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Lossy joint source-channel coding
in the finite blocklength regime
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Abstract—This paper finds new tight finite-blocklength bounds
for the best achievable lossy joint source-channel code rate,
and demonstrates that joint source-channel code design brings
considerable performance advantage over a separate one in the
non-asymptotic regime. A joint source-channel code maps a block
of k source symbols onto a length−n channel codeword, and the
fidelity of reproduction at the receiver end is measured by the
probability ǫ that the distortion exceeds a given thresholdd. For
memoryless sources and channels, it is demonstrated that the
parameters of the best joint source-channel code must satisfy
nC − kR(d) ≈

√

nV + kV(d)Q−1 (ǫ), where C and V are the
channel capacity and channel dispersion, respectively;R(d) and
V(d) are the source rate-distortion and rate-dispersion functions;
and Q is the standard Gaussian complementary cdf. Symbol-by-
symbol (uncoded) transmission is known to achieve the Shannon
limit when the source and channel satisfy a certain probabilistic
matching condition. In this paper we show that even when this
condition is not satisfied, symbol-by-symbol transmissionis, in
some cases, the best known strategy in the non-asymptotic regime.

Index Terms—Achievability, converse, finite blocklength
regime, joint source-channel coding, lossy source coding,memo-
ryless sources, rate-distortion theory, Shannon theory.

I. I NTRODUCTION

In the limit of infinite blocklengths, the optimal achievable
coding rates in channel coding and lossy data compression are
characterized by the channel capacityC and the source rate-
distortion functionR(d), respectively [3]. For a large class
of sources and channels, in the limit of large blocklength,
the maximum achievable joint source-channel coding (JSCC)
rate compatible with vanishing excess distortion probability
is characterized by the ratioCR(d) [4]. A perennial question in
information theory is how relevant the asymptotic fundamental
limits are when the communication system is forced to operate
at a given fixed blocklength. The finite blocklength (delay)
constraint is inherent to all communication scenarios. In fact,
in many systems of current interest, such as real-time multi-
media communication, delays are strictly constrained, while
in packetized data communication, packets are frequently on
the order of 1000 bits. While computable formulas for the
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channel capacity and the source rate-distortion function are
available for a wide class of channels and sources, the luxury
of being able to compute exactly (in polynomial time) the non-
asymptotic fundamental limit of interest is rarely affordable.
Notable exceptions where the non-asymptotic fundamental
limit is indeed computable are almost lossless source coding
[5], [6], and JSCC over matched source-channel pairs [7]. In
general, however, one can at most hope to obtain bounds and
approximations to the information-theoretic non-asymptotic
fundamental limits.

Although non-asymptotic bounds can be distilled from
classical proofs of coding theorems, these bounds are rarely
satisfyingly tight in the non-asymptotic regime, as studied in
[8], [9] in the contexts of channel coding and lossy source
coding, respectively. For the JSCC problem, the classical
converse is based on the mutual information data process-
ing inequality, while the classical achievability scheme uses
separate source/channel coding (SSCC), in which the channel
coding block and the source coding block are optimized
separately without knowledge of each other. These conven-
tional approaches lead to disappointingly weak non-asymptotic
bounds. In particular, SSCC can be rather suboptimal non-
asymptotically. An accurate finite blocklength analysis there-
fore calls for novel upper and lower bounds that sandwich
tightly the non-asymptotic fundamental limit. Such bounds
were shown in [8] for the channel coding problem and in
[9] for the source coding problem. In this paper, we derive
new tight bounds for the JSCC problem, which hold in full
generality, without any assumptions on the source alphabet,
stationarity or memorylessness.

While numerical evaluation of the non-asymptotic upper and
lower bounds bears great practical interest (for example, to de-
cide how suboptimal with respect to the information-theoretic
limit a given blocklength-n code is), such bounds usually
involve cumbersome expressions that offer scant conceptual
insight. Somewhat ironically, to get an elegant, insightful
approximation of the non-asymptotic fundamental limit, one
must resort to an asymptotic analysis of these non-asymptotic
bounds. Such asymptotic analysis must be finer than that
based on the law of large numbers, which suffices to obtain
the asymptotic fundamental limit but fails to provide any
estimate of the speed of convergence to that limit. There
are two complementary approaches to a finer asymptotic
analysis: the large deviations analysis which leads to error
exponents, and the Gaussian approximation analysis which
leads to dispersion. The error exponent approximation and the
Gaussian approximation to the non-asymptotic fundamental
limit are tight in different operational regimes. In the former, a
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rate which is strictly suboptimal with respect to the asymptotic
fundamental limit is fixed, and the error exponent measures
the exponential decay of the error probability to0 as the
blocklength increases. The error exponent approximation is
tight if the error probability a system can tolerate is extremely
small. However, already for probability of error as low as10−6

to 10−1, which is the operational regime for many high data
rate applications, the Gaussian approximation, which gives
the optimal rate achievable at a given error probability as
a function of blocklength, is tight [8], [9]. In the channel
coding problem, the Gaussian approximation ofR⋆(n, ǫ),
the maximum achievable finite blocklength coding rate at
blocklengthn and error probabilityǫ, is given by, for finite
alphabet stationary memoryless channels [8],

nR⋆(n, ǫ) = nC −
√
nV Q−1 (ǫ) +O (log n) (1)

where C and V are the channel capacity and dispersion,
respectively. In the lossy source coding problem, the Gaussian
approximation ofR⋆(k, d, ǫ), the minimum achievable finite
blocklength coding rate at blocklengthk and probabilityǫ of
exceeding fidelityd, is given by, for stationary memoryless
sources [9],

kR⋆(k, d, ǫ) = kR(d) +
√
kV(d)Q−1 (ǫ) +O (log k) (2)

whereR(d) and V(d) are the rate-distortion and the rate-
dispersion functions, respectively.

For a given code, the excess distortion constraint, which is
the figure of merit in this paper as well as in [9], is, in a
way, more fundamental than the average distortion constraint,
because varyingd over its entire range and evaluating the
probability of exceedingd gives full information about the
distribution (and not just its mean) of the distortion incurred at
the decoder output. Following the philosophy of [8], [9], in this
paper we perform the Gaussian approximation analysis of our
new bounds to show thatk, the maximum number of source
symbols transmissible using a given channel blocklengthn,
must satisfy

nC − kR(d) =
√
nV + kV(d)Q−1 (ǫ) +O (logn) (3)

under the fidelity constraint of exceeding a given distortion
level d with probability ǫ. In contrast, if, following the SSCC
paradigm, we just concatenate the channel code in (1) and the
source code in (2), we obtain

nC − kR(d) ≤ min
η+ζ≤ǫ

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}

+O (logn) (4)

which is usually strictly suboptimal with respect to (3).
In addition to deriving new general achievability and con-

verse bounds for JSCC and performing their Gaussian ap-
proximation analysis, in this paper we revisit the dilemma of
whether one should or should not code when operating under
delay constraints. Gastpar et al. [7] gave a set of necessary and
sufficient conditions on the source, its distortion measure, the
channel and its cost function in order for symbol-by-symbol
transmission to attain the minimum average distortion. In these
curious cases, the source and the channel are probabilistically
matched. In the absence of channel cost constraints, we show

that whenever the source and the channel are probabilistically
matched so that symbol-by-symbol coding achieves the min-
imum average distortion, it also achieves the dispersion of
joint source-channel coding. Moreover, even in the absenceof
such a match between the source and the channel, symbol-
by-symbol transmission, though asymptotically suboptimal,
might outperform in the non-asymptotic regime not only
separate source-channel coding but also our random-coding
achievability bound.

Prior research relating to finite blocklength analysis of JSCC
includes the work of Csiszár [10], [11] who demonstrated
that the error exponent of joint source-channel coding out-
performs that of separate source-channel coding. For discrete
source-channel pairs with average distortion criterion, Pilc’s
achievability bound [12], [13] applies. For the transmission
of a Gaussian source over a discrete channel under the
average mean square error constraint, Wyner’s achievability
bound [14], [15] applies. Non-asymptotic achievability and
converse bounds for a graph-theoretic model of JSCC have
been obtained by Csiszár [16]. Most recently, Tauste Campo et
al. [17] showed a number of finite-blocklength random-coding
bounds applicable to the almost-lossless JSCC setup, while
Wang et al. [18] found the dispersion of JSCC for sources
and channels with finite alphabets.

The rest of the paper is organized as follows. SectionII
summarizes basic definitions and notation. SectionsIII and
IV introduce the new converse and achievability bounds to
the maximum achievable coding rate, respectively. A Gaussian
approximation analysis of the new bounds is presented in
SectionV. The evaluation of the bounds and the approximation
is performed for two important special cases: the transmission
of a binary memoryless source (BMS) over a binary symmetric
channel (BSC) with bit error rate distortion (SectionVI) and
the transmission of a Gaussian memoryless source (GMS) with
mean-square error distortion over an AWGN channel with a
total power constraint (SectionVII ). SectionVIII focuses on
symbol-by-symbol transmission.

II. D EFINITIONS

A lossy source-channel code is a pair of (possibly random-
ized) mappingsf : M 7→ X and g : Y 7→ M̂. A distortion
measured : M×M̂ 7→ [0,+∞] is used to quantify the per-
formance of the lossy code. A cost functionc : X 7→ [0,+∞]
may be imposed on the channel inputs. The channel is used
without feedback.

Definition 1. The pair (f, g) is a (d, ǫ, α) lossy source-
channel code for{M, X , Y, M̂, PS , d, PY |X , c} if
P [d (S, g(Y )) > d] ≤ ǫ and eitherE [c(X)] ≤ α (average
cost constraint) orc(X) ≤ α a.s. (maximal cost constraint),
wheref(S) = X (see Fig.1). In the absence of an input cost
constraint we simplify the terminology and refer to the code
as (d, ǫ) lossy source-channel code.

The special cased = 0 andd(s, z) = 1 {s 6= z} corresponds
to almost-lossless compression. If, in addition,PS is equiprob-
able on an alphabet of cardinality|M| = |M̂| =M , a(0, ǫ, α)
code in Definition1 corresponds to an(M, ǫ, α) channel code
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PY |X

|

X Y ZS

P [d (S,Z) > d] ≤ ǫ

f = g

Fig. 1. A (d, ǫ) joint source-channel code.

(i.e. a code withM codewords and average error probabilityǫ
and costα). On the other hand, ifPY |X is an identity mapping
on an alphabet of cardinalityM without cost constraints, a
(d, ǫ) code in Definition1 corresponds to an(M,d, ǫ) lossy
compression code (as e.g. defined in [9]).

As our bounds in SectionsIII andIV do not foist a Cartesian
structure on the underlying alphabets, we state them in the one-
shot paradigm of Definition1. When we apply those bounds
to the block coding setting, transmitted objects indeed become
vectors, and Definition2 below comes into play.

Definition 2. In the conventional fixed-to-fixed (or block)
setting in whichX and Y are then−fold Cartesian prod-
ucts of alphabetsA and B, M and M̂ are the k−fold
Cartesian products of alphabetsS and Ŝ, and dk : Sk ×
Ŝk 7→ [0,+∞], cn : An 7→ [0,+∞], a (d, ǫ, α) code for
{Sk, An, Bn, Ŝk, PSk , dk, PY n|Xn , cn} is called a
(k, n, d, ǫ, α) code (or a(k, n, d, ǫ) code if there is no cost
constraint).

Definition 3. Fix ǫ, d, α and the channel blocklengthn.
The maximum achievable source blocklength and coding rate
(source symbols per channel use) are defined by, respectively

k⋆(n, d, ǫ, α) = sup {k : ∃(k, n, d, ǫ, α) code} (5)

R(n, d, ǫ, α) =
1

n
k⋆(n, d, ǫ, α) (6)

Alternatively, fix ǫ, α, source blocklengthk and channel
blocklengthn. The minimum achievable excess distortion is
defined by

D(k, n, ǫ, α) = inf {d : ∃(k, n, d, ǫ, α) code} (7)

Denote, for a givenPY |X and a cost functionc : X 7→
[0,+∞],

C(α) = sup
PX :

E[c(X)]≤α

I(X ;Y ) (8)

and, for a givenPS and a distortion measured : M×M̂ 7→
[0,+∞],

RS(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) (9)

We impose the following basic restrictions onPY |X , PS , the
input-cost function and the distortion measure:

(a) RS(d) is finite for somed, i.e. dmin <∞, where

dmin = inf {d : RS(d) <∞} ; (10)

(b) The infimum in (9) is achieved by a uniquePZ⋆|S ;
(c) The supremum in (8) is achieved by a uniquePX⋆ .

The dispersion, which serves to quantify the penalty on the
rate of the best JSCC code induced by the finite blocklength,
is defined as follows.

Definition 4. Fix α and d ≥ dmin. The rate-dispersion func-
tion of joint source-channel coding (source samples squared
per channel use) is defined as

V(d, α) = lim
ǫ→0

lim sup
n→∞

n
(
C(α)
R(d) −R(n, d, ǫ, α)

)2

2 loge
1
ǫ

(11)

where C(α) and R(d) are the channel capacity-cost and
source rate-distortion functions, respectively.1

The distortion-dispersion function of joint source-channel
coding is defined as

W(R,α) = lim
ǫ→0

lim sup
n→∞

n
(
D
(
C(α)
R

)
−D(nR, n, ǫ, α)

)2

2 loge
1
ǫ

(12)
whereD(·) is the distortion-rate function of the source.

If there is no cost constraint, we will simplify notation by
droppingα from (5), (6), (7), (8), (11) and (12).

Definition 5 (d−tilted information [9]). For d > dmin, the
d−tilted information ins is defined as2

S(s, d) = log
1

E [exp (λ⋆d− λ⋆d(s, Z⋆))]
(13)

where the expectation is with respect toPZ⋆ , i.e. the uncon-
ditional distribution of the reproduction random variablethat
achieves the infimum in(9), and

λ⋆ = −R′
S(d) (14)

The following properties ofd−tilted information, proven in
[19], are used in the sequel.

S(s, d) = ıS;Z⋆(s; z) + λ⋆d(s, z)− λ⋆d (15)

E [S(s, d)] = RS(d) (16)

E [exp (λ⋆d− λ⋆d(S, z) + S(S, d))] ≤ 1 (17)

where (15) holds forP ⋆Z-almost everyz, while (17) holds for
all z ∈ M̂, and

ıS;Z(s; z) = log
dPZ|S=s
dPZ

(z) (18)

denotes the information density of the joint distributionPSZ
at (s, z). We can define the right side of (18) for a given
(PZ|S , PZ) even if there is noPS such that the marginal of
PSPZ|S is PZ . We use the same notationıS;Z for that more
general function. To extend Definition5 to the lossless case,
for discrete random variables we define0-tilted information as

S(s, 0) = ıS(s) (19)

1While for memoryless sources and channels,C(α) = C(α) andR(d) =
RS(d) given by (8) and (9) evaluated with single-letter distributions, it is
important to distinguish between the operational definitions and the extremal
mutual information quantities, since the core results in this paper allow for
memory.

2All log’s andexp’s are in an arbitrary common base.
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where

ıS(s) = log
1

PS(s)
(20)

is the information in outcomes ∈ M.

