bounds to
The rate-distortion function and thétilted information for (i) the binary source and the binary symmetric channel with
the equiprobable source with the erasure distortion measbit error rate fidelity criterion and (ii) the Gaussian sarc
are given by, respectively, and Gaussian channel under mean-square error distortion.
Finally, we showed cases where symbol-by-symbol (uncoded)
R(d) = H(S) - d (213) transmission beats any other known scheme in the finite
Js(s,d) =1s(s) —d (214) blocklength regime even when the source-channel matching

Note that, trivially, 7s(S,d) = R(d) — log|S| — d a.s. The condition is not satisfied.

channel that is matched to the equiprobable DMS with theThe approach taken n .th's paper t_o_ analyze the non-
asymptotic fundamental limits of lossy joint source-chann

8The distortion measure i2{1) is a scaled version of the erasure distortionCOdmg is two-fold. Our new aCh'evab'“ty and converse bdain
measure found in literature, e.27. apply to abstract sources and channels and allow for memory,
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while the asymptotic analysis of the new bounds leadingeo th choice of code does not depend on the distortion threshold
dispersion of JSCC is focused on the most basic scenario of¢.

transmitting a stationary memoryless source over a statjon6) For the transmission of a stationary memoryless source
memoryless channel. over a stationary memoryless channel, the Gaussian ap-

The major results and conclusions are the following. proximation in Theorem10 (neglecting the remainder

6(n)) provides a simple estimate of the maximal non-

1) A general new converse bound (Theor8)rleverages the  asymptotically achievable joint source-channel codirig.ra

2)

3

4

5

)

)

~

concept ofd-tilted information (Definition5), a random Appealingly, the dispersion of joint source-channel cgdin
variable which corresponds (in a sense that can be formal-decomposes into two terms, the channel dispersion and
ized [9], [30]) to the number of bits required to represent the source dispersion. Thus, only two channel attributes,
a given source outcome within distortignand whose role the capacity and dispersion, and two source attributes, the
in lossy compression is on a par with that of information rate-distortion and rate-dispersion functions, are nemiiio

(in (20)) in lossless compression. compute the Gaussian approximation to the maximal JSCC
The converse result in Theoredh capitalizes on two rate.

simple observations, namely, that afa/¢) lossy code can 7) In those curious cases where the source and the channel are
be converted to a list code with list error probability probabilistically matched so that symbol-by-symbol cadin
and that a binary hypothesis test betweenyy and an attains the minimum possible average distortion, Theorem
auxiliary distribution on the same space can be constructed 22 ensures that it also attains the dispersion of joint source-
by choosingPsxy when there is no list error. We have channel coding, that is, symbol-by-symbol coding results
generalized the conventional notion of list, to allow the in the minimum variance of distortions among all codes
decoder to output a possibly uncountable set of source operating at that average distortion.

realizations. 8) Even in the absence of a probabilistic match between
As evidenced by our numerical results, the conversetresul the source and the channel, symbol-by-symbol transmis-
in Theoremb, which applies to those channels satisfying a sion, though asymptotically suboptimal, might outperform
certain symmetry condition and which is a consequence separate source-channel coding and joint source-channel
of the hypothesis testing converse in Theordmcan random coding in the finite blocklength regime.
outperform thed-tilted information converse in Theorem

3. Nevertheless, it is Theorefthat lends itself to analysis ACKNOWLEDGEMENT

more easily and that leads to the JSCC dispersion for theThe authors are grateful to Dr. Oliver Kosut for offering
general DMC. numerous comments, and, in particular, suggesting the sim-
Our random-coding-based achievability bound (Theofemypjification of the achievability bound in1] with the tighter
provides insights into the degree of separation between fsion in Theorens.

source and the channel codes required for optimal perfor-

mance in the finite blocklength regime. More precisely, APPENDIXA

it reveals that the dispersion of JSCC can be achieved THE BERRY-ESSEEN THEOREM

n the class of(M,d, ) JSCC (?odes (Deﬁnmo@). As The following result is an important tool in the Gaussian
in separate sourcg/channell coding,( M, d, ) coding the approximation analysis.

inner channel coding block is connected to the outer source

coding block by a noiseless link of capacityg M, but Theorem 25(Berry-Esseen CLT, e.g3[, Ch. XVI.5 Theorem
unlike SSCC, the channel (resp. source) code can be chodBn Fix a positive integern. Let W;, i = 1,...,n be
based on the knowledge of the source (resp. channel). Thgependent. Then, for any real

conventional SSCC in which the source code is chosen n v B
without knowledge of the channel and the channel code is |P [Z Wi >n (Dn + 14/ —") —-Q)| < =&, (219
chosen without knowledge of the source, although known i=1 " v

to achieve the asymptotic fundamental limit of joint sourceyhere

channel coding under certain quite weak conditions, is in 1

general suboptimal in the finite blocklength regime. D, = — ZE (W] (220)
SinceE[d(S,2)] = [,"P[d(S,Z) > €] d¢, bounds for =

average distortion can be obtained by integrating our 1<
bounds on excess distortion. Note, however, that the code Vi = n Z\/ar (Wi (221)
that minimizesP [d(S, Z) > £] depends org. Since the =t
distortion cdf of any single code does not majorize the 1 3

. T,=-—) E{|W;-E[W; 222
cdfs of all possible codes, the converse bound on the n; “W ug ] (222)

average distortion obtained through this approach, atthou T,
asymptotically tight, may be loose at short blocklengths. B, = 372
Likewise, regarding achievability bounds (e.408), the Vn
optimization over channel and source random codas, and 0.4097 < ¢y < 0.5600 (0.4097 < c¢o < 0.4784 for
and Pz, must be performed after the integration, so that tHgentically distributediV;).