The distortiond-ball centered ats ∈ M is denoted by

Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}. (21)

Given (PX , PY |X), we write PX → PY |X → PY to
indicate thatPY is the marginal ofPXPY |X , i.e. PY (y) =∑

x∈X PY |X(y|x)PX(x). 3

So as not to clutter notation, in SectionsIII and IV we
assume that there are no cost constraints. However, all results
in those sections generalize to the case of a maximal cost
constraint by consideringX whose distribution is supported
on the subset of allowable channel inputs:

F(α) = {x ∈ X : c(x) ≤ α} (22)

rather than the entire channel input alphabetX .

III. C ONVERSES

A. Converses viad-tilted information

Our first result is a general converse bound.

Theorem 1 (Converse). The existence of a(d, ǫ) code forS
andPY |X requires that

ǫ ≥ inf
PX|S

sup
γ>0

{
sup
PȲ

P
[
S(S, d)− ıX;Ȳ (X ;Y ) ≥ γ

]

− exp (−γ)
}

(23)

≥ sup
γ>0

{
sup
PȲ

E

[
inf
x∈X

P
[
S(S, d)− ıX;Ȳ (x;Y ) ≥ γ | S

]]

− exp (−γ)
}

(24)

where in (23), S − X − Y , and the conditional probability
in (24) is with respect toY distributed according toPY |X=x

(independent ofS), and

ıX;Ȳ (x; y) = log
dPY |X=x

dPȲ
(y) (25)

Proof: Fix γ and the(d, ǫ) code (PX|S , PZ|Y ). Fix an
arbitrary probability measurePȲ on Y. Let PȲ → PZ|Y →

3We write summations over alphabets for simplicity. Unless stated other-
wise, all our results hold for abstract probability spaces.

PZ̄ . We can write the probability in the right side of (23) as

P
[
S(S, d)− ıX;Ȳ (X ;Y ) ≥ γ

]

= P
[
S(S, d)− ıX;Ȳ (X ;Y ) ≥ γ, d(S;Z) > d

]

+ P
[
S(S, d)− ıX;Ȳ (X ;Y ) ≥ γ, d(S;Z) ≤ d

]
(26)

≤ ǫ

+
∑

s∈M
PS(s)

∑

x∈X
PX|S(x|s)

∑

y∈Y

∑

z∈Bd(s)

PZ|Y (z|y)

· PY |X(y|x)1
{
PY |X(y|x) ≤ PȲ (y) exp (S(s, d)− γ)

}

(27)

≤ ǫ + exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))

∑

y∈Y
PȲ (y)

·
∑

z∈Bd(s)

PZ|Y (z|y)
∑

x∈X
PX|S(x|s) (28)

= ǫ + exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))

∑

y∈Y
PȲ (y)

·
∑

z∈Bd(s)

PZ|Y (z|y) (29)

= ǫ + exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))PZ̄(Bd(s)) (30)

≤ ǫ + exp (−γ)
∑

z∈M̂

PZ̄(z)
∑

s∈M
PS(s)

· exp (S(s, d) + λ⋆d− λ⋆d(s, z)) (31)

≤ ǫ + exp (−γ) (32)

where (32) is due to (17). Optimizing overγ > 0 andPȲ ,
we get the best possible bound for a given encoderPX|S . To
obtain a code-independent converse, we simply choosePX|S
that gives the weakest bound, and (23) follows. To show (24),
we weaken (23) as

ǫ ≥ sup
γ>0

{
sup
PȲ

inf
PX|S

P
[
S(S, d)− ıX;Ȳ (X ;Y ) ≥ γ

]

− exp (−γ)
}

(33)

and observe that for anyPȲ ,

inf
PX|S

P
[
S(S, d)− ıX;Ȳ (X ;Y ) ≥ γ

]

=
∑

s∈M
PS(s) inf

PX|S=s

∑

x∈X
PX|S(x|s)

·
∑

y∈Y
PY |X(y|x)1

{
S(s, d)− ıX;Ȳ (x; y) ≥ γ

}
(34)

=
∑

s∈M
PS(s)

· inf
x∈X

∑

y∈Y
PY |X(y|x)1

{
S(s, d)− ıX;Ȳ (x; y) ≥ γ

}
(35)

= E

[
inf
x∈X

P
[
S(S, d)− ıX;Ȳ (x;Y ) ≥ γ | S

]]
(36)
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An immediate corollary to Theorem1 is the following
result.

Theorem 2(Converse). Assume that there exists a distribution
PȲ such that the distribution ofıX;Ȳ (x;Y ) (according to
PY |X=x) does not depend on the choice ofx ∈ X . If a (d, ǫ)
code forS andPY |X exists, then

ǫ ≥ sup
γ>0

{
P
[
S(S, d)− ıX;Ȳ (x;Y ) ≥ γ

]
− exp (−γ)

}

(37)

for an arbitrary x ∈ X . The probability measureP in (37) is
generated byPSPY |X=x.

Proof: Under the assumption, the conditional probability
in the right side of (24) is the same regardless of the choice
of x ∈ X .

The next result generalizes Theorem1. When we apply
Theorem3 in SectionV to find the dispersion of JSCC, we
will let T be the number of channel input types, and we will let
W be the type of the channel input block. IfT = 1, Theorem
3 reduces to Theorem1.

Theorem 3 (Converse). The existence of a(d, ǫ) code forS
andPY |X requires that

ǫ ≥ inf
PX|S

max
γ>0,T

{
− T exp (−γ)

+ sup
Ȳ ,W :

S−(X,W )−Y

P
[
S(S, d)− ıX;Ȳ |W (X ;Y |W ) ≥ γ

]}

(38)

≥ max
γ>0,T

{
− T exp (−γ)

+ sup
Ȳ ,W

E

[
inf
x∈X

P
[
S(S, d)− ıX;Ȳ |W (x;Y |W ) ≥ γ | S

]]}

(39)

whereT is a positive integer, the random variableW takes
values on{1, . . . , T }, and

ıX;Ȳ |W (x; y|t) = log
PY |X=x,W=t

PȲ |W=t

(y) (40)

and in (39), the probability measure is generated by
PSPW |X=xPY |X=x,W .

Proof: Fix a possibly randomized (d, ǫ) code
{PX|S , PZ|Y }, a positive scalar γ, a positive integer
T , an auxiliary random variableW that satisfies
S − (X,W ) − Y , and a conditional probability distribution
PȲ |W : {1, . . . T } 7→ Y. Let PȲ |W=t → PZ|Y → PZ̄|W=t,
i.e. PZ̄|W=t(z) =

∑
y∈Y PZ|Y (z|y)PȲ |W=t(y), for all t.

Write

P
[
S(S, d)− ıX;Y |W (X ;Y |W ) ≥ γ

]

≤ ǫ +
∑

s∈M
PS(s)

T∑

t=1

PW |S(t|s)
∑

x∈X
PX|S,W (x|s, t)

·
∑

y∈Y
PY |X,W (y|x, t)

∑

z∈Bd(s)

PZ|Y (z|y)

· 1
{
PY |X,W (y|x, t) ≤ PȲ |W=t(y) exp (S(s, d) − γ)

}

(41)

≤ ǫ + exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))

T∑

t=1

PW |S(t|s)

·
∑

y∈Y
PȲ |W (y|t)

∑

z∈Bd(s)

PZ|Y (z|y)
∑

x∈X
PX|S,W (x|s, t)

(42)

≤ ǫ + exp (−γ)
T∑

t=1

∑

s∈M
PS(s) exp (S(s, d))

∑

y∈Y
PȲ |W (y|t)

·
∑

z∈Bd(s)

PZ|Y (z|y) (43)

≤ ǫ + exp (−γ)
T∑

t=1

∑

s∈M
PS(s) exp (S(s, d))PZ̄|W=t(Bd(s))

(44)

≤ ǫ + exp (−γ)
T∑

t=1

∑

s∈M
PS(s)

∑

z∈M̂

PZ̄|W=t(z)

· exp (S(s, d) + λ⋆d− λ⋆d(s, z)) (45)

≤ ǫ + T exp (−γ) (46)

where (46) is due to (17). Optimizing overγ, T and the
distributions of the auxiliary random variables̄Y andW , we
obtain the best possible bound for a given encoderPX|S .
To obtain a code-independent converse, we simply choose
PX|S that gives the weakest bound, and (38) follows. To show
(39), we weaken (38) by restricting thesup to W satisfying
S−X−W and changing the order ofinf andsup as follows:

max
γ>0,T

sup
Ȳ ,W :

S−(X,W )−Y
S−X−W

inf
PX|S

(47)

Observe that for any legitimate choice ofȲ andW ,

inf
PX|S

P
[
S(S, d)− ıX;Ȳ |W (X ;Y |W ) ≥ γ

]
(48)

=
∑

s∈M
PS(s) inf

PX|S=s

∑

x∈X
PX|S(x|s)

T∑

t=1

PW |X(t|x)

·
∑

y∈Y
PY |X,W (y|x, t)1

{
S(s, d)− ıX;Ȳ |W (x; y|t) ≥ γ

}

(49)

=
∑

s∈M
PS(s) inf

x∈X

T∑

t=1

PW |X(t|x)
∑

y∈Y
PY |X,W (y|x, t)

· 1
{
S(s, d)− ıX;Ȳ |W (x; y|t) ≥ γ

}
(50)

which is equal to the expectation on the right side of (39).
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Remark1. Theorems1, 2 and3 still hold in the cased = 0 and
d(x, y) = 1 {x 6= y}, which corresponds to almost-lossless
data compression. Indeed, recalling (19), it is easy to see that
the proof of Theorem1 applies, skipping the now unnecessary
step (31), and, therefore, (23) reduces to

ǫ ≥ inf
PX|S

sup
γ>0

{
sup
PȲ

P
[
ıS(S)− ıX;Ȳ (X ;Y ) ≥ γ

]

− exp (−γ)
}

(51)

Similar modification can be applied to the proof of Theorem
3.

Remark 2. Our converse for lossy source coding in [9,
Theorem 7] can be viewed as a particular case of the result
in Theorem 2. Indeed, if X = Y = {1, . . . ,M} and
PY |X(m|m) = 1, PY (1) = . . . = PY (M) = 1

M , then (37)
becomes

ǫ ≥ sup
γ>0

P [S(S, d) ≥ logM + γ]− exp (−γ) (52)

which is precisely [9, Theorem 7].

B. Converses via hypothesis testing and list decoding

To show a joint source-channel converse in [11], Csiszár
used a list decoder, which outputs a list ofL elements
drawn fromM. While traditionally list decoding has only
been considered in the context of finite alphabet sources, we
generalize the setting to sources with abstract alphabets.In our
setup, the encoder is the random transformationPX|S , and the
decoder is defined as follows.

Definition 6 (List decoder). Let L be a positive real number,
and let QS be a measure onM. An (L,QS) list decoder
is a random transformationPS̃|Y , where S̃ takes values on
QS-measurable sets withQS-measure not exceedingL:

QS

(
S̃
)
≤ L (53)

Even though we keep the standard “list” terminology, the
decoder output need not be a finite or countably infinite set.
The error probability with this type of list decoding is the
probability that the source outcomeS does not belong to the
decoder output list forY :

1−
∑

x∈X

∑

y∈Y

∑

s̃∈M(L)

∑

s∈s̃
PS̃|Y (s̃|y)PY |X(y|x)PX|S(x|s)PS(s)

(54)

whereM(L) is the set of allQS-measurable subsets ofM
with QS-measure not exceedingL.

Definition 7 (List code). An (ǫ, L,QS) list code is a pair
of random transformations(PX|S , PS̃|Y ) such that(53) holds
and the list error probability(54) does not exceedǫ.

Of course, lettingQS = US , whereUS is the counting
measure onM, we recover the conventional list decoder
definition where the smallest scalar that satisfies (53) is an
integer. The almost-lossless JSCC setting (d = 0) in Definition
1 corresponds toL = 1, QS = US. If the source is analog

(has a continuous distribution), it is reasonable to letQS be
the Lebesgue measure.

Any converse for list decoding implies a converse for
conventional decoding. To see why, observe that any(d, ǫ)
lossy code can be converted to a list code with list error
probability not exceedingǫ by feeding the lossy decoder output
to a function that outputs the set of all source outcomess
within distortion d from the outputz ∈ M̂ of the original
lossy decoder. In this sense, the set of all(d, ǫ) lossy codes is
included in the set of all list codes with list error probability
≤ ǫ and list size

L = max
z∈M̂

QS ({s : d(s, z) ≤ d}) (55)

Denote by

βα(P,Q) = min
PW |X :

P[W=1]≥α

Q [W = 1] (56)

the optimal performance achievable among all randomized
testsPW |X : X → {0, 1} between probability distributionsP
andQ on X (1 indicates that the test choosesP ).4 In fact,Q
need not be a probability measure, it just needs to beσ-finite
in order for the Neyman-Pearson lemma and related results to
hold.

The hypothesis testing converse for channel coding [8,
Theorem 27] can be generalized to joint source-channel coding
with list decoding as follows.

Theorem 4 (Converse). Fix PS and PY |X , and letQS be
a σ-finite measure. The existence of an(ǫ, L,QS) list code
requires that

inf
PX|S

sup
PȲ

β1−ǫ(PSPX|SPY |X , QSPX|SPȲ ) ≤ L (57)

where the supremum is over all probability measuresPȲ
defined on the channel output alphabetY.

Proof: Fix QS , the encoderPX|S , and an auxiliaryσ-
finite conditional measureQY |XS . Consider the (not necessar-
ily optimal) test for deciding betweenPSXY = PSPX|SPY |X
andQSXY = QSPX|SQY |XS which choosesPSXY if S be-
longs to the decoder output list. Note that this is a hypothetical
test, which has access to both the source outcome and the
decoder output.

According to P, the probability measure generated by
PSXY , the probability that the test choosesPSXY is given
by

P

[
S ∈ S̃

]
≥ 1− ǫ (58)

Since Q

[
S ∈ S̃

]
is the measure of the event that the test

choosesPSXY when QSXY is true, and the optimal test
cannot perform worse than the possibly suboptimal one that
we selected, it follows that

β1−ǫ(PSPX|SPY |X , QSPX|SQY |XS) ≤ Q

[
S ∈ S̃

]
(59)

4Throughout,P , Q denote distributions, whereasP, Q are used for the
corresponding probabilities of events on the underlying probability space.
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Now, fix an arbitrary probability measurePȲ onY. Choosing
QY |XS = PȲ , the inequality in (59) can be weakened as
follows.

Q

[
S ∈ S̃

]

=
∑

y∈Y
PȲ (y)

∑

s̃∈M(L)

PS̃|Y (s̃|y)
∑

s∈s̃
QS(s)

∑

x∈X
PX|S(x|s)

(60)

=
∑

y∈Y
PȲ (y)

∑

s̃∈M(L)

PS̃|Y (s̃|y)
∑

s∈s̃
QS(s) (61)

≤
∑

y∈Y
PȲ (y)

∑

s̃∈M(L)

PS̃|Y (s̃|y)L (62)

= L (63)

Optimizing the bound overPȲ and choosingPX|S that yields
the weakest bound in order to obtain a code-independent
converse, (57) follows.

Remark3. Similar to how Wolfowitz’s converse for channel
coding can be obtained from the meta-converse for channel
coding [8], the converse for almost-lossless joint source-
channel coding in (51) can be obtained by appropriately
weakening (57) with L = 1. Indeed, invoking [8]

βα(P,Q) ≥ 1

γ

(
α− P

[
dP

dQ
> γ

])
(64)

and lettingQS = US in (57), where US is the counting
measure onM, we have

1 ≥ inf
PX|S

sup
PȲ

β1−ǫ(PSPX|SPY |X , USPX|SPȲ ) (65)

≥ inf
PX|S

sup
PȲ

sup
γ>0

1

γ

(
1− ǫ− P

[
ıX;Ȳ (X ;Y )−ıS(S)> log γ

])

(66)

which upon rearranging yields (51).

In general, computing the infimum in (57) is challenging.
However, if the channel is symmetric (in a sense formalized
in the next result),β1−ǫ(PSPX|SPY |X , USPX|SPȲ ) is inde-
pendent ofPX|S .

Theorem 5(Converse). Fix a probability measurePȲ . Assume
that the distribution ofıX;Ȳ (x;Y ) does not depend onx ∈
X under eitherPY |X=x or PȲ . Then, the existence of an
(ǫ, L,QS) list code requires that

β1−ǫ(PSPY |X=x, QSPȲ ) ≤ L (67)

wherex ∈ X is arbitrary.

Proof: The Neyman-Pearson lemma (e.g. [20]) implies
that the outcome of the optimum binary hypothesis test
betweenP andQ only depends on the observation through
dP
dQ . In particular, the optimum binary hypothesis testW ⋆ for
deciding betweenPSPX|SPY |X andQSPX|SPȲ satisfies

W ⋆ − (S, ıX;Ȳ (X ;Y ))− (S,X, Y ) (68)

For all s ∈ M, x ∈ X , we have

P [W ⋆ = 1|S = s,X = x]

= E [P [W ⋆ = 1|X = x, S = s, Y ]] (69)

= E
[
P
[
W ⋆ = 1|S = s, ıX;Ȳ (X ;Y ) = ıX;Ȳ (x;Y )

]]
(70)

=
∑

y∈Y
PY |X(y|x)PW⋆|S, ıX;Ȳ (X;Y )(1|s, ıX;Ȳ (x; y)) (71)

= P [W ⋆ = 1|S = s] (72)

and

Q [W ⋆ = 1|S = s,X = x] = Q [W ⋆ = 1|S = s] (73)

where

• (70) is due to (68),
• (71) uses the Markov propertyS −X − Y ,
• (72) follows from the symmetry assumption on the dis-

tribution of ıX;Ȳ (x, Y ),
• (73) is obtained similarly to (71).

Since (72), (73) imply that the optimal test achieves the same
performance (that is, the sameP [W ⋆ = 1] andQ [W ⋆ = 1])
regardless ofPX|S , we choosePX|S = 1X(x) for somex ∈ X
in the left side of (57) to obtain (67).

Remark 4. In the case of finite channel input and output
alphabets, the channel symmetry assumption of Theorem5
holds, in particular, if the rows of the channel transition
probability matrix are permutations of each other, andPȲ n is
the equiprobable distribution on the (n-dimensional) channel
output alphabet, which, coincidentally, is also the capacity-
achieving output distribution. For Gaussian channels with
equal power constraint, which corresponds to requiring the
channel inputs to lie on the power sphere, any spherically-
symmetricPȲ n satisfies the assumption of Theorem5.

IV. A CHIEVABILITY

Given a source code(f(M)
s , g

(M)
s ) of sizeM , and a channel

code (f
(M)
c , g

(M)
c ) of sizeM , we may concatenate them to

obtain the following sub-class of the source-channel codes
introduced in Definition1:

Definition 8. An (M,d, ǫ) source-channel code is a(d, ǫ)
source-channel code such that the encoder and decoder map-
pings satisfy

f = f(M)
c ◦ f(M)

s (74)

g = g(M)
c ◦ g(M)

s (75)

where

f(M)
s : M 7→ {1, . . . ,M} (76)

f(M)
c : {1, . . . ,M} 7→ X (77)

g(M)
c : Y 7→ {1, . . . ,M} (78)

g(M)
s : {1, . . . ,M} 7→ M̂ (79)

(see Fig.2).

Note that an(M,d, ǫ) code is an(M + 1, d, ǫ) code.
The conventional separate source-channel coding paradigm

corresponds to the special case of Definition8 in which the
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PY |X

|

X Y ZS

P [d (S,Z) > d] ≤ ǫ

∈ {1, . . . ,M}
n

∈ {1, . . . ,M}
nf

(M)
s f

(M)
c g

(M)
c

g
(M)
s

Fig. 2. An (M, d, ǫ) joint source-channel code.

source code(f(M)
s , g

(M)
s ) is chosen without knowledge of

PY |X and the channel code(f(M)
c , g

(M)
c ) is chosen without

knowledge ofPS and the distortion measured. A pair of
source and channel codes is separation-optimal if the source
code is chosen so as to minimize the distortion (average
or excess) when there is no channel, whereas the channel
code is chosen so as to minimize the worst-case (over source
distributions) average error probability:

max
PU

P

[
U 6= g(M)

c (Y )
]

(80)

whereX = f
(M)
c (U) andU takes values on{1, . . . ,M}. If

both the source and the channel code are chosen separation-
optimally for their given sizes, the separation principle guar-
antees that under certain quite general conditions (which
encompass the memoryless setting, see [21]) the asymptotic
fundamental limit of joint source-channel coding is achiev-
able. In the finite blocklength regime, however, such SSCC
construction is, in general, only suboptimal. Within the SSCC
paradigm, we can obtain an achievability result by further
optimizing with respect to the choice ofM :

Theorem 6 (Achievability, SSCC). Fix PY |X , d and PS .
Denote byǫ⋆(M) the minimum achievable worst-case average
error probability among all transmission codes of sizeM , and
the minimum achievable probability of exceeding distortion d
with a source code of sizeM by ǫ⋆(M,d).

Then, there exists a(d, ǫ) source-channel code with

ǫ ≤ min
M

{ǫ⋆(M) + ǫ⋆(M,d)} (81)

Bounds onǫ⋆(M) andǫ⋆(M,d) have been obtained recently
in [8] and [9], respectively.5

Definition 8 does not rule out choosing the source code
based on the knowledge ofPY |X or the channel code based
on the knowledge ofPS , d and d. One of the interesting
conclusions in the present paper is that the optimal dispersion
of JSCC is achievable within the class of(M,d, ǫ) source-
channel codes introduced in Definition8. However, the dis-
persion achieved by the conventional SSCC approach is in
fact suboptimal.

To shed light on the reason behind the suboptimality of
SSCC at finite blocklength despite its asymptotic optimality,
we recall the reason SSCC achieves the asymptotic funda-
mental limit. The output of the optimum source encoder
is, for large k, approximately equiprobable over a set of

5As the maximal (over source outputs) error probability cannot be lower
than the worst-case error probability, the maximal error probability achievabil-
ity bounds of [8] apply to boundǫ⋆(M). Moreover, the random coding union
(RCU) bound on average error probability of [8], although stated assuming
equiprobable source, is oblivious to the distribution of the source and thus
upper-bounds the worst-case average error probabilityǫ⋆(M) as well.

roughly exp (kR(d)) distinct messages, which allow to rep-
resent most of the source outcomes within distortiond. From
the channel coding theorem we know that there exists a
channel code that is capable of distinguishing, with high
probability,M = exp (kR(d)) < exp (nC) messages when
equipped with the maximum likelihood decoder. Therefore,
a simple concatenation of the source code and the channel
code achieves vanishing probability of distortion exceeding
d, for any d > D

(
nC
k

)
. However, at finiten, the output of

the optimum source encoder need not be nearly equiprobable,
so there is no reason to expect that a separated scheme
employing a maximum-likelihood channel decoder, which
does not exploit unequal message probabilities, would achieve
near-optimal non-asymptotic performance. Indeed, in the non-
asymptotic regime the gain afforded by taking into account the
residual encoded source redundancy at the channel decoder
is appreciable. The following achievability result, obtained
using independent random source codes and random channel
codes within the paradigm of Definition8, capitalizes on this
intuition.

Theorem 7 (Achievability). There exists a(d, ǫ) source-
channel code with

ǫ ≤ inf
PX ,PZ ,PW |S

{
E

[
exp

(
− |ıX;Y (X ;Y )− logW |+

)]

+ E

[
(1− PZ(Bd(S)))

W
]}

(82)

where the expectations are with respect to
PSPXPY |XPZPW |S defined onM×X ×Y×M̂×N, where
N is the set of natural numbers.

Proof: Fix a positive integerM . Fix a positive integer-
valued random variableW that depends on other random
variables only throughS and that satisfiesW ≤ M . We will
construct a code with separate encoders for source and channel
and separate decoders for source and channel as in Definition
8. We will perform a random coding analysis by choosing
random independent source and channel codes which will lead
to the conclusion that there exists an(M,d, ǫ) code with error
probabilityǫ guaranteed in (82) with W ≤M . Observing that
increasingM can only tighten the bound in (82) in which
W is restricted to not exceedM , we will let M → ∞ and
conclude, by invoking the bounded convergence theorem, that
the support ofW in (82) need not be bounded.

Source Encoder.Given an ordered list of representation
points zM = (z1, . . . , zM ) ∈ M̂M , and having observed
the source outcomes, the (probabilistic) source encoder
generatesW from PW |S=s and selects the lowest index
m ∈ {1, . . . ,W} such thats is within distanced of zm. If
no such index can be found, the source encoder outputs a
pre-selected arbitrary index, e.g.M . Therefore,

f(M)
s (s) =

{
min{m,W} d(s, zm) ≤ d < min

i=1,...,m−1
d(s, zi)

M d < mini=1,...,W d(s, zi)
(83)

In a good(M,d, ǫ) JSCC code,M would be chosen so large
that with overwhelming probability, a source outcome would
be encoded successfully within distortiond. It might seem
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counterproductive to let the source encoder in (83) give up
before reaching the end of the list of representation points, but
in fact, such behavior helps the channel decoder by skewing
the distribution off(M)

s (S).
Channel Encoder.Given a codebook(x1, . . . , xM ) ∈ XM ,

the channel encoder outputsxm if m is the output of the source
encoder:

f(M)
c (m) = xm (84)

Channel Decoder.Define the random variableU ∈
{1, . . . ,M + 1} which is a function ofS, W andzM only:

U =

{
f
(M)
s (S) d(S, gs(fs(S)) ≤ d

M + 1 otherwise
(85)

Having observedy ∈ Y, the channel decoder chooses arbitrar-
ily among the members of the set:

g(M)
c (y) = m ∈ arg max

j∈{1,...M}
PU|ZM (j|zM )PY |X(y|xj)

(86)
A MAP decoder would multiplyPY |X(y|xj) by PX(xj).
While that decoder would be too hard to analyze, the product
in (86) is a good approximation becausePU|ZM (j|zM ) and
PX(xj) are related by

PX(xj) =
∑

m : xm=xj

PU|ZM (m|zM )

+ PU|ZM (M + 1|zM)1 {j =M} (87)

so the decoder in (86) differs from a MAP decoder only when
either severalxm are identical, or there is no representation
point among the firstW points within distortiond of the
source, both unusual events.

Source Decoder.The source decoder outputszm if m is the
output of the channel decoder:

g(M)
s (m) = zm (88)

Error Probability Analysis.We now proceed to analyze the
performance of the code described above. If there were no
source encoding error, a channel decoding error can occur if
and only if

∃j 6= m :

PU|ZM (j|zM )PY |X(Y |xj) ≥ PU|ZM (m|zM )PY |X(Y |xm)
(89)

Let the channel codebook(X1, . . . , XM ) be drawn i.i.d. from
PX , and independent of the source codebook(Z1, . . . , ZM ),
which is drawn i.i.d. fromPZ . Denote byǫ(xM , zM ) the
excess-distortion probability attained with the source codebook
zM and the channel codebookxM . Conditioned on the event
{d(S, gs(fs(S)) ≤ d} = {U ≤W} = {U 6=M + 1} (no fail-
ure at the source encoder), the probability of excess distortion
is upper bounded by the probability that the channel decoder

does not choosef(M)
s (S), so

ǫ(xM , zM )

≤
M∑

m=1

PU|ZM (m|zm)

· P


 ⋃

j 6=m

{
PU|ZM (j|zM )PY |X(Y |xj)
PU|ZM (m|zM )PY |X(Y |xm)

≥ 1

}
| X = xm




+ PU|ZM (U > W |zM ) (90)

We now average (90) over the source and channel codebooks.
Averaging them-th term of the sum in (90) with respect to
the channel codebook yields

PU|ZM (m|zm)P


 ⋃

j 6=m

{
PU|ZM (j|zM )PY |X(Y |Xj)

PU|ZM (m|zM )PY |X(Y |Xm)
≥ 1

}


(91)
whereY,X1, . . . , XM are distributed according to

PYX1...Xm
(y, x1, . . . , xM ) = PY |Xm

(y|xm)
∏

j 6=m
PX(xj)

(92)
Letting X̄ be an independent copy ofX and applying the

union bound to the probability in (91), we have that for any
given (m, zM ),

P


 ⋃

j 6=m

{
PU|ZM (j|zM )PY |X(Y |Xj)

PU|ZM (m|zM )PY |X(Y |Xm)
≥ 1

}


≤ E

[
min

{
1,

M∑

j=1

P

[
PU|ZM (j|zM )PY |X(Y |X̄)

PU|ZM (m|zM )PY |X(Y |X)
≥ 1 | X,Y

]}]

(93)

≤ E


min



1,

M∑

j=1

PU|ZM (j|zM )

PU|ZM (m|zM )

E
[
PY |X(Y |X̄)|Y

]

PY |X(Y |X)








(94)

= E


min



1,

M∑

j=1

PU|ZM (j|zM )

PU|ZM (m|zM )

PY (Y )

PY |X(Y |X)






 (95)

= E

[
min

{
1,

P
[
U ≤W | ZM = zM

]

PU|ZM (m|zM )

PY (Y )

PY |X(Y |X)

}]

(96)

= E

[
min

{
1,

1

PU|ZM ,1{U≤W}(m|zM , 1)
PY (Y )

PY |X(Y |X)

}]

(97)

where (94) is due to1{a ≥ 1} ≤ a.
Applying (97) to (90) and averaging with respect to the

source codebook, we may write

E
[
ǫ(XM , ZM )

]
≤ E [min {1, G}] + P [U > W ] (98)

where for brevity we denoted the random variable

G =
1

PU|ZM ,1{U≤W}(U |ZM , 1)
PY (Y )

PY |X(Y |X)
(99)
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The expectation in the right side of (98) is with respect to
PZMPU|ZMPW |UZMPXPY |X . It is equal to

E
[
E
[
min {1, G} | X,Y, ZM , 1 {U ≤W}

]]

≤ E
[
min

{
1,E

[
G | X,Y, ZM , 1 {U ≤W}

}]]
(100)

= E

[
min

{
1,W

PY (Y )

PY |X(Y |X)

}]
(101)

= E

[
exp

(
− |ıX;Y (X ;Y )− logW |+

)]
(102)

where
• (100) applies Jensen’s inequality to the concave function

min{1, a};
• (101) usesPU|X,Y,ZM ,1{U≤W} = PU|ZM ,1{U≤W};

• (102) is due tomin{1, a} = exp
(
−
∣∣log 1

a

∣∣+
)

, wherea
is nonnegative.