(223)
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APPENDIX B 2) If Vinax = 0, then for all0 < o < 3 and A > —£—,
AUXILIARY RESULT ON THE MINIMIZATION OF THE e
INFORMATION SPECTRUM

n

1

min P sz;y(:ci;Yi) <n(C+A)| 21— ——
Given a finite set4, we say that:™ € A" has typePx if e i=1 ne2
the number of times each letterc A is encountered in" is (231)

nPx(a). Let P be the set of all distributions od, which is The information densities in the left sides @30 and (231)
simply the standard4| — 1 simplex inRI4/. For an arbitrary are computed with{ Px—,,, P/ }, where P, is induced by
subsetD C P, denote byDy,; the set of distributions irD  the type ofe™, i.e. type(a") = Px — Pyjx — Py, and that
that are alsoi-types, that is, in the right side of(230) is computed with{ Py|x—,, P},
where Py is induced by the type of™*, i.e. type(z™*) =

Dpy = {Px € D: Va € A, nPx(a) is an integef  (224) Px — Pyx — P. The independent random variabl&s in
the left sides of(230 and (231) have distributionPyx—,,

Denote byII(Px) the minimum Euclidean distance approxiwh"eyi in the right side 0f(230) have distributionPyx_,.
mation of Px € P in the set ofn-types, that is, !

II(Px) = arg min ’px - Px‘ (225) In order to prove Lemmad, we first show three auxiliary
PREPn lemmas. The first two deal with approximate optimization of
Let P* be th f . hieving distributichs: functions.
et’P* be the set of capacity-achieving distributions: If f andg approximate each other, and the minimumjfof
P =[P eP: I[(X;Y) =C} (226) is approximately attained at, then g is also approximately

minimized atzx, as the following lemma formalizes.
Denote the minimum (maximum) information variancepamma 2. Fix n>0, &> 0. LetD be an arbitrary set, and

achieved by the distributions iB* by let f: D — R andg: D — R be such that
Vinin = min Var [uxy (X; Y)] (227) sup |f(z) —g(z)| <n (232)
PxeP* 2€D

Vinax = Lo Var [ixy (X:Y)] (228) Further, assume thaf and ¢ attain their minima. Then,

and letPy. C P* be the set of capacity-achieving distribu- g(x) < néigg(y) +&+2n (233)
Y

tions that achieve the minimum information variance: o
as long asr satisfies

* * . . — .
Pmm {Px € P*: Var [Zx;y(X,Y)] me} (229) f(x) < gél%f(y) n: (234)
and analogouslyPy ... for the distributions inP* with max- ‘
imal variance. Lemmal below allows to show that in the
memoryless case, the infimum inside the expectatior8@) (
with W = type (Xn) and PYn'W:PX = P x...x Py,
where Py is the output distribution induced by the typgg,
is approximately attained by those sequences whose type is
closest to the capacity-achieving distributir- (if it is non-
unique,Px~ is chosen appropriately based on the information
variance it achieves). This technical result is the key tving
the converse part of Theoreh.

(see Fig.12).

Lemma 1. There existA > 0 such that for all sufficiently n
large n:

1) If Viyin > 0, then there exist& > 0 such that for|A| <
A, Fig. 12.  An example where283) holds with equality.

Proof of Lemma2: Let 2* € D be such thay(z*) =
miny,ep g(y). Using @32 and @34, write

zneAn

min P lz v (23 Y;) <n(C—A)
i=1

2P LZ; v (27:Y:) <n(C—A)| - % (230) g(z) < min F)+g(@) — f(z)+€ (235)
min 236
where (230 holds for anyz™* with type(z™*) = II(P¥) = yeD fw)+n+e (236)

for Py € Py, if A >0 and Py € P}

i e T A <0, < fl@*)+n+¢ (237)
=g(z") —g(@) + fz") +n+&  (238)

<g(@®) +2n+¢ (239)

°In this appendix, we dispose of the assumptionig Sectionll that the
capacity-achieving input distribution is unique.
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[ | Q(z) is convex forz > 0, andQ’(z) = —Lefé, so for
The following lemma is reminiscent o8] Lemma 64]. >0,£>0

Lemma 3. Let D be a compact metric space, and detD? — Oz +€) > Q) — £ —=2 (254)
Rt be a metric. Fixf: D+~ R andg: D~ R. Let N
while for arbitraryx and¢ > 0,