To evaluate the probability in the right side of (98), note that
conditioned onS = s, W = w, U is distributed as:

PU|S,W (m|s, w) =
{
ρ(s)(1 − ρ(s))m−1 m = 1, 2, . . . , w

(1 − ρ(s))w m =M + 1
(103)

where we denoted for brevity

ρ(s) = PZ(Bd(s)) (104)

Therefore,

P [U > W ] = E [P [U > W |S,W ]] (105)

= E

[
(1− ρ(S))

W
]

(106)

Applying (102) and (106) to (98) and invoking Shannon’s
random coding argument, (82) follows.

Remark 5. As we saw in the proof of Theorem7, if we
restrict W to take values on{1, . . . ,M}, then the bound
on the error probabilityǫ in (82) is achieved in the class
of (M,d, ǫ) codes. The code sizeM that leads to tight
achievability bounds following from Theorem7 is in general
much larger than the size that achieves the minimum in (81).
In that case,M is chosen so thatlogM lies betweenkR(d)
and nC so as to minimize the sum of source and channel
decoding error probabilities without the benefit of a channel
decoder that exploits residual source redundancy. In contrast,
Theorem8 is obtained with an approximate MAP decoder that
allows a larger choice forlogM , even beyondnC. Still we
can achieve a good(d, ǫ) tradeoff because the channel code
employs unequal error protection: those codewords with higher
probabilities are more reliably decoded.

Remark6. Had we used the ML channel decoder in lieu of
(86) in the proof of Theorem7, we would conclude that a
(d, ǫ) code exists with

ǫ ≤ inf
PX ,PZ ,M

{
E

[
exp

(
− |ıX;Y (X ;Y )− log(M − 1)|+

)]

+ E

[
(1− PZ(Bd(S)))

M
]}

(107)

which corresponds to the SSCC bound in (81) with the worst-
case average channel error probabilityǫ⋆(M) upper bounded
using the random coding union (RCU) bound of [8] and the

source error probabilityǫ⋆(M,d) upper bounded using the
random coding achievability bound of [9].

Remark7. Weakening (82) by lettingW = M , we obtain a
slightly looser version of (107) in whichM−1 in the exponent
is replaced byM . To get a generally tighter bound than that
afforded by SSCC, a more intelligent choice ofW is needed,
as detailed next in Theorem8.

Theorem 8 (Achievability). There exists a(d, ǫ) source-
channel code with

ǫ ≤

inf
PX ,PZ ,γ>0

{
E

[
exp

(
−
∣∣∣∣ıX;Y (X ;Y )− log

γ

PZ(Bd(S))

∣∣∣∣
+
)]

+ e1−γ
}

(108)

where the expectation is with respect toPSPXPY |XPZ defined
on M×X × Y × M̂.

Proof: We fix an arbitraryγ > 0 and choose

W =

⌊
γ

ρ (S)

⌋
(109)

whereρ(·) is defined in (104). Observing that

(1− ρ(s))⌊
γ

ρ(s)⌋ ≤ (1− ρ(s))
γ

ρ(s)
−1 (110)

≤ e−ρ(s)(
γ

ρ(s)
−1) (111)

≤ e1−γ (112)

we obtain (108) by weakening (82) using (109) and (112).
In the case of almost-lossless JSCC, the bound in Theorem

8 can be sharpened as shown recently by Tauste Campo et al.
[17].

Theorem 9 (Achievability, almost-lossless JSCC [17]). There
exists a(0, ǫ) code with

ǫ ≤ inf
PX

E
[
exp

(
−|ıX;Y (X ;Y )− ıS(S)|+

)]
(113)

where the expectation is with respect toPSPXPY |X defined
on M×X × Y.

V. GAUSSIAN APPROXIMATION

In addition to the basic conditions (a)-(c) of SectionII , in
this section we impose the following restrictions.

(i) The channel is stationary and memoryless,PY n|Xn =
PY|X×. . .×PY|X. If the channel has an input cost function
then it satisfiescn(xn) = 1

n

∑n
i=1 c(xi).

(ii) The source is stationary and memoryless,PSk = PS ×
. . . × PS, and the distortion measure is separable,
dk(s

k, zk) = 1
k

∑k
i=1 d(si, zi).

(iii) The distortion level satisfiesdmin < d < dmax, where
dmin is defined in (10), and dmax = inf

z∈Ŝ E [d(S, z)],
where the average is with respect to the unconditional
distribution ofS. The excess-distortion probability satis-
fies 0 < ǫ < 1.

(iv) E
[
d9(S,Z⋆)

]
<∞ where the average is with respect to

PS×PZ⋆ andPZ⋆ is the output distribution corresponding
to the minimizer in (9).
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The technical condition (iv) ensures applicability of the Gaus-
sian approximation in the following result.

Theorem 10 (Gaussian approximation). Under restrictions
(i)–(iv), the parameters of the optimal(k, n, d, ǫ) code satisfy

nC − kR(d) =
√
nV + kV(d)Q−1 (ǫ) + θ (n) (114)

where
1. V(d) is the source dispersion given by

V(d) = Var [S(S, d)] (115)

2. V is the channel dispersion given by:

a) If A and B are finite and the channel has no cost
constraints,

V = Var
[
ı⋆X;Y(X

⋆;Y⋆)
]

(116)

ı⋆X;Y(x; y) = log
dPY|X=x
dPY⋆

(y) (117)

where X⋆, Y⋆ are the capacity-achieving input and
output random variables.

b) If the channel is Gaussian with either equal or maximal
power constraint,

V =
1

2

(
1− 1

(1 + P )
2

)
log2 e (118)

whereP is the signal-to-noise ratio.

3. The remainder termθ(n) satisfies:
a) If A andB are finite, the channel has no cost constraints

andV > 0,

−c logn+O (1) ≤ θ (n) (119)

≤ c̄ logn+ log logn+O (1) (120)

where

c = |A| − 1

2
(121)

c̄ = 1 +
Var [Λ′

Z⋆(S, λ⋆)]

E [|Λ′′
Z⋆(S, λ⋆)|] log e

(122)

In (122), (·)′ denotes differentiation with respect toλ,
ΛZ⋆(s, λ) is defined by

ΛZ⋆(s, λ) = log
1

E [exp (λd− λd(s,Z⋆))]
(123)

(cf. Definition5) andλ⋆ = −R′(d).
b) If A andB are finite, the channel has no cost constraints

andV = 0, (120) still holds, while(119) is replaced with

lim inf
n→∞

θ (n)√
n

≥ 0 (124)

c) If the channel is such that the (conditional) distribution
of ı⋆

X;Y(x;Y) does not depend onx ∈ A (no cost
constraint), thenc = 1

2 . 6

d) If the channel is Gaussian with equal or maximal power
constraint,(120) still holds, and(119) holds withc = 1

2 .

6 Note added in proof: we have shown recently that the symmetricity
condition is actually superfluous.

e) In the almost-lossless case,R(d) = H(S), and provided
that the third absolute moment ofıS(S) is finite, (114)
and (119) still hold, while (120) strengthens to

θ (n) ≤ 1

2
logn+O (1) (125)

Proof:

• AppendicesC-A and C-B show the converses in (119)
and (124) for casesV > 0 and V = 0, respectively,
using Theorem3.

• Appendix C-C shows the converse for the symmetric
channel (3c) using Theorem2.

• Appendix C-D shows the converse for the Gaussian
channel (3d) using Theorem2.

• AppendixD-A shows the achievability result for almost
lossless coding (3e) using Theorem9.

• AppendixD-B shows the achievability result in (120) for
the DMC using Theorem8.

• Appendix D-C shows the achievability result for the
Gaussian channel (3d) using Theorem8.

Remark8. If the channel and the data compression codes are
designed separately, we can invoke channel coding [8] and
lossy compression [9] results in (1) and (2) to show that (cf.
(4))

nC − kR(d) ≤ min
η+ζ≤ǫ

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}

+O (logn) (126)

Comparing (126) to (114), observe that if either the channel
or the source (or both) have zero dispersion, the joint source-
channel coding dispersion can be achieved by separate coding.
In that special case, either thed-tilted information or the
channel information density are so close to being deterministic
that there is no need to account for the true distributions of
these random variables, as a good joint source-channel code
would do.

The Gaussian approximations of JSCC and SSCC in (114)
and (126), respectively, admit the following heuristic in-
terpretation whenn is large (and thus, so isk): since
the source is stationary and memoryless, the normalizedd-
tilted informationJ = 1

n Sk

(
Sk, d

)
becomes approximately

Gaussian with meanknR(d) and variancekn
V(d)
n . Likewise,

the conditional normalized channel information densityI =
1
n ı
⋆
Xn;Y n(xn;Y n⋆) is, for largek, n, approximately Gaussian

with meanC and varianceVn for all xn ∈ An typical accord-
ing to the capacity-achieving distribution. Since a good en-
coder chooses such inputs for (almost) all source realizations,
and the source and the channel are independent, the random
variableI−J is approximately Gaussian with meanC− k

nR(d)
and variance1n

(
k
nV(d) + V

)
, and (114) reflects the intuition

that under JSCC, the source is reconstructed successfully
within distortiond if and only if the channel information den-
sity exceeds the sourced-tilted information, that is,{I > J}.
In contrast, in SSCC, the source is reconstructed successfully
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with high probability if (I, J) falls in the intersection of half-
planes{I > r} ∩ {J < r} for some r = logM

n , which is
the capacity of the noiseless link between the source and the
channel code block that can be chosen so as to maximize the
probability of that intersection, as reflected in (126). Since
in JSCC the successful transmission event is strictly larger
than in SSCC, i.e.{I > r} ∩ {J < r} ⊂ {I > J}, separate
source/channel code design incurs a performance loss. It is
worth pointing out that{I > J} leads to successful recon-
struction even within the paradigm of the codes in Definition
8 because, as explained in Remark5, unlike the SSCC case, it
is not necessary thatlogMn lie betweenI andJ for successful
reconstruction.

Remark9. Using Theorem10, it can be shown that

R(n, d, ǫ) =
C

R(d)
−
√

V(d)

n
Q−1 (ǫ)− 1

R(d)

θ(n)

n
(127)

where the rate-dispersion function of JSCC is found as (recall
Definition 4),

V(d) =
R(d)V + CV(d)

R3(d)
(128)

Remark10. Under regularity conditions similar to those in [9,
Theorem 14], it can be shown that

D(nR, n, ǫ) = D

(
C

R

)
+

√
W(R)

n
Q−1 (ǫ)+

∂

∂R
D

(
C

R

)
θ(n)

n
(129)

where the distortion-dispersion function of JSCC is given by

W(R) =

(
∂

∂R
D

(
C

R

))2(
V +RV

(
D

(
C

R

)))
(130)

Remark 11. If the basic conditions (b) and/or (c) fail so
that there are several distributionsPZ⋆|S and/or severalPX⋆

that achieve the rate-distortion function and the capacity,
respectively, then, forǫ < 1

2 ,

V(d) ≤ minVZ⋆;X⋆(d) (131)

W(R) ≤ minWZ⋆;X⋆(R) (132)

where the minimum is taken overPZ⋆|S and PX⋆ , and
VZ⋆;X⋆(d) (resp.WZ⋆;X⋆(R)) denotes (128) (resp. (130)) com-
puted with PZ⋆|S and PX⋆ . The reason for possibly lower
achievable dispersion in this case is that we have the freedom
to map the unlikely source realizations leading to high proba-
bility of failure to those codewords resulting in the maximum
variance so as to increase the probability that the channel
output escapes the decoding failure region.

Remark12. The dispersion of the Gaussian channel is given
by (118), regardless of whether an equal or a maximal power
constraint is imposed. An equal power constraint corresponds
to the subset of allowable channel inputs being the power
sphere:

F (P ) =

{
xn ∈ Rn :

|xn|2
σ2
N

= nP

}
(133)

whereσ2
N

is the noise power. In a maximal power constraint,
(133) is relaxed replacing ‘=’ with ‘ ≤’.

Specifying the nature of the power constraint in the sub-
script, we remark that the bounds for the maximal constraint
can be obtained from the bounds for the equal power constraint
via the following relation

k⋆eq(n, d, ǫ) ≤ k⋆max(n, d, ǫ) ≤ k⋆eq(n+ 1, d, ǫ) (134)

where the right-most inequality is due to the following idea
dating back to Shannon: a(k, n, d, ǫ) code with a maximal
power constraint can be converted to a(k, n + 1, d, ǫ) code
with an equal power constraint by appending an(n + 1)-th
coordinate to each codeword to equalize its total power to
nσ2

N
P . From (134) it is immediate that the channel dispersions

for maximal or equal power constraints must be the same.

VI. L OSSY TRANSMISSION OF ABMS OVER A BSC

In this section we particularize the bounds in SectionsIII ,
IV and the approximation in SectionV to the transmission of
a BMS with biasp over a BSC with crossover probabilityδ.
The target bit error rate satisfiesd ≤ p.

The rate-distortion function of the source and the channel
capacity are given by, respectively,

R(d) = h(p)− h(d) (135)

C = 1− h(δ) (136)

The source and the channel dispersions are given by [8], [9]:

V(d) = p(1− p) log2
1− p

p
(137)

V = δ(1− δ) log2
1− δ

δ
(138)

where note that (137) does not depend ond. The rate-
dispersion function in (128) is plotted in Fig.3.

Fig. 3. The rate-dispersion function for the transmission of a BMS over a
BSC with d = 0.11 as a function of(δ, p) in

(

0, 1

2

)

×

(

d, 1

2

)

. It increases
unboundedly asp → d, and vanishes asδ →

1

2
or (δ, p) →

(

0, 1

2

)

.

Throughout this section,w(aℓ) denotes the Hamming
weight of the binaryℓ-vectoraℓ, andT ℓα denotes a binomial
random variable with parametersℓ andα, independent of all
other random variables.
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For convenience, we define the discrete random variable
Uα,β by

Uα,β =
(
T kα − kp

)
log

1− p

p
+
(
T nβ − nδ

)
log

1− δ

δ
(139)

In particular, substitutingα = p and β = δ in (139), we
observe that the terms in the right side of (139) are zero-mean
random variables whose variances are equal tokV(d) andnV ,
respectively.

Furthermore, the binomial sum is denoted by
〈
k

ℓ

〉
=

ℓ∑

i=0

(
k

i

)
(140)

A straightforward particularization of thed-tilted informa-
tion converse in Theorem2 leads to the following result.

Theorem 11(Converse, BMS-BSC). Any (k, n, d, ǫ) code for
transmission of a BMS with biasp over a BSC with biasδ
must satisfy

ǫ ≥ sup
γ≥0

{
P [Up,δ ≥ nC − kR(d) + γ]− exp (−γ)

}
(141)

Proof: Let PȲ n = PY n⋆ , which is the equiprobable
distribution on{0, 1}n. An easy exercise reveals that

Sk(sk, d) = ıSk(sk)− kh(d) (142)

ıSk(sk) = kh(p) +
(
w(sk)− kp

)
log

1− p

p
(143)

ıXn;Y n⋆(xn; yn) = n (log 2− h(δ))

− (w(yn − xn)− nδ) log
1− δ

δ
(144)

Sincew(Y n − xn) is distributed asT nδ regardless ofxn ∈
{0, 1}n, and w(Sk) is distributed asT kp , the condition in
Theorem2 is satisfied, and (37) becomes (141).

The hypothesis-testing converse in Theorem4 particularizes
to the following result:

Theorem 12(Converse, BMS-BSC). Any (k, n, d, ǫ) code for
transmission of a BMS with biasp over a BSC with biasδ
must satisfy

P

[
U 1

2 ,
1
2
< r
]
+ λP

[
U 1

2 ,
1
2
= r
]
≤
〈

k

⌊kd⌋

〉
2−k (145)

where0 ≤ λ < 1 and scalarr are uniquely defined by

P [Up,δ < r] + λP [Up,δ = r] = 1− ǫ (146)

Proof: As in the proof of Theorem11, we let PȲ n be
the equiprobable distribution on{0, 1}n, PȲ n = PY n⋆ . Since
under PY n|Xn=xn , w (Y n − xn) is distributed asT nδ , and
underPY n⋆ , w (Y n − xn) is distributed asT n1

2

, irrespective
of the choice ofxn ∈ An, the distribution of the information
density in (144) does not depend on the choice ofxn under
either measure, so Theorem5 can be applied. Further, we
chooseQSk to be the equiprobable distribution on{0, 1}k and
observe that underPSk , the random variablew(Sk) in (143)
has the same distribution asT kp , while underQSk it has the

same distribution asT k1
2

. Therefore, the log-likelihood ratio for
testing betweenPSkPY n|Xn=xn andQSkPY n⋆ has the same
distribution as (‘∼’ denotes equality in distribution)

log
PSk(Sk)PY n|Xn=xn(Y n)

QSk(Sk)PY n⋆(Y n)

= ıXn;Y n⋆(xn;Y n)− ıSk(Sk) + k log 2 (147)

∼ n log 2− nh(δ)− kh(p)

−
{
Up,δ underPSkPY n|Xn=xn

U 1
2 ,

1
2

underQSkPY n⋆

(148)

so β1−ǫ(PSkPY n|Xn=xn , QSkPY n⋆) is equal to the left side
of (145). Finally, matching the size of the list to the fidelity
of reproduction using (55), we find thatL is equal to the right
side of (145).

If the source is equiprobable, the bound in Theorem12
becomes particularly simple, as the following result details.

Theorem 13 (Converse, EBMS-BSC). For p = 1
2 , if there

exists a(k, n, d, ǫ) joint source-channel code, then

λ

(
n

r⋆ + 1

)
+
〈 n
r⋆

〉
≤
〈

k

⌊kd⌋

〉
2n−k (149)

where

r⋆ = max

{
r :

r∑

t=0

(
n

t

)
δt(1 − δ)n−t ≤ 1− ǫ

}
(150)

andλ ∈ [0, 1) is the solution to

r⋆∑

j=0

(
n

t

)
δt(1−δ)n−t+λδr⋆+1(1−δ)n−r⋆−1

(
n

r⋆ + 1

)
= 1−ǫ

(151)

The achievability result in Theorem8 is particularized as
follows.

Theorem 14 (Achievability, BMS-BSC). There exists an
(k, n, d, ǫ) joint source-channel code with

ǫ ≤ inf
γ>0

{
E

[
exp

(
− |U − log γ|+

)]
+ e1−γ

}
(152)

where

U = nC − (T nδ − nδ) log
1− δ

δ
− log

1

ρ(T kp )
(153)

and ρ : {0, 1, . . . , k} 7→ [0, 1] is defined as

ρ(T ) =

k∑

t=0

L(T, t)qt(1 − q)k−t (154)

with

L(T, t) =

{(
T
t0

)(
k−T
t−t0

)
t− kd ≤ T ≤ t+ kd

0 otherwise
(155)

t0 =

⌈
t+ T − kd

2

⌉+
(156)

q =
p− d

1− 2d
(157)
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Proof: We weaken the infima overPXn andPZk in (108)
by choosing them to be the product distributions generated
by the capacity-achieving channel input distribution and the
rate-distortion function-achieving reproduction distribution, re-
spectively, i.e.PXn is equiprobable on{0, 1}n, andPZk =
PZ⋆ × . . .×PZ⋆ , wherePZ⋆(1) = q. As shown in [9, proof of
Theorem 21],

PZk

(
Bd(s

k)
)
≥ ρ(w(sk)) (158)

On the other hand,|Y n−Xn|0 is distributed asT nδ , so (152)
follows by substituting (144) and (158) into (108).

In the special case of the BMS-BSC, Theorem10 can be
strengthened as follows.

Theorem 15 (Gaussian approximation, BMS-BSC). The pa-
rameters of the optimal(k, n, d, ǫ) code satisfy(114) where
R(d), C, V(d), V are given by(135), (136), (137), (138),
respectively, and the remainder term in(114) satisfies

O (1) ≤ θ (n) (159)

≤ logn+ log logn+O (1) (160)

if 0 < d < p, and

−1

2
logn+O (1) ≤ θ (n) (161)

≤ 1

2
logn+O (1) (162)

if d = 0.

Proof: An asymptotic analysis of the converse bound
in Theorem12 akin to that found in [9, proof of Theorem
23] leads to (159) and (161). An asymptotic analysis of the
achievability bound in Theorem14 similar to the one found
in [9, Appendix G] leads to (160). Finally, (162) is the same
as (125).

The bounds and the Gaussian approximation (in which we
takeθ (n) = 0) are plotted in Fig.4 (d = 0), Fig. 5 (fair binary
source,d > 0) and Fig.6 (biased binary source,d > 0). A
source of fair coin flips has zero dispersion, and as anticipated
in Remark8, JSSC does not afford much gain in the finite
blocklength regime (Fig.5). Moreover, in that case the JSCC
achievability bound in Theorem8 is worse than the SSCC
achievability bound. However, the more general achievability
bound in Theorem7 with the choiceW = M , as detailed in
Remark7, nearly coincides with the SSCC curve in Fig.5,
providing an improvement over Theorem8. The situation is
different if the source is biased, with JSCC showing significant
gain over SSCC (Figures4 and6).

VII. T RANSMISSION OF AGMS
OVER AN AWGN CHANNEL

In this section we analyze the setup where the Gaussian
memoryless sourceSi ∼ N (0, σ2

S
) is transmitted over an

AWGN channel, which, upon receiving an inputxn, outputs
Y n = xn+Nn, whereNn ∼ N (0, σ2

N
I). The encoder/decoder

must satisfy two constraints, the fidelity constraint and the cost
constraint:
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Fig. 4. Rate-blocklength tradeoff for the transmission of aBMS with bias
p = 0.11 over a BSC with crossover probabilityδ = p = 0.11 andd = 0,
ǫ = 10−2 .
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Fig. 5. Rate-blocklength tradeoff for the transmission of afair BMS over
a BSC with crossover probabilityδ = d = 0.11 and ǫ = 10−2.

• the MSE distortion exceeds0 ≤ d ≤ σ2
S

with probability
no greater than0 < ǫ < 1;

• each channel codeword satisfies the equal power con-
straint in (133).7

The capacity-cost function and the rate-distortion function
are given by

R(d) =
1

2
log

(
σ2
S

d

)
(163)

C(P ) =
1

2
log (1 + P ) (164)

7See Remark12 in SectionV for a discussion of the close relation between
an equal and a maximal power constraint.
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Fig. 6. Rate-blocklength tradeoff for the transmission of aBMS with bias
p = 0.11 over a BSC with crossover probabilityδ = p = 0.11 andd = 0.05,
ǫ = 10−2.

The source dispersion is given by [9]:

V(d) = 1

2
log2 e (165)

while the channel dispersion is given by (118) [8].
In the rest of the section,W ℓ

λ denotes a noncentral chi-
square distributed random variable withℓ degrees of free-
dom and non-centrality parameterλ, independent of all other
random variables, andfW ℓ

λ
denotes its probability density

function.
A straightforward particularization of thed-tilted informa-

tion converse in Theorem2 leads to the following result.

Theorem 16 (Converse, GMS-AWGN). If there exists a
(k, n, d, ǫ) code, then

ǫ ≥ sup
γ≥0

{
P [U ≥ nC(P )− kR(d) + γ]− exp (−γ)

}

(166)

where

U =
log e

2

(
W k

0 − k
)
+

log e

2

(
P

1 + P
Wn

n
P
− n

)
(167)

Observe that the terms to the left of the ‘≥’ sign inside the
probability in (166) are zero-mean random variables whose
variances are equal tokV(d) andnV , respectively.

Proof: The spherically-symmetricPȲ n = PY n⋆ = PY⋆ ×
. . . × PY⋆ , whereY⋆ ∼ N (0, σ2

N
(1 + P )) is the capacity-

achieving output distribution, satisfies the symmetry assump-
tion of Theorem2. More precisely, it is not hard to show (see
[8, (205)]) that for allxn ∈ F(α), ıXn;Y n⋆(xn;Y n) has the
same distribution underPY n⋆|Xn=xn as

n

2
log (1 + P )− log e

2

(
P

1 + P
Wn

n
P
− n

)
(168)

The d-tilted information insk is given by

Sk(sk, d) =
k

2
log

σ2
S

d
+

( |sk|2
σ2
S

− k

)
log e

2
(169)

Plugging (168) and (169) into (37), (166) follows.
The hypothesis testing converse in Theorem5 is particular-

ized as follows.

Theorem 17 (Converse, GMS-AWGN).

k

∫ ∞

0

rk−1P

[
PWn

n(1+ 1
P )

+ k
d

σ2
r2 ≤ nτ

]
dr ≤ 1 (170)

whereτ is the solution to

P

[
P

1 + P
Wn

n
P
+W k

0 ≤ nτ

]
= 1− ǫ (171)

Proof: As in the proof of Theorem16, we let Ȳ n ∼
Y n⋆ ∼ N (0, σ2

N
(1+P )I). UnderPY n|Xn=xn , the distribution

of ıXn;Y n⋆ (xn;Y n⋆) is that of (168), while underPY n⋆ , it has
the same distribution as (cf. [8, (204)])

n

2
log(1 + P )− log e

2

(
PWn

n(1+ 1
P )

− n
)

(172)

Since the distribution ofıXn;Y n⋆(xn;Y n⋆) does not depend on
the choice ofxn ∈ Rn according to either measure, Theorem
5 applies. Further, choosingQSk to be the Lebesgue measure
on Rk, i.e. dQSk = dsk, observe that

log fSk(sk) = log
dPSk(sk)

dsk
= −k

2
log
(
2πσ2

S

)
− log e

2σ2
S

|sk|2

(173)
Now, (170) and (171) are obtained by integrating

1

{
log fSk(sk) + ıXn;Y n⋆(xn; yn) >

n

2
log(1 + P ) +

n

2
log e − k

2
log(2πσ2

S)−
log e

2
nτ

}

(174)

with respect todskdPY n⋆(yn) anddPSk(sk)dPY n|Xn=xn(yn),
respectively.

The bound in Theorem8 can be computed as follows.

Theorem 18 (Achievability, GMS-AWGN). There exists a
(k, n, d, ǫ) code such that

ǫ ≤ inf
γ>0

{
E

[
exp

{
− |U − log γ|+

}]
+ e1−γ

}
(175)

where

U = nC(P )− log e

2

(
P

1 + P
Wn

n
P
− n

)
− log

F

ρ(W k
0 )

(176)

F = max
n∈N,t∈R+

fWn
nP

(t)

fWn
0

(
t

1+P

) <∞ (177)

and ρ : R+ 7→ [0, 1] is defined by

ρ(t) =
Γ
(
k
2 + 1

)
√
πkΓ

(
k−1
2 + 1

)
(
1− L

(√
t

k

)) k−1
2

(178)
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where

L(r) =





0 r <
√

d
σ2
S

−
√
1− d

σ2
S

1
∣∣∣r −

√
1− d

σ2
S

∣∣∣ >
√

d
σ2
S(

1+r2−2 d

σ2
S

)2

4

(
1− d

σ2
S

)
r2

otherwise

(179)

Proof: We compute an upper bound to (108) for the
specific case of the transmission of a GMS over an AWGN
channel. First, we weaken the infimum overPZk in (108) by
choosingPZk to be the uniform distribution on the surface
of the k-dimensional sphere with center at0 and radius
r0 =

√
kσ
√

1− d
σ2
S

. We showed in [9, proof of Theorem 37]

(see also [14], [22]) that

PZk

(
Bd(s

k)
)
≥ ρ

(
|sk|2

)
(180)

which takes care of the source random variable in (108).
We proceed to analyze the channel random variable

ıXn;Y n(Xn;Y n). Observe that sinceXn lies on the power
sphere and the noise is spherically symmetric,|Y n|2 =
|Xn +Nn|2 has the same distribution as|xn0 +Nn|2, where
xn0 is an arbitrary point on the surface of the power sphere.
Lettingxn0 = σN

√
P (1, 1, . . . , 1), we see that1σN

|xn0+Nn|2 =
∑n

i=1

(
1
σ2
N

Ni +
√
P
)2

has the non-central chi-squared distri-
bution withn degrees of freedom and noncentrality parameter
nP . To simplify calculations, we express the information
density as

ıXn;Y n(xn0 ; y
n) = ıXn;Y n⋆(xn0 ; y

n)− log
dPY n

dPY n⋆

(yn) (181)

where Y n⋆ ∼ N (0, σ2
N
(1 + P )I). The distribution of

ıXn;Y n⋆(xn0 ;Y
n) is the same as (168). Further, due to the

spherical symmetry of bothPY n and PY n⋆ , as discussed
above, we have (recall that ‘∼’ denotes equality in distribution)

dPY n

dPY n⋆

(Y n) ∼
fWn

nP
(Wn

nP )

fWn
0

(
Wn

nP

1+P

) (182)

which is bounded uniformly inn as observed in [8, (425),
(435)], thus (177) is finite, and (175) follows.

The following result strengthens Theorem10 in the special
case of the GMS-AWGN.

Theorem 19 (Gaussian approximation, GMS-AWGN). The
parameters of the optimal(k, n, d, ǫ) code satisfy(114) where
R(d), C, V(d), V are given by(163), (164), (165), (118),
respectively, and the remainder term in(114) satisfies

O (1) ≤ θ (n) (183)

≤ logn+ log logn+O (1) (184)

Proof: An asymptotic analysis of the converse bound in
Theorem17 similar to that found in [9, proof of Theorem
40] leads to (183). An asymptotic analysis of the achievability
bound in Theorem18 similar to [9, Appendix K] leads to
(184).