D* = {:E eD: f(x) = ?eagf(y)} (240)

Qa+6) > Q) ~ <= (255)
Suppose that for some constasts- 0, L > 0, we have, for ) T
all (z,2%) € D x D*, If 2> =, we use 254 to obtain
f*) = (@) > P (x, 2%) (241) Q ( - i) _Q < n izfz) (256)
l9(a*) — g(a)| < Ld(z, ") (242) vn/ vn
Then, for any positive scalar <L .- (7?) (izz + i) (257)
, y positiv (8, V), = Vor NG NG
L2 5 (--=)’
max {pf(z) £ ¢g(x)} < pf (@) +dg(a”) + (243) S Ll a
o 2 + — 258
<P ity SN o (258)
Moreover, if, instead 0f241), f satisfies -1
24) < 3be " +a (259)
fa*) = f(2) = td(w,2%) (244) 2mn
- where @59 holds forn large enough because the maximum
then, for any positive scalarg, ¢ such that of (259 is attained at = /2 + & + 7.
L < b (245) If 0 <2< =, we use 259 to obtain
b
we have B 2 2
o(-7) -+ )
max T) + )} = *) & " 246
max {of (x) £9g(2)} = of(27) £ vg(a”) (246) o] (Lzui) (260)
21 \Vn vn
a ab
Proof of Lemma3: Let z, achieve the maximum on the < 5 1+ (261)
left side of R43. Using @41 and @42, we have, for all
x* € D*, If —% <2z <0, we useQ(z) =1- Q(—=z) to obtain
0.< @ (f(z0) = fla*) £ (g(x0) —g(a*)) (247 Q < _ i) 0 < N L;)
< —lpd? (o, x*) + Lipd(wo, z*) (248) i "
21,2 — _ 2 @
_ 1 T = Il (CR I
4 ( , >2
22 1———|z|
where @49 follows because the maximum of249 is < 1 o——— (i; + L) (263)
achieved atl(z, 2*) = 572 Var N n
To show @46), observe using244) and @42 that b2 2= a
< e 2+ (264)
0< ¢ (flwo) = f(#") £ (g(w0) — 9(a™))  (250) var 2
< (—lp + L) d(o, ) (251) <2 vy 2 (265)
V2mn 2mn
<0 (252) —1
- 8be™" +a (266)
where @52) follows from (245). - omn
[ | 2
The following lemma deals with asymptotic behavior of th&here @69 is due to (1 - %M) > 4in |2] < 3, and
Q-function. (266 holds because the maximum @60 is attained at? =
Lemma 4. Fix a > 0, b > 0. Then, there existg 2\/9 8'We are now equipped to prove Lemriia "
(exdph(illtlylcomputed u;] the proof) such that for all> —5- Proof of Lemmal:
and afln large enougn, Define the following functions® — R :
a b q
R R — < L I(P) =1(X;Y) =E[ix.y(X;Y 267
Q(z ﬁ> Q(z+ et ) <L 1B =106Y) =Bl (V) (267)
V(Px) =E [Var [Zx;y (X; Y) | X]] (268)

J— . _ . 3
Broof of Lemmad: (1) =E [Jix (%) = E oy G V)IXIP | X] - (269)
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If Px = type(z™), then for eachu € A, there arenPx(a) oc- Note thatV < co by Propertyl below. Therefore,

currences ofy|x—, among the{ Pyjx—,,,i = 1,2,...,n}. In
the sequel we will invoke Theore@b with W; = zx_,y(:ci; Yi) min ZZXY (z:;Y;) <n(C —A)| (285)
wherexz” is a given sequence, angd20—-(222 become type(z™)E€P)\ Py
A 4V
1 >1—— 286
Dy =~ > nPx(a)E [ixy(a;Y) | X = a] (270) nA? (286)
a=1 —
4V
=I(P) (271) >P [Z v (273Y;) <n(C —A) - (287)
r I
Al
vV, = 1 Zan(a)Var [ix.v(a;Y) | X = a] (272) We conclude that230) holds if the minimization is restricted
[ to types inPyp,)\P;.
_ V(ng) (273) Without loss of generality, we assume that all output®in

are accessible (which implies th&-(y) > 0 for all y € B)
and choosé > 0 so that for allPx € P} andy € B,

Py(y) >0 (288)

= T(PX) (274)  where Px — Pyix — Py. We recall the following properties

Define the (Euclidean)s-neighborhood of the set of Of the functionsI(-), V(-) andT'(-) from [8, Appendices E
capacity-achieving distributiorn®*, dl].

Property 1. The functionsI(Px), V(Px) and T'(Px) are
(275)  continuous on the compact st and therefore bounded and

achieve their extrema.
We split the domain of the minimization in the left side

of (230 into two sets,type(z") € Py, andtype(z") € Property 2. There existg; > 0 such that for all( Pk, Px) €

P \P; (recall notation 224), for an appropriately chosen?” x Py,

5> 0. C —I(PX) >ty |Px — Px | (289)
We now show that 230) holds for all A < % if the

minimization is restricted to types iR, \P;, whered > 0

is arbitrary, and Property 3. In Pj, the functionsl (Px), V(Px) and T'(Px)

Ay =C— max * I(B) >0 (276) are infinitely differentiable.
PrEP\PS Property 4. In P*, V(Px) = Var [ix.y (X; Y)].

!
_1 . _ 3
T, = - Zan ) lexay (a5 Y) — E [ixov (a3 Y) X = al| }

P(?:{PXEP mln |Px—Px*|<6}

By Chebyshev's inequality, for ali" whose type belongs to Due to Propertys, there exist nonnegative constattsand

Pin) \7’5, L, such that for all( Px, Px.) € P¥ x P*,
P sz v (23 Y3) > n(C = A) (277) C —I(Px) < L1 [Px — Px| (290)
L [V (Px) — V(Px+)| < Lo |Px — Px+| (291)
_Pp ZZX;Y(IU Vi) — nl(Px) > n(C — I(PX)) — nA To treat the case™ < P5 (), we will need to choosé > 0
i1 carefully and to con3|der ‘the casksi, > 0 andVyax = 0

(278) separately.

- A
<P ZZX-Y 3 Ys) I(Px)>%

i:l

(279) A. v, >0.
We decreasé until, in addition to £88),

2
2A2
<P woy (@ Vi) —nl(Py) | > =L (280) Vinin < 2 min V () (292)
= 4 PyEP;
AnV (Px) is satisfied.
= T 2A2 (281) We now show that 230 holds if the minimization is
e ! restricted to types irv?(;[n, for all —A < A < % , for
< —= (282) an appropriately choseft > 0. Using 292 and boundedness
nAj of T'(Px), write
where in 79 we used 3 =
1 B = max ST _ 2el (293)
A< §AI <A <C-1(F) (283) PeP; Vz(Px) Ve
and where B
V = max V() (284) T = max T(Px) < o0 (294)

PP P(eP}
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Therefore, for anyz™ with type(z") € Pg[n], the Berry- thenz > —%, and Lemma4 applies toz. So, using 801,
Esseen bound yields: (304, the fact that@(-) is monotonically decreasing and
Lemmad4, we conclude that there exisgs> 0 such that

" B
P I (xz';Yz')Sn(C—A)]—Q(V(P)) <—
[E “ T QW(II(Px)) — min Qu(B)
(295) PXEP5 1)
where
V(P)() _ nI(PX)n_‘/"Zg ;— nA (296) = Q (V(H(PX*))) - Q <P><Iél%§[n] V(PX)> (309)
X
We now apply Lemma with D = P; . and <Q (Z - %) -Q (Z + %22) (310)
F(P) = Q (X)) (297) <L (311)
/n

n

g(Px) =P [Z oy (245 Y:) <n(C — A) (298)

which is equivalent t0Z99).

It remains to prove 301) and @04). Observing that for
Condition @32 of Lemma2 holds withn = % due to ¢,b>0

(2995. As will be shown in the sequel, the following version

=1

of condition 34 holds: ) . o
7 N 7 - (312)

PxePj ) \/ﬁ |a ) b|
whereII(Px-), the minimum Euclidean distance approxima- < m (313)

tion of Px- in the set ofn-types, is formally defined in225),
andq > 0 will be chosen later. Applying Lemma we deduce and ysing 291) and €92, we have, for al( Px, Px:) € P} x

from (233 that P
min P ey (zi Y:) <n(C— A
type(am)ePs l; xv(@is¥s) Sn(C=A4) L N P AT (314)
n . VV(B)  V(Px)
* g+
> P wv(@i:Y;) <n(C—A)| -
> [; iy (775 Y:) < n( ) NG where
(300) 9
T . L= Lo 315

We conclude that230 holds if minimization is restricted to ° Vs (31)

types inpg, ("

We proceed to show209. As will be proven later, for Thys, recalling 290 and denoting; = |Px — Px-|, we have
appropriately chose > 0 and L > 0 we can write

vid L AT < v 301 I -4
s v/ A D <v@Be) @0 Lg@
< max v(Px) (302) chic-A 616
PXEPS,[n] \/m
< max v(Px) (303) Li¢—A
e < ——— + L{(LaC +A) (317)
Vi o VV(B) 1
< ——— +nLA A
V) S T s T (318)
(304) VV(Px+)
WherePX* € P:;lin if A > O! andP’X* S Pr;ax if A <DO. where
Denote
a = Ly/|A|(JA] - 1) (305) L—\/ﬁ—FLmax A + 1 ( )
b=V (Px)L (306) |
_ ﬂ (307) So, B0 follows by observing that for any € P,
I [P = TH(B)| < —V/A[(JA] - 1) (320)
. (308)

Az-gp— 4 and letting Px — TI(Px- ) in (316-(318).
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To show @04, we apply Lemm&B with we have

P [i iy (733 Yi) > n(C + A)