Numerical evaluation of the bounds reveals that JSCC
noticeably outperforms SSCC in the displayed region of
blocklengths (Fig.7).
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VIII. T O CODE OR NOT TO CODE

Our goal in this section is to compare the excess distor-
tion performance of the optimal code of rate1 at channel
blocklength n with that of the optimal symbol-by-symbol
code, evaluated aftern channel uses, leveraging the bounds
in SectionsIII and IV and the approximation in SectionV.
We show certain examples in which symbol-by-symbol coding
is, in fact, either optimal or very close to being optimal.
A general conclusion drawn from this section is that even
when no coding is asymptotically suboptimal it can be a very
attractive choice for short blocklengths [2].

A. Performance of symbol-by-symbol source-channel codes

Definition 9. An (n, d, ǫ, α) symbol-by-symbol code is an
(n, n, d, ǫ, α) code (f, g) (according to Definition2) that
satisfies

f(sn) = (f1(s1), . . . , f1(sn)) (185)

g(yn) = (g1(y1), . . . , g1(yn)) (186)

for some pair of functionsf1 : S 7→ A and g1 : B 7→ Ŝ.
The minimum excess distortion achievable with symbol-by-

symbol codes at channel blocklengthn, excess probabilityǫ
and costα is defined by

D1(n, ǫ, α) = inf {d : ∃(n, d, ǫ, α) symbol-by-symbol code} .
(187)

Definition 10. The distortion-dispersion function of symbol-
by-symbol joint source-channel coding is defined as

W1(α) = lim
ǫ→0

lim sup
n→∞

n (D (C(α)) −D1(n, ǫ, α))
2

2 loge
1
ǫ

(188)
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whereD(·) is the distortion-rate function of the source.

As before, if there is no channel input-cost constraint
(cn(xn) = 0 for all xn ∈ An), we will simplify the notation
and writeD1(n, ǫ) for D1(n, ǫ, α) andW1 for W1(α).

In addition to restrictions (i)–(iv) of SectionV, we assume
that the channel and the source are probabilistically matched
in the following sense (cf. [7]).

(v) There existα, PX⋆|S andPZ⋆|Y such thatPX⋆ andPZ⋆|S
generated by the joint distributionPSPX⋆|SPY|XPZ⋆|Y
achieve the capacity-cost functionC(α) and the
distortion-rate functionD (C(α)), respectively.

Condition (v) ensures that symbol-by-symbol transmission at-
tains the minimum average (over source realizations) distortion
achievable among all codes of any blocklength. The following
results pertain to the full distribution of the distortion incurred
at the receiver output and not just its mean.

Theorem 20 (Achievability, symbol-by-symbol code). Under
restrictions(i)-(v), if

P

[
n∑

i=1

d(Si, Z
⋆
i ) > nd

]
≤ ǫ (189)

wherePZn⋆|Sn = PZ⋆|S × . . . × PZ⋆|S, and PZ⋆|S achieves
D (C(α)), then there exists an(n, d, ǫ, α) symbol-by-symbol
code (average cost constraint).

Proof: If (v) holds, then there exist a symbol-by-symbol
encoder and decoder such that the conditional distributionof
the output of the decoder given the source outcome coincides
with distributionPZ⋆|S, so the excess-distortion probability of
this symbol-by-symbol code is given by the left side of (189).

Theorem 21 (Converse, symbol-by-symbol code). Under re-
striction (i) and separable distortion measure, the parameters
of any (n, d, ǫ, α) symbol-by-symbol code (average cost con-
straint) must satisfy

ǫ ≥ inf
PZ|S :

I(S;Z)≤C(α)

P

[
n∑

i=1

d(Si, Zi) > nd

]
(190)

wherePZn|Sn = PZ|S × . . .× PZ|S.

Proof: The excess-distortion probability at blocklengthn,
distortiond and costα achievable among all single-letter codes(
PX|S, PZ|Y

)
must satisfy

ǫ ≥ inf
PX|S,PZ|Y :
S−X−Y−Z

E[c(X)]≤α

P [dn(S
n, Zn) > d] (191)

≥ inf
PX|S,PZ|Y :

E[c(X)]≤α
I(S;Z)≤I(X;Y)

P [dn(S
n, Zn) > d] (192)

where (192) holds sinceS − X − Y − Z implies I(S;Z) ≤
I(X;Y) by the data processing inequality. The right side of
(192) is lower bounded by the right side of (190) because
I(X;Y) ≤ C(α) holds for allPX with E [c(X)] ≤ α, and the
distortion measure is separable.

Theorem 22 (Gaussian approximation, optimal symbol-
-by-symbol code). AssumeE

[
d3 (S,Z⋆)

]
< ∞. Under re-

strictions (i)-(v),

D1(n, ǫ, α) = D (C(α)) +

√
W1(α)

n
Q−1 (ǫ) +

θ1(n)

n
(193)

W1(α) = Var [d(S,Z⋆)] (194)

where
θ1(n) ≤ O (1) (195)

Moreover, if there is no power constraint,

θ1(n) ≥
D′(R)

R2
θ(n) (196)

W1 = W(1) (197)

whereθ(n) is that in Theorem10.
If Var [d (S,Z⋆)] > 0 andS, Ŝ are finite, then

θ1(n) ≥ O (1) (198)

Proof: Since the third absolute moment ofd(Si, Z⋆i ) is
finite, the achievability part of the result, namely, (193) with
the remainder satisfying (195), follows by a straightforward
application of the Berry-Esseen bound to (189), provided that
Var [d(Si, Z

⋆
i )] > 0. If Var [d(Si, Z⋆i )] = 0, it follows trivially

from (189).
To show the converse in (196), observe that since the set of

all (n, n, d, ǫ) codes includes all(n, d, ǫ) symbol-by-symbol
codes, we haveD(n, n, ǫ) ≤ D1(n, ǫ). Since Q−1 (ǫ) is
positive or negative depending on whetherǫ < 1

2 or ǫ > 1
2 ,

using (130) we conclude that we must necessarily have (197),
which is, in fact, a consequence of conditions (b), (c) in
Section II and (v). Now, (196) is simply the converse part
of (129).

The proof of the refined converse in (198) is relegated to
AppendixE.

In the absence of a cost constraint, Theorem22 shows that
if the source and the channel are probabilistically matched
in the sense of [7], then not only does symbol-by-symbol
transmission achieve the minimum average distortion, but also
the dispersion of JSCC (see (197)). In other words, not only
do such symbol-by-symbol codes attain the minimum average
distortion but also the variance of distortions at the decoder’s
output is the minimum achievable among all codes operating
at that average distortion. In contrast, if there is an average
cost constraint, the symbol-by-symbol codes considered in
Theorem 22 probably do not attain the minimum excess
distortion achievable among all blocklength-n codes, not even
asymptotically. Indeed, as observed in [23], for the trans-
mission of an equiprobable source over an AWGN channel
under the average power constraint and the average block error
probability performance criterion, the strong converse does not
hold and the second-order term is of ordern− 1

3 , not n− 1
2 , as

in (193).
Two conspicuous examples that satisfy the probabilistic

matching condition (v), so that symbol-by-symbol coding is
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optimal in terms of average distortion, are the transmission of a
binary equiprobable source over a binary-symmetric channel
provided the desired bit error rate is equal to the crossover
probability of the channel [24, Sec.11.8], [25, Problem 7.16],
and the transmission of a Gaussian source over an additive
white Gaussian noise channel under the mean-square error
distortion criterion, provided that the tolerable source signal-
to-noise ratio attainable by an estimator is equal to the signal-
to-noise ratio at the output of the channel [26]. We dissect
these two examples next. After that, we will discuss two
additional examples where uncoded transmission is optimal.

B. Uncoded transmission of a BMS over a BSC

In the setup of SectionVI, if the binary source is unbiased(
p = 1

2

)
, thenC = 1−h(δ), R(d) = 1−h(d), andD(C) = δ.

If the encoder and the decoder are both identity mappings
(uncoded transmission), the resulting joint distributionsatisfies
condition (v). As is well known, regardless of the blocklength,
the uncoded symbol-by-symbol scheme achieves the minimum
bit error rate (averaged over source and channel). Here, we
are interested instead in examining the excess distortion prob-
ability criterion. For example, consider an application where,
if the fraction of erroneously received bits exceeds a certain
threshold, then the entire output packet is useless.

Using (130) and (194), it is easy to verify that

W(1) = W1 = δ(1− δ) (199)

that is, uncoded transmission is optimal in terms of dispersion,
as anticipated in (197). Moreover, the uncoded transmission
attains the minimum bit error rate thresholdD(n, n, ǫ) achiev-
able among all codes operating at blocklengthn, regardless of
the allowedǫ, as the following result demonstrates.
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Fig. 8. Distortion-blocklength tradeoff for the transmission of a fair BMS
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Theorem 23(BMS-BSC, symbol-by-symbol code). Consider
the the symbol-by-symbol scheme which is uncoded ifp ≥ δ
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Fig. 9. Rate-blocklength tradeoff(a) for the transmission of a fair BMS
over a BSC with crossover probabilityδ = 0.11 andd = 0.22. The excess-
distortion probabilityǫ is set to be the one achieved by the uncoded scheme
(b).

and whose decoder always outputs the all-zero vector ifp < δ.
It achieves, at blocklengthn and excess distortion probability
ǫ, regardless of0 ≤ p ≤ 1

2 , δ ≤ 1
2 ,

D1(n, ǫ) =

min



d :

⌊nd⌋∑

t=0

(
n

t

)
min{p, δ}t(1−min{p, δ})n−t ≥ 1− ǫ





(200)

Moreover, if the source is equiprobable
(
p = 1

2

)
,

D1(n, ǫ) = D(n, n, ǫ) (201)
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Proof: Direct calculation yields (200). To show (201), let
us compared⋆ = D1(n, ǫ) with the conditions imposed ond
by Theorem13. Comparing (200) to (150), we see that either
(a) equality in (200) is achieved,r⋆ = nd⋆, λ = 0, and

(pluggingk = n into (149))
〈 n

nd⋆

〉
≤
〈

n

⌊nd⌋

〉
(202)

thereby implying thatd ≥ d⋆, or
(b) r⋆ = nd⋆ − 1, λ > 0, and (149) becomes

λ

(
n

nd⋆

)
+

〈
n

nd⋆ − 1

〉
≤
〈

n

⌊nd⌋

〉
(203)

which also impliesd ≥ d⋆. To see this, note thatd < d⋆

would imply⌊nd⌋ ≤ nd⋆−1 sincend⋆ is an integer, which
in turn would require (according to (203)) that λ ≤ 0,
which is impossible.

For the transmission of the fair binary source over a BSC,
Fig. 8 shows the distortion achieved by the uncoded scheme,
the separated scheme and the JSCC scheme of Theorem14
versusn for a fixed excess-distortion probabilityǫ = 0.01.
The no coding / converse curve in Fig.8 depicts one of those
singular cases where the non-asymptotic fundamental limit
can be computed precisely. As evidenced by this curve, the
fundamental limits need not be monotonic with blocklength.

Figure 9(a) shows the rate achieved by separate coding
when d > δ is fixed, and the excess-distortion probabilityǫ,
shown in Fig.9(b), is set to be the one achieved by uncoded
transmission, namely, (200). Figure9(a)highlights the fact that
at short blocklengths (sayn ≤ 100) separate source/channel
coding is vastly suboptimal. As the blocklength increases,
the performance of the separated scheme approaches that of
the no-coding scheme, but according to Theorem23 it can
never outperform it. Had we allowed the excess distortion

probability to vanish sufficiently slowly, the JSCC curve would
have approached the Shannon limit asn → ∞. However, in
Figure 9(a), the exponential decay inǫ is such that there is
indeed an asymptotic rate penalty as predicted in [11].

For the biased binary source withp = 2
5 and BSC with

crossover probability0.11, Figure10 plots the maximum dis-
tortion achieved with probability0.99 by the uncoded scheme,
which in this case is asymptotically suboptimal. Nevertheless,
uncoded transmission performs remarkably well in the dis-
played range of blocklengths, achieving the converse almost
exactly at blocklengths less than100, and outperforming the
JSCC achievability result in Theorem14 at blocklengths as
long as 700. This example substantiates that even in the
absence of a probabilistic match between the source and
the channel, symbol-by-symbol transmission, though asymp-
totically suboptimal, might outperform SSCC and even our
random JSCC achievability bound in the finite blocklength
regime.

C. Symbol-by-symbol coding for lossy transmission of a GMS
over an AWGN channel

In the setup of SectionVII , using (163) and (164), we find
that

D(C(P )) =
σ2
S

1 + P
(204)

The next result characterizes the distribution of the distortion
incurred by the symbol-by-symbol scheme that attains the
minimum average distortion.

Theorem 24 (GMS-AWGN, symbol-by-symbol code). The
following symbol-by-symbol transmission scheme in which the
encoder and the decoder are the amplifiers:

f1(s) = as, a2 =
Pσ2

N

σ2
S

(205)

g1(y) = by, b =
aσ2

S

a2σ2
S
+ σ2

N

(206)

is an (n, d, ǫ, P ) symbol-by-symbol code (with average cost
constraint) such that

P [Wn
0 D(C(P )) > nd] = ǫ (207)

whereWn
0 is chi-square distributed withn degrees of freedom.

Note that (207) is a particularization of (189). Using (207),
we find that

W1(P ) = 2
σ4
S

(1 + P )2
(208)

On the other hand, using (130), we compute

W(1, P ) = 2
σ4
S

(1 + P )
2

(
2− 1

(1 + P )
2

)
(209)

>W1(P ) (210)

The difference between (210) and (197) is due to the fact that
the optimal symbol-by-symbol code in Theorem24 obeys an
average power constraint, rather than the more stringent max-
imal power constraint of Theorem10, so it is not surprising
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that for the practically interesting caseǫ < 1
2 the symbol-

by-symbol code can outperform the best code obeying the
maximal power constraint. Indeed, in the range of blocklenghts
displayed in Figure11, the symbol-by-symbol code even
outperforms the converse for codes operating under a maximal
power constraint.
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D. Uncoded transmission of a discrete memoryless source
(DMS) over a discrete erasure channel (DEC) under erasure
distortion measure

For a discrete source, the single-letter erasure distortion
measure is defined as the following mappingd : S×{S, e} 7→
[0,∞]:8

d(s, z) =





0 z = s

H(S) z = e

∞ otherwise

(211)

For any 0 ≤ d ≤ H(S), the rate-distortion function of the
equiprobable source is achieved by

PZ⋆|S=s(z) =

{
1− d

H(S) z = s
d

H(S) z = e
(212)

The rate-distortion function and thed-tilted information for
the equiprobable source with the erasure distortion measure
are given by, respectively,

R(d) = H(S)− d (213)

S(s, d) = ıS(s)− d (214)

Note that, trivially, S(S, d) = R(d) = log |S| − d a.s. The
channel that is matched to the equiprobable DMS with the

8The distortion measure in (211) is a scaled version of the erasure distortion
measure found in literature, e.g. [27].

erasure distortion measure is the DEC, whose single-letter
transition probability kernelPY|X : A 7→ {A, e} is

PY|X=x(y) =

{
1− δ y = x

δ y = e
(215)

and whose capacity is given byC = log |A| − δ, achieved by
equiprobablePX⋆ . For PS equiprobable onS = A, we find
thatD(C) = δ log |S|, and

W1 = δ (1− δ) log2 |S| (216)

E. Symbol-by-symbol transmission of a DMS over a DEC
under logarithmic loss

Let the source alphabetS be finite, and let the reproduction
alphabetŜ be the set of all probability distributions onS. The
single-letter logarithmic loss distortion measured : S × Ŝ 7→
R+ is defined by [28], [29]

d(s, PZ) = ıZ(s) (217)

Curiously, for any0 ≤ d ≤ H(S), the rate-distortion
function and thed-tilted information are given respectively
by (213) and (214), even if the source is not equiprobable. In
fact, the rate-distortion function is achieved by,

PP⋆
Z
|S=s(PZ) =

{
d

H(S) PZ = PS

1− d
H(S) PZ = 1S(s)

(218)

and the channel that is matched to the equiprobable source
under logarithmic loss is exactly the DEC in (215). Of course,
unlike SectionVIII-D , the decoder we need is a simple one-
to-one function that outputsPS if the channel output ise, and
1S(y) otherwise, wherey 6= e is the output of the DEC. Finally,
it is easy to verify that the distortion-dispersion function of
symbol-by-symbol coding under logarithmic loss is the same
as that under erasure distortion and is given by (216).