D =P} (321) g
D* = P* (322) n
P 323y =P Z}lx;v(wi;Yi) —nI(Px) > n(C — I(Px)) + nA
P = /n|A| (324) (333)
I(Px)—C
f(Px) = ol St (325) < V) . (334)
V() n(C —I(Px)+A)
1 - *
g(Px) = ——— (326) < TelPx B (335)
V(FX) n (61| Px — Px«|? + A)
| y < B (336)
We proceed to verify that conditions of Lemn3aare met. 1602 nA2
Functiong satisfies condition242 with L defined in 815). 11
Let us now show that functioi satisfies condition241) with < ——5— (337)
¢ = - whereV and ¢, are defined in 284 and @89, e
v where

respectively. For anyPx, Px-) € Py x P*, write . ) .
o (339 is by Chebyshev’s inequality;
o (335 uses 289, (291 and Vy,.x = 0;

O - I(F) « (336 holds because the maximum of its left side is
— [ |
> L_(PX) (328)
vV
/
> —1_|PX_PX*|2 (329) APPENDIXC
Nava PROOF OF THE CONVERSE PART OFHEOREM 10

Note that for the converse, restrictioiv)(can be replaced
where 328 follows from (284), and @29 applies 289. So, by the following weaker one:

Lemma 3 applies tov(Fx) = ¢f (Fx) + sign(A)g(Px), (iv') The random variablgs(S,d) has finite absolute third

resulting in B04) with moment.
To verify that v) implies (iv), observe that by the concavity
2. 5 of the logarithm,
I— L?*/y (330)
206 Viin 0 < 75(s,d) + \*d < N*E [d(s, Z*)] (338)
) S0
thereby completing the proof 0800). E[175(S,d) + )\*d|3} < AFE [d?’(S,Z*)} (339)
Combining @87 and @00, we conclude that230 holds
for all A in the interval We now proceed to prove the converse by showing first that
we can eliminate all rates exceeding
HV3, A k C
————min__ A< = e — 340
L%\/VV—max SAs 2 (331) n — R(d) —3r (340)
R(d)

for any 0 < 7 < =~. More precisely, we show that the
excess-distortion probability of any code having such rate
converges ta asn — oo, and therefore for any < 1, there
B. Vinax = 0. is anng such that for allv > ng, no(k,n,d, €) code can exist
for k, n satisfying 840.
We choose’ so that @89 is satisfied. The casgpe(a”) ¢ ~ We weakenZ4) by fixing v = k7 and choosing a particular
P} ) Was covered inZ87), so we only need to consider thedutput distribution, namelyly. = Pyr. = Py« x ... x Py..

minimization of the left side of231) overP; .. Fix o < 3. Due to restriction i) in SectionV, Pz, = Py x ... x I7,
If ' and thed—tilted information single-letterizes, that is, for a.e.

sk,

k

A ( Lz ) — (332) son(s,d) = 3 ss(sisd) -

1
280, nztae i=1
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Theoreml implies that error probability’ of every(k,n,d,¢’) A. V > 0.
code must be lower bounded by

R ) > k
[Iggﬁnp |:Z]S Szad ZZXY xz, z kT | S

— exp (—kT)

In order to apply Lemmad. in AppendixB, we isolate the
typical set of source sequences:

k

ng(si, d) —nC

=1

Tien = {sk e Sk

< nA — 7} (349)
Observe that
[S’“ ¢ Te.n]

— €exXp (—kT) (342) =P Z]S S“ d

min P v (243 Y;) <nC + kt
T hedn [Z X;Y 17

C|>nA—~

k
P lz 75(Si,d) > nC + 2k (350)

i=1

<P ng(Si,d)—kR(d) + [nC — kR(d)| + v > nA

n
> zggﬂn P [Z v+ (23 Y;) <nC +nt’

Jj=1

k (351)
P [Z 75(Si,d) > kR(d) — kT | — exp (—kT) (343) M| K AR(d)
=1 ) <P st(Si,d) — kR(d)| > k= (352)
where in 43, we used 340 and 7 = = > O -
; T 4C? V(d)
Recalling (16) and 353
949 = RA(d)A? k (353)
E[ix.yv-(x; V)X =x] < C (344)
where
with equality for Px--a.e.x, we conclude using the law of .
large numbers thaB343 tends tol ask,n — oo. » (353 follows by lower bounding
We proceed to show that for all large enoughn, if there nA —~ — [nC — kR(d)|
H !
is a sequence dfk, n,d, €) codes such that > A~y — 3kt (354)
-3kt < nC — kR(d 345 A
B () . (343) > n% — 3kt (355)
nV +EV(d)Q™" (e) + 0 (n) (346) 4
thene’ > e. > k% (R(d) — 31) — 3kt (356)
R . . . 4C
Note that in general the bound in Theorémwith the choice AR(d)
of Py as above does not lead to the correct channel dispersion > (357)
X . . . 2C
term. We first consider the general case, in which we apply
Theorem3, and then we show the symmetric case, in which ~where
we apply Theoren2. — (354 holds for large enough due to @45 and
Recall thatz™ € A™ has typePx if the number of times (346);
each lettew € A is encountered in” is nPx(a). In Theorem — (359 holds for large enough by the choice ofy
3, we weaken the supremum ovBr by letting W map X" in (348,
to its type, W = type(X™). Note that the total number of — (356 lower bounds: using 345);
types satisfies (€.92f]) T' < (n + 1M=L We weaken the — (357 holds for a small enough > 0.
supremum ovel ™ in (39) by_flxmg ]_DYMW:PX = PY XX « (353 is by Chebyshev’s inequality.
Py, wherePx — Pyx — Py, i.e. Py is the output distribution
induced by the typePx. In this way, Theoren8 implies that NOW: We let
the error probability of anyk,n,d,¢’) code must be lower B 1 AC? V(d)
n=€+ 358
bounded by €k = € m \/W RN & (358)
¢ > min P ZJS (S;,d) — lev 21 Vi) >y | §F whereB > 0 will be chosen in the sequel, aidn are chosen
znEA™ so that both 345 and the following version of346) hold:
—(n+ 1)‘“4| 1 exp (—7) (347) L2|.A|
Choose nC—kR(d) < \/nV+ EV(d) — — k: “ern)—7 (359)
<|A| _ _) log(n + 1) (348) where Ly < oo is defined in 91). Denote for brevity