IX. CONCLUSION

In this paper we gave a non-asymptotic analysis of joint
source-channel coding including several achievability and con-
verse bounds, which hold in wide generality and are tight
enough to determine the dispersion of joint source-channel
coding for the transmission of an abstract memoryless source
over either a DMC or a Gaussian channel, under an arbitrary
fidelity measure. We also investigated the penalty incurredby
separate source-channel coding using both the source-channel
dispersion and the particularization of our new bounds to
(i) the binary source and the binary symmetric channel with
bit error rate fidelity criterion and (ii) the Gaussian source
and Gaussian channel under mean-square error distortion.
Finally, we showed cases where symbol-by-symbol (uncoded)
transmission beats any other known scheme in the finite
blocklength regime even when the source-channel matching
condition is not satisfied.

The approach taken in this paper to analyze the non-
asymptotic fundamental limits of lossy joint source-channel
coding is two-fold. Our new achievability and converse bounds
apply to abstract sources and channels and allow for memory,
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while the asymptotic analysis of the new bounds leading to the
dispersion of JSCC is focused on the most basic scenario of
transmitting a stationary memoryless source over a stationary
memoryless channel.

The major results and conclusions are the following.

1) A general new converse bound (Theorem3) leverages the
concept ofd-tilted information (Definition5), a random
variable which corresponds (in a sense that can be formal-
ized [9], [30]) to the number of bits required to represent
a given source outcome within distortiond and whose role
in lossy compression is on a par with that of information
(in (20)) in lossless compression.

2) The converse result in Theorem4 capitalizes on two
simple observations, namely, that any(d, ǫ) lossy code can
be converted to a list code with list error probabilityǫ,
and that a binary hypothesis test betweenPSXY and an
auxiliary distribution on the same space can be constructed
by choosingPSXY when there is no list error. We have
generalized the conventional notion of list, to allow the
decoder to output a possibly uncountable set of source
realizations.

3) As evidenced by our numerical results, the converse result
in Theorem5, which applies to those channels satisfying a
certain symmetry condition and which is a consequence
of the hypothesis testing converse in Theorem4, can
outperform thed-tilted information converse in Theorem
3. Nevertheless, it is Theorem3 that lends itself to analysis
more easily and that leads to the JSCC dispersion for the
general DMC.

4) Our random-coding-based achievability bound (Theorem7)
provides insights into the degree of separation between the
source and the channel codes required for optimal perfor-
mance in the finite blocklength regime. More precisely,
it reveals that the dispersion of JSCC can be achieved
in the class of(M,d, ǫ) JSCC codes (Definition8). As
in separate source/channel coding, in(M,d, ǫ) coding the
inner channel coding block is connected to the outer source
coding block by a noiseless link of capacitylogM , but
unlike SSCC, the channel (resp. source) code can be chosen
based on the knowledge of the source (resp. channel). The
conventional SSCC in which the source code is chosen
without knowledge of the channel and the channel code is
chosen without knowledge of the source, although known
to achieve the asymptotic fundamental limit of joint source-
channel coding under certain quite weak conditions, is in
general suboptimal in the finite blocklength regime.

5) Since E [d(S,Z)] =
∫∞
0 P [d(S,Z) > ξ] dξ, bounds for

average distortion can be obtained by integrating our
bounds on excess distortion. Note, however, that the code
that minimizesP [d(S,Z) > ξ] depends onξ. Since the
distortion cdf of any single code does not majorize the
cdfs of all possible codes, the converse bound on the
average distortion obtained through this approach, although
asymptotically tight, may be loose at short blocklengths.
Likewise, regarding achievability bounds (e.g. (108)), the
optimization over channel and source random codes,PX
andPZ , must be performed after the integration, so that the

choice of code does not depend on the distortion threshold
ξ.

6) For the transmission of a stationary memoryless source
over a stationary memoryless channel, the Gaussian ap-
proximation in Theorem10 (neglecting the remainder
θ(n)) provides a simple estimate of the maximal non-
asymptotically achievable joint source-channel coding rate.
Appealingly, the dispersion of joint source-channel coding
decomposes into two terms, the channel dispersion and
the source dispersion. Thus, only two channel attributes,
the capacity and dispersion, and two source attributes, the
rate-distortion and rate-dispersion functions, are required to
compute the Gaussian approximation to the maximal JSCC
rate.

7) In those curious cases where the source and the channel are
probabilistically matched so that symbol-by-symbol coding
attains the minimum possible average distortion, Theorem
22 ensures that it also attains the dispersion of joint source-
channel coding, that is, symbol-by-symbol coding results
in the minimum variance of distortions among all codes
operating at that average distortion.

8) Even in the absence of a probabilistic match between
the source and the channel, symbol-by-symbol transmis-
sion, though asymptotically suboptimal, might outperform
separate source-channel coding and joint source-channel
random coding in the finite blocklength regime.
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APPENDIX A
THE BERRY-ESSEEN THEOREM

The following result is an important tool in the Gaussian
approximation analysis.

Theorem 25(Berry-Esseen CLT, e.g. [31, Ch. XVI.5 Theorem
2]). Fix a positive integern. Let Wi, i = 1, . . . , n be
independent. Then, for any realt
∣∣∣∣∣P
[

n∑

i=1

Wi > n

(
Dn + t

√
Vn
n

)]
−Q(t)

∣∣∣∣∣ ≤
Bn√
n
, (219)

where

Dn =
1

n

n∑

i=1

E [Wi] (220)

Vn =
1

n

n∑

i=1

Var [Wi] (221)

Tn =
1

n

n∑

i=1

E
[
|Wi − E [Wi] |3

]
(222)

Bn =
c0Tn

V
3/2
n

(223)

and 0.4097 ≤ c0 ≤ 0.5600 (0.4097 ≤ c0 < 0.4784 for
identically distributedWi).
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APPENDIX B
AUXILIARY RESULT ON THE MINIMIZATION OF THE

INFORMATION SPECTRUM

Given a finite setA, we say thatxn ∈ An has typePX if
the number of times each lettera ∈ A is encountered inxn is
nPX(a). Let P be the set of all distributions onA, which is
simply the standard|A| − 1 simplex inR|A|. For an arbitrary
subsetD ⊆ P , denote byD[n] the set of distributions inD
that are alson-types, that is,

D[n] = {PX ∈ D : ∀a ∈ A, nPX(a) is an integer} (224)

Denote byΠ(PX) the minimum Euclidean distance approxi-
mation ofPX ∈ P in the set ofn-types, that is,

Π(PX) = arg min
P̂X∈P[n]

∣∣∣PX − P̂X

∣∣∣ (225)

Let P⋆ be the set of capacity-achieving distributions:9

P⋆ = {PX ∈ P : I(X;Y) = C} (226)

Denote the minimum (maximum) information variances
achieved by the distributions inP⋆ by

Vmin = min
PX∈P⋆

Var [ıX;Y(X;Y)] (227)

Vmax = max
PX∈P⋆

Var [ıX;Y(X;Y)] (228)

and letP⋆min ⊆ P⋆ be the set of capacity-achieving distribu-
tions that achieve the minimum information variance:

P⋆min = {PX ∈ P⋆ : Var [ıX;Y(X;Y)] = Vmin} (229)

and analogouslyP⋆max for the distributions inP⋆ with max-
imal variance. Lemma1 below allows to show that in the
memoryless case, the infimum inside the expectation in (39)
with W = type (Xn) and PȲ n|W=PX

= PY × . . . × PY,
wherePY is the output distribution induced by the typePX,
is approximately attained by those sequences whose type is
closest to the capacity-achieving distributionPX⋆ (if it is non-
unique,PX⋆ is chosen appropriately based on the information
variance it achieves). This technical result is the key to proving
the converse part of Theorem10.

Lemma 1. There exist∆̄ > 0 such that for all sufficiently
large n:

1) If Vmin > 0, then there existsK > 0 such that for|∆| ≤
∆̄,

min
xn∈An

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ n (C −∆)

]

≥ P

[
n∑

i=1

ıX;Y(x
⋆
i ;Yi) ≤ n (C −∆)

]
− K√

n
(230)

where(230) holds for anyxn⋆ with type(xn⋆) = Π(P ⋆
X
)

for P ⋆
X
∈ P⋆min if ∆ ≥ 0 andP ⋆

X
∈ P⋆max if ∆ < 0.

9In this appendix, we dispose of the assumption (c) in SectionII that the
capacity-achieving input distribution is unique.

2) If Vmax = 0, then for all0 < α < 3
2 and∆ ≥ ∆̄

n
1
2
+α

,

min
xn∈An

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ n (C +∆)

]
≥ 1− 1

n
1
4− 3

2α

(231)
The information densities in the left sides of(230) and (231)
are computed with

{
PY|X=xi

, PY

}
, wherePY is induced by

the type ofxn, i.e. type(xn) = PX → PY|X → PY, and that
in the right side of (230) is computed with

{
PY|X=x⋆

i
, PY

}
,

wherePY is induced by the type ofxn⋆, i.e. type(xn⋆) =
PX → PY|X → PY. The independent random variablesYi in
the left sides of(230) and (231) have distributionPY|X=xi

,
while Yi in the right side of(230) have distributionPY|X=x⋆

i
.

In order to prove Lemma1, we first show three auxiliary
lemmas. The first two deal with approximate optimization of
functions.

If f andg approximate each other, and the minimum off
is approximately attained atx, then g is also approximately
minimized atx, as the following lemma formalizes.

Lemma 2. Fix η > 0, ξ > 0. Let D be an arbitrary set, and
let f : D 7→ R and g : D 7→ R be such that

sup
x∈D

|f(x)− g(x)| ≤ η (232)

Further, assume thatf and g attain their minima. Then,

g(x) ≤ min
y∈D

g(y) + ξ + 2η (233)

as long asx satisfies

f(x) ≤ min
y∈D

f(y) + ξ (234)

(see Fig.12).

x

f

g

η

η

ξ

Fig. 12. An example where (233) holds with equality.

Proof of Lemma2: Let x⋆ ∈ D be such thatg(x⋆) =
miny∈D g(y). Using (232) and (234), write

g(x) ≤ min
y∈D

f(y) + g(x)− f(x) + ξ (235)

≤ min
y∈D

f(y) + η + ξ (236)

≤ f(x⋆) + η + ξ (237)

= g(x⋆)− g(x⋆) + f(x⋆) + η + ξ (238)

≤ g(x⋆) + 2η + ξ (239)
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The following lemma is reminiscent of [8, Lemma 64].

Lemma 3. LetD be a compact metric space, and letd : D2 →
R+ be a metric. Fixf : D 7→ R and g : D 7→ R. Let

D⋆ =

{
x ∈ D : f(x) = max

y∈D
f(y)

}
(240)

Suppose that for some constantsℓ > 0, L > 0, we have, for
all (x, x⋆) ∈ D ×D⋆,

f(x⋆)− f(x) ≥ ℓd2(x, x⋆) (241)

|g(x⋆)− g(x)| ≤ Ld(x, x⋆) (242)

Then, for any positive scalarsϕ, ψ,

max
x∈D

{ϕf(x)± ψg(x)} ≤ ϕf(x⋆)± ψg(x⋆) +
L2ψ2

4ℓϕ
(243)

Moreover, if, instead of(241), f satisfies

f(x⋆)− f(x) ≥ ℓd(x, x⋆) (244)

then, for any positive scalarsψ, ϕ such that

Lψ ≤ ℓϕ (245)

we have

max
x∈D

{ϕf(x)± ψg(x)} = ϕf(x⋆)± ψg(x⋆) (246)

Proof of Lemma3: Let x0 achieve the maximum on the
left side of (243). Using (241) and (242), we have, for all
x⋆ ∈ D⋆,

0 ≤ ϕ (f(x0)− f(x⋆))± ψ (g(x0)− g(x⋆)) (247)

≤ −ℓϕd2(x0, x⋆) + Lψd(x0, x
⋆) (248)

≤ L2ψ2

4ℓϕ
(249)

where (249) follows because the maximum of (248) is
achieved atd(x0, x⋆) =

Lψ
2ℓϕ .

To show (246), observe using (244) and (242) that

0 ≤ ϕ (f(x0)− f(x⋆))± ψ (g(x0)− g(x⋆)) (250)

≤ (−ℓϕ+ Lψ)d(x0, x
⋆) (251)

≤ 0 (252)

where (252) follows from (245).

The following lemma deals with asymptotic behavior of the
Q-function.

Lemma 4. Fix a ≥ 0, b ≥ 0. Then, there existsq ≥ 0
(explicitly computed in the proof) such that for allz ≥ −

√
n

2b
and all n large enough,

Q

(
z − a√

n

)
−Q

(
z +

b√
n
z2
)

≤ q√
n

(253)

Proof of Lemma4:

Q(x) is convex forx ≥ 0, andQ′(x) = − 1√
2π
e−

x2

2 , so for
x ≥ 0, ξ ≥ 0

Q(x+ ξ) ≥ Q(x)− ξ√
2π
e−

x2

2 (254)

while for arbitraryx andξ ≥ 0,

Q(x+ ξ) ≥ Q(x)− ξ√
2π

(255)

If z ≥ a√
n

, we use (254) to obtain

Q

(
z − a√

n

)
−Q

(
z +

b√
n
z2
)

(256)

≤ 1√
2π
e−

(
z− a√

n

)2

2

(
b√
n
z2 +

a√
n

)
(257)

≤ bz2√
2πn

e−

(
z− a√

n

)2

2 +
a√
2πn

(258)

≤ 3b e−1 + a√
2πn

(259)

where (259) holds forn large enough because the maximum
of (258) is attained atz =

√
2 + a

4n + a
2
√
n

.
If 0 ≤ z ≤ a√

n
, we use (255) to obtain

Q

(
z − a√

n

)
−Q

(
z +

b√
n
z2
)

≤ 1√
2π

(
b√
n
z2 +

a√
n

)
(260)

≤ a√
2πn

(
1 +

ab

n

)
(261)

If −
√
n

2b ≤ z ≤ 0, we useQ(x) = 1−Q(−x) to obtain

Q

(
z − a√

n

)
−Q

(
z +

b√
n
z2
)

= Q

(
|z| − b√

n
z2
)
−Q

(
|z|+ a√

n

)
(262)

≤ 1√
2π
e−

z2
(
1− b√

n
|z|

)2

2

(
b√
n
z2 +

a√
n

)
(263)

≤ bz2√
2πn

e−
z2

(
1− b√

n
|z|

)2

2 +
a√
2πn

(264)

≤ bz2√
2πn

e−
z2

8 +
a√
2πn

(265)

≤ 8be−1 + a√
2πn

(266)

where (265) is due to
(
1− b√

n
|z|
)2

≥ 1
4 in |z| ≤

√
n

2b , and

(266) holds because the maximum of (265) is attained atz2 =
8.