n k
At this point we consider two cases separatély> 0 and § :va 7 _ § : d
i3 yz Js\Si, (360)
V=0. Py (5. )

i=1
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Weakening 847 using @48 and Lemmal, we can lower
bounde’ by

If V(d) > 0, we choosey as in 348, and
1

B
ehn =€+ —=+(n+ 1) exp (=) +

7 — (372)
E {lnivréxlnP[r(x",Y",Sk)S—'ﬂSk] -I{Ské'ﬁc_’n}‘| k e
e where B > 0 is the same as in368), andk, n are chosen so
1 that the following version of346) hold:
vn+1 o,
nC — kR(d) < /EV(d)Q ™ (ex.n) — v — Anz~* (373)
> E|P[r(a™,Y",S%) < —v | S¥] - 1{S" € Tan} B
whereA > (0 was defined in Lemma Weakening847) using
K 1 (231, we have
- — = 361 '
\/ﬁ vn+ 1 ( ) , [ ( ) A 1 :|
K 1 € > min P |wxy(x;,Yi) >nC + An2™¢
=Pra™,Y", ") < —, S* € Tin]l — — — sheAn
I N ey RV .
(362) P [ng(si,d) > nC + An2 = 4~
K -
>Plr(z™, Y™, 8% < —| =P [S* ¢ Tpn] — — =t
2 PIr( )< (5% Ten)] vn — (n4+ DA exp (=) (374)
1
~ 363 1
Vit 92 (1- )
402 V() K
> P n*’ Y'n7 Sk < _ _ N
= [T‘(CC ) < 7] R2(d)A? k NG [Z]s S;,d) > kR(d) + /kV Q (€k.m ]
1 =1
- 364
vn+1 (364) — (n+ 1) "Yexp (=) (375)
> € (365) < 1 > < B >
> 1———= ) (&n——
where @61) is by Lemmal, and @63 is by the union bound. n\.:|jl vk
To justify (365, observe that the quantities in Theor& —(n+1 exp (—7) (376)
corresponding to the sum of independent random variables in - B 1 |Al-1
(364 are = €kn N (n+1) exp (—y) (377)
k =€ (378)
Dy = — Z FI(1(B)) — ——R(d) (366)
n k where 375 uses 231) and @73, and @76 is by the Berry-
< mc — mR(d) (367) Esseen bound.
n k If V(d) = 0, which impliesjs(S;,d) = R(d) a.s., we let
Vitr = — n kV(H(PX*)) + mv(d) (368) T | . 70
n k Lo A = —1)log(n+1 —10g<1—e— —= ) 7
> — - PN
_n+kv+n—|—kv(d) n+k (369) "
n k and choosé:, n that satis
Tt = TR + [ 1s(5. ) ~ R et salsy
(370) kR(d) — nC >~ + An2~® (380)

where the functiondI(:), I(-), V(-), T(:) are defined in Thep pluggings(S;, d) =

(229, (267)—(269 in AppendixB. To show @869, recall that
V(Px~) =V by Property4 in AppendixB, and useZ91) and
(320. Further,T;,+ is bounded uniformly inPx, so @23
is upper bounded by some constaht> 0. Finally, applying
(367 and B69 to (359, we conclude that

n+k — \/ 7’L+/€ n+kQ

which enables us to lower bound the probability B64)
invoking the Berry-Esseen bound (Theor@®). In view of
(358, the resulting bound is equal tp and the proof of 65
is complete.

—y>(n+k)D (371)

ekn

B. V =0.
Fix 0 <o < g.

R(d) a.s. in 847, we have

' > in P +Y;) <kR(d
e_mgélﬂn ZZXYCC, (d) - 7]

—(n+ 1>'A‘ "exp (=) (381)
> miﬁ P Z’ny x:Y;) < nC’—i—An‘o‘]
zne n
Li=1
—(n+1) Al= Lexp (=) (382)
21— —(n+ 1M exp (—7) (383)
=€ (384)

where @82 is by the choice oft,n in (380, (383 invokes
(231), and @84 follows from the choice ofy in (379.
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C. Symmetric channel. fixing Px» = P%. = Px~ X...x Px~, we conclude that there

We show that if the channel is such that the distributiofXiSts a(k,n,0,¢") code with
+
Si) )

of ux,v+(x;Y) (according toPyx—,) does not depend on the n k
choicex € A, Theorem2 leads to a tighter third-order term ¢/ <E |exp [ — ZZ;@Y (X5 Y7) — ZZS(
i=1 =1

than 19).
If either V>0 or V(d) > 0, let 93)
1 where (S*, X™* y"*) are distributed according to
=5 logn (385) PgiPxn+Pyn xn. The case of equiprobablé has been
B 1 tackled in B]. Here we assume that(S) is not a constant,
€hn =€+ N + NG (386) that is, Var [15(S)] > 0.

Let £ andn be such that
where B > 0 can be chosen as ir3%8, and letk, n be such Bl 1
that the following version of346) (with the remaindef(n) nC—kH(S) > vnV +kVQ ™! (e - 7)+§ log(n+k)

satisfying (19 with ¢ = 1) holds: Vi tk (394)

B < /aV 1) B whereV = Var [15(S)], and B is the Berry-Esseen rati®23
nC — kR(d nV +RV(AQ (enn) 7 (387) for the sum ofn + k independent random variables appearing
Theorem?2 and Theoren25 imply that the error probability of in the right side of $93. Note thatB is finite due to:
every (k,n, d, ¢') code must satisfy, for an arbitrary sequence « Var [15(S)] > 0;

" e A", « the third absolute moment @(S) is finite;
i « the third absolute moment of ., (X*;Y*) is finite, as
¢>P Z]S(Siad le Ve (Vi) > 7| — exp (=) observed in AppendiB.

=1 Therefore, 894 can be written asi(14) with the remainder

(388) therein satisfying 129. So, it suffices to prove that i, n
S ¢ (389) satisfy 894), then the right side 0f393) is upper bounded by

- €. Let
If both V=0 andV(d) = 0, choosek, n to satisfy
77€,77, = { (Skaxnayn) S Sk x A" x B":
kER(d) — nC >~ (390)
1 n k
= log 1_ ¢ (391) Z By (@is i) — Z 15(s)

1=1 1=1
Substituting 891) and ys(S;,d) = R(d), w.v+(z:;Y;) = C . B+1
a.s. in 388, we conclude that the right side 0388 equals = 7C = KH(S) = vV +kVQ (6 - \/n—+k> } (399)

€, so¢’ > ¢ whenever ak,n,d, ¢') code exists.

By the Berry-Esseen bound (Theor&®),

D. Gaussian channel P(S% X", Y"™) & Thn] <e€— !

- vn+k
In view of Remark12, it suffices to consider the equalW furth bound !
power constraint 33. The spherically-symmetridy. = e now further upper bound@3 as
+
5) )

Pyne = Pye X ... X Py, WwhereY* ~ N(0,03(1 + P)), k
¢ lexp szy Xz'*§yz'*)_225(
i=1
4P [(Sk,Xn*,Yn*) ¢ 77@,11]

(396)

satisfies the symmetry assumption of Theorznin fact, for
all 2" € F(a), 1xn;yn (2™;Y") has the same distribution
under Py | xn—_,» as (cf. (68)

X 171,71 (Sk,Xn*,Yn*)

n loge P < 1 \?
Cr o gleli P <1+—P ZH <Wl - x/P> - n) (397)
. (92) L _p[st,xm vy e !
= , , nl +e—
where W; ~ N( , ) independent of each other. Since vn+k I ) k] +e Vn+k
(398)
G, is a sum of ||d random variables, the mean %f is

equal toC' = $log (1 + P) and its variance is equal td19, <e (399)

the result follows analogously t385—(389). where we invoked394) and 395 to upper bound the expo-

nent in the right side of397).
APPENDIXD

PROOF OF THE ACHIEVABILITY PART OFTHEOREM 10

A. Almost lossless coding (= 0) over a DMC. The proof consists of the asymptotic analysis of the bound
The proof consists of an asymptotic analysis of the bourd Theorem8 using Theoren?25 and Lemmab below, which
in Theorem9 by means of Theorer@5. Weakening {13 by deals with asymptotic behavior of distortigdrballs. Note that

B. Lossy coding over a DMC.
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Lemmabs is the only step that requires finiteness of the ninth It remains to further upper bound@5 using @07). Let

absolute moment od(S, Z*) as required by restrictionv) in
SectionV.

Lemma 5 ( [9, Lemma 2]) Under restrictions(ii)—(iv), there
exist constantgg, ¢, K > 0 such that for allk > kg,

k
1
Pllog —— < L d — 2 ) logk
% P B = 250 )+<C )Og e

K

>1- — 400

21- = (400)

wherec is given by(122).

We weaken 108 by fixing
PXTL:PXTL*:PX*X...XPX* (401)
sz:sz*:Pz*X...XPZ* (402)

= Jlog k41 (403)

where A > 0, so there exists &k,n,d,¢) code with error
probability ¢ upper bounded by
+)}

E |:exp (
(404)

+ et

v

Y*
& Pye. (Ba

—lo

(5%))

where (S*, X"* yn* Z*<) are distributed according to

Pgi Pxn+ Pynxn Pz \We need to show that fok,n sat-
isfying (114), (404 is upper bounded by.
We apply Lemmab to upper bound404) as follows:

K+1

/< _ +
¢ <E {exp( |Uk.n| )} + 7 (405)
with
n k
Uk n — ZZ;’Y(X:71/7’*) - ZJS(S“d) — (C — —) logk
i=1 i=1
—logy—c (406)

We first consider the (nontrivial) caggd) +V > 0. Let k
andn be such that

nC — kR(d

> \/nV +kV(d)Q !

Ekn
+c10gk+log7+c (407)
B K42
n=¢€— — 408
Ny Y S

where constants and ¢ are defined in Lemm&, and B is
the Berry-Esseen rati@®3 for the sum ofn + k independent
random variables appearing id4Q5. Note thatB is finite
because:
« eitherV(d) > 0 or V > 0 by the assumption;
« the third absolute moment g§(S, d) is finite by restric-
tion (iv) as spelled out in339);
« the third absolute moment of , (X*;Y*) is finite, as
observed in AppendiB.
Applying a Taylor series expansion tdQ?7) with the choice
of v in (403, we conclude that407) can be written asl(14)
with the remainder term satisfyind.20).

") €SP x A" x B™:

k
—ZJS(Sud)
—/nV +kV(d)Q~!

77c,n - { (Skaxnvy
n

> oy (@i vi)
i=1

Z nC — kR ek n
(409)
By the Berry-Esseen bound (Theor&®),
B
P[(S*, X™.Y™) ¢ Tinl < é€rn+ 410
[( ) ¢ k, } = €k, \/m ( )

so the expectation in the right side @f0H) is upper-bounded
as

® o (- )]

< E [exp (= Ul " 1{(S*, X", Y"™) € Tin})|

+P[(S*, X" Y™) ¢ Tim] (411)

1 B
< —P[(SF, X" ym* n n At —— (412
— \/E [(S ? ? ) € 7797 ] + 6k7 =+ \/m ( )

where we used407) and @09 to upper bound the exponent
in the right side of 411).

Putting 405 and @12 together, we conclude that < e.
Finally, consider the cas& = V(d) = 0, which implies
75(S,d) = R(d) ande. (X5 Y;") = C almost surely, and let

k andn be such that

nC — kR(d) > <c— —) 10gk—|—1og’y—|—c—|—1og

_ K+1
Vi13)
where constants andc are defined in Lemma&. Then
K+1
+
_ < e — -
E [exp( U] )] < 7 (414)

which, together with 405), implies thate’ < ¢, as desired.

C. Lossy or almost lossless coding over a Gaussian channel

In view of Remarkl2, it suffices to consider the equal power
constraint £33. As shown in the proof of Theorem8, for
any distribution ofX™ on the power sphere,

iy (X" Y™) > Gy — F (415)

where GG, is defined in 892 (cf. (168) and F' is a (com-
putable) constant.

Now, the proof for almost lossless coding in Appendix
D-A can be modified to work for the Gaussian channel
by addinglog F' to the right side of §94) and replacing
Yoisy ey (X735 Y4) in (393 and B97) with G, —log F, and
in (395 with G,,.

Similarly, the proof for lossy coding in Appendi®-B is
adapted for the Gaussian channel by addinrgF’ to the right
side of @07) and replacingy_"_, 1%y (X73Y;7) in (404 and
(406 with G,, —log F', and in 409 with G,,.



APPENDIXE [13]
PROOF OFTHEOREM 22
Applying the Berry-Esseen bound t@90), we obtain [14]
Dy (n,e, ) (1]
. Var[d(S,Z2)] _; ( B )
> min E[d(S,2)] 4+ 4/ —————= €+ —
puin [d(S,2)] @ Vi) e
1($;2)<C(a)
(416)
[ Wi () B (]
_ 1 -1 2
= D(C(a)) + - Q (e—i- \/ﬁ> (417)
where B is the Berry-Esseen ratio, and1(?) follows by the [18]
application of LemmaB with
- 19
D={Psy=PysPs: 1(5:2) < R(d)}  (418) "7
f(Psz) = —E[d(S, 2)] (419) g
B
P = V@S DIQ (4 ) (420)
p=1 (421)
1 [22]
V= (422)

(23]
Note that the mean and standard deviationd¢$,Z) are

linear and continuously differentiable iRz, respectively, so [24]
conditions 42 and @44 hold with the metric being the usual 25]
Euclidean distance between vectors Ri°1*ISI. So, @17)
follows immediately upon observing that by the definitiof®!
of the rate-distortion functionE [d(S,Z)] > E[d(S,Z*)]
D(C(a)) for all Pzs such that/(S;Z) < C(a).

[27]

[28]
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