We are now equipped to prove Lemma1.
Proof of Lemma1:

Define the following functionsP 7→ R+:

I(PX) = I(X;Y) = E [ıX;Y(X;Y)] (267)

V (PX) = E [Var [ıX;Y(X;Y) | X]] (268)

T (PX) = E

[
|ıX;Y(X;Y) − E [ıX;Y(X;Y)|X]|3 | X

]
(269)
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If PX = type(xn), then for eacha ∈ A, there arenPX(a) oc-
currences ofPY|X=a among the{PY|X=xi

, i = 1, 2, . . . , n}. In
the sequel we will invoke Theorem25 with Wi = ıX;Y(xi;Yi)
wherexn is a given sequence, and (220)–(222) become

Dn =
1

n

|A|∑

a=1

nPX(a)E [ıX;Y(a;Y) | X = a] (270)

= I(PX) (271)

Vn =
1

n




|A|∑

a=1

nPX(a)Var [ıX;Y(a;Y) | X = a]


 (272)

= V (PX) (273)

Tn =
1

n




|A|∑

a=1

nPX(a) |ıX;Y(a;Y)− E [ıX;Y(a;Y)|X = a]|3



= T (PX) (274)

Define the (Euclidean)δ-neighborhood of the set of
capacity-achieving distributionsP⋆,

P⋆δ =

{
PX ∈ P : min

PX⋆∈P⋆
|PX − PX⋆ | ≤ δ

}
(275)

We split the domain of the minimization in the left side
of (230) into two sets,type(xn) ∈ P⋆δ,[n] and type(xn) ∈
P[n]\P⋆δ (recall notation (224)), for an appropriately chosen
δ > 0.

We now show that (230) holds for all ∆ ≤ ∆I

2 if the
minimization is restricted to types inP[n]\P⋆δ , whereδ > 0
is arbitrary, and

∆I = C − max
PX∈P[n]\P⋆

δ

I(PX) > 0 (276)

By Chebyshev’s inequality, for allxn whose type belongs to
P[n]\P⋆δ ,

P

[
n∑

i=1

ıX;Y(xi;Yi) > n(C −∆)

]
(277)

= P

[
n∑

i=1

ıX;Y(xi;Yi)− nI(PX) > n(C − I(PX))− n∆

]

(278)

≤ P

[
n∑

i=1

ıX;Y(xi;Yi)− nI(PX) >
n∆I

2

]
(279)

≤ P



(

n∑

i=1

ıX;Y(xi;Yi)− nI(PX)

)2

>
n2∆2

I

4


 (280)

≤ 4nV (PX)

n2∆2
I

(281)

≤ 4V

n∆2
I

(282)

where in (279) we used

∆ ≤ 1

2
∆I < ∆I ≤ C − I(PX) (283)

and
V = max

PX∈P
V (PX) (284)

Note thatV <∞ by Property1 below. Therefore,

min
type(xn)∈P[n]\P⋆

δ

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ n(C −∆)

]
(285)

> 1− 4V

n∆2
I

(286)

≥ P

[
n∑

i=1

ıX;Y(x
⋆
i ;Yi) ≤ n(C −∆)

]
− 4V

n∆2
I

(287)

We conclude that (230) holds if the minimization is restricted
to types inP[n]\P⋆δ .

Without loss of generality, we assume that all outputs inB
are accessible (which implies thatPY⋆(y) > 0 for all y ∈ B)
and chooseδ > 0 so that for allPX ∈ P⋆δ andy ∈ B,

PY(y) > 0 (288)

wherePX → PY|X → PY. We recall the following properties
of the functionsI(·), V (·) and T (·) from [8, Appendices E
and I].

Property 1. The functionsI(PX), V (PX) and T (PX) are
continuous on the compact setP , and therefore bounded and
achieve their extrema.

Property 2. There existsℓ1 > 0 such that for all(PX⋆ , PX) ∈
P⋆ × P⋆δ ,

C − I(PX) ≥ ℓ1 |PX − PX⋆ |2 (289)

Property 3. In P⋆δ , the functionsI(PX), V (PX) and T (PX)
are infinitely differentiable.

Property 4. In P⋆, V (PX) = Var [ıX;Y(X;Y)].

Due to Property3, there exist nonnegative constantsL1 and
L2 such that for all(PX, PX⋆) ∈ P⋆δ × P⋆,

C − I(PX) ≤ L1 |PX − PX⋆ | (290)

|V (PX)− V (PX⋆)| ≤ L2 |PX − PX⋆ | (291)

To treat the casexn ∈ P⋆δ,[n], we will need to chooseδ > 0
carefully and to consider the casesVmin > 0 andVmax = 0
separately.

A. Vmin > 0.

We decreaseδ until, in addition to (288),

Vmin ≤ 2 min
PX∈P⋆

δ

V (PX) (292)

is satisfied.
We now show that (230) holds if the minimization is

restricted to types inP⋆δ,[n], for all −∆ ≤ ∆ ≤ ∆I

2 , for
an appropriately chosen∆ > 0. Using (292) and boundedness
of T (PX), write

B = max
PX∈P⋆

δ

c0T (PX)

V
3
2 (PX)

≤ 2
3
2 c0T

V
3
2

min

<∞ (293)

where
T = max

PX∈P⋆
δ

T (PX) <∞ (294)
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Therefore, for anyxn with type(xn) ∈ P⋆δ,[n], the Berry-
Esseen bound yields:
∣∣∣∣∣P
[
n∑

i=1

ıX;Y(xi;Yi) ≤ n(C −∆)

]
−Q (ν(PX))

∣∣∣∣∣ ≤
B√
n

(295)
where

ν(PX) =
nI(PX)− nC + n∆√

nV (PX)
(296)

We now apply Lemma2 with D = P⋆δ,[n] and

f(PX) = Q (ν(PX)) (297)

g(PX) = P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ n(C −∆)

]
(298)

Condition (232) of Lemma 2 holds with η = B√
n

due to
(295). As will be shown in the sequel, the following version
of condition (234) holds:

Q(ν(Π(PX⋆))) ≤ min
PX∈P⋆

δ,[n]

Q(ν(PX)) +
q√
n

(299)

whereΠ(PX⋆), the minimum Euclidean distance approxima-
tion of PX⋆ in the set ofn-types, is formally defined in (225),
andq > 0 will be chosen later. Applying Lemma2, we deduce
from (233) that

min
type(xn)∈P⋆

δ,[n]

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ n(C −∆)

]

≥ P

[
n∑

i=1

ıX;Y(x
⋆
i ;Yi) ≤ n(C −∆)

]
− q + 2B√

n

(300)

We conclude that (230) holds if minimization is restricted to
types inP⋆δ,[n].

We proceed to show (299). As will be proven later, for
appropriately chosenL > 0 and L̄ > 0 we can write

√
n∆√

V (PX⋆)
− L√

n

√
|A|(|A| − 1) ≤ ν(Π (PX⋆)) (301)

≤ max
PX∈P⋆

δ,[n]

ν(PX) (302)

≤ max
PX∈P⋆

δ

ν(PX) (303)

≤
√
n∆√

V (PX⋆)
+
√
nL̄∆2

(304)

wherePX⋆ ∈ P⋆min if ∆ ≥ 0, andPX⋆ ∈ P⋆max if ∆ < 0.
Denote

a = L
√
|A| (|A| − 1) (305)

b = V (PX⋆)L̄ (306)

z =

√
n∆√

V (PX⋆)
(307)

If

∆ ≥ − 1

2L̄
√
Vmax

= −∆ (308)

then z ≥ −
√
n

2b , and Lemma4 applies toz. So, using (301),
(304), the fact thatQ(·) is monotonically decreasing and
Lemma4, we conclude that there existsq > 0 such that

Q (ν(Π(PX⋆))) − min
PX∈P⋆

δ,[n]

Q(ν(PX))

= Q (ν(Π(PX⋆))) −Q

(
max

PX∈P⋆
δ,[n]

ν(PX)

)
(309)

≤ Q

(
z − a√

n

)
−Q

(
z +

b√
n
z2
)

(310)

≤ q√
n

(311)

which is equivalent to (299).
It remains to prove (301) and (304). Observing that for

a, b > 0

∣∣∣∣
1√
a
− 1√

b

∣∣∣∣ =
|a− b|

√
a
√
b
(√

a+
√
b
) (312)

≤ |a− b|
2min {a, b} 3

2

(313)

and using (291) and (292), we have, for all(PX, PX⋆) ∈ P⋆δ ×
P⋆,

∣∣∣∣∣
1√
V (PX)

− 1√
V (PX⋆)

∣∣∣∣∣ ≤ L |PX − PX⋆ | (314)

where

L = L2

√
2

V 3
min

(315)

Thus, recalling (290) and denotingζ = |PX − PX⋆ |, we have

C − I(PX)−∆√
V (PX)

≤ L1ζ −∆√
V (PX)

(316)

≤ L1ζ −∆√
V (PX⋆)

+ Lζ (L1ζ + |∆|) (317)

≤ − ∆√
V (PX⋆)

+ Lζ (318)

where

L =
L1√
Vmin

+ Lmax

{
∆,

∆I

2

}
+ LL1δ (319)

So, (301) follows by observing that for anyPX ∈ P ,

|PX −Π(PX)| ≤
1

n

√
|A|(|A| − 1) (320)

and lettingPX = Π(PX⋆) in (316)–(318).
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To show (304), we apply Lemma3 with

D = P⋆δ (321)

D⋆ = P⋆ (322)

ϕ =
√
n (323)

ψ =
√
n|∆| (324)

f (PX) =
I(PX)− C√

V (PX)
(325)

g (PX) =
1√
V (PX)

(326)

We proceed to verify that conditions of Lemma3 are met.
Functiong satisfies condition (242) with L defined in (315).
Let us now show that functionf satisfies condition (241) with
ℓ = ℓ1√

V
, whereV and ℓ1 are defined in (284) and (289),

respectively. For any(PX, PX⋆) ∈ P⋆δ × P⋆, write

f(PX⋆)− f(PX) =
C − I(PX)√

V (PX)
(327)

≥ C − I(PX)√
V

(328)

≥ ℓ1√
V

|PX − PX⋆ |2 (329)

where (328) follows from (284), and (329) applies (289). So,
Lemma 3 applies toν(PX) = ϕf(PX) + sign(∆)ψg(PX),
resulting in (304) with

L̄ =
L2
2

√
V

2ℓ1V 3
min

(330)

thereby completing the proof of (300).

Combining (287) and (300), we conclude that (230) holds
for all ∆ in the interval

− ℓ1V
3
min

L2
2

√
V Vmax

≤ ∆ ≤ ∆I

2
(331)

B. Vmax = 0.

We chooseδ so that (288) is satisfied. The casetype(xn) /∈
P⋆δ,[n] was covered in (287), so we only need to consider the
minimization of the left side of (231) overP⋆δ,[n]. Fix α < 3

2 .
If

∆ ≥
(
L2
2

28ℓ1

) 1
3 3

n
1
2+α

(332)

we have

P

[
n∑

i=1

ıX;Y(xi;Yi) > n(C +∆)

]

= P

[
n∑

i=1

ıX;Y(xi;Yi)− nI(PX) > n(C − I(PX)) + n∆

]

(333)

≤ V (PX)

n (C − I(PX) + ∆)
2 (334)

≤ L2|PX − PX⋆ |
n (ℓ1|PX − PX⋆ |2 +∆)2

(335)

≤ 3
3
2L2

16ℓ
1
2
1

1

n∆
3
2

(336)

≤ 1

n
1
4− 3

2α
(337)

where

• (334) is by Chebyshev’s inequality;
• (335) uses (289), (291) andVmax = 0;
• (336) holds because the maximum of its left side is

attained at|PX − PX⋆ |2 = ∆
3ℓ1

.
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Note that for the converse, restriction (iv) can be replaced
by the following weaker one:

(iv′) The random variableS(S, d) has finite absolute third
moment.

To verify that (iv) implies (iv′), observe that by the concavity
of the logarithm,

0 ≤ S(s, d) + λ⋆d ≤ λ⋆E [d(s,Z⋆)] (338)

so
E

[
|S(S, d) + λ⋆d|3

]
≤ λ⋆3E

[
d3(S,Z⋆)

]
(339)

We now proceed to prove the converse by showing first that
we can eliminate all rates exceeding

k

n
≥ C

R(d)− 3τ
(340)

for any 0 < τ < R(d)
3 . More precisely, we show that the

excess-distortion probability of any code having such rate
converges to1 asn → ∞, and therefore for anyǫ < 1, there
is ann0 such that for alln ≥ n0, no (k, n, d, ǫ) code can exist
for k, n satisfying (340).

We weaken (24) by fixing γ = kτ and choosing a particular
output distribution, namely,PȲ n = PY n⋆ = PY⋆ × . . .×PY⋆ .
Due to restriction (ii ) in SectionV, P ⋆Zk = P ⋆

Z
× . . . × P ⋆

Z
,

and thed−tilted information single-letterizes, that is, for a.e.
sk,

Sk(sk, d) =

k∑

i=1

S(si, d) (341)
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Theorem1 implies that error probabilityǫ′ of every(k, n, d, ǫ′)
code must be lower bounded by

E


 min
xn∈An

P




k∑

i=1

S(Si, d)−
n∑

j=1

ıX;Y⋆(xi;Yi) ≥ kτ | Sk





− exp (−kτ)

≥ min
xn∈An

P




n∑

j=1

ıX;Y⋆(xi;Yi) ≤ nC + kτ




· P
[

k∑

i=1

S(Si, d) ≥ nC + 2kτ

]
− exp (−kτ) (342)

≥ min
xn∈An

P




n∑

j=1

ıX;Y⋆(xi;Yi) ≤ nC + nτ ′




· P
[

k∑

i=1

S(Si, d) ≥ kR(d)− kτ

]
− exp (−kτ) (343)

where in (343), we used (340) and τ ′ = Cτ
R(d)−3τ > 0.

Recalling (16) and

E [ıX;Y⋆(x;Y)|X = x] ≤ C (344)

with equality for PX⋆ -a.e. x, we conclude using the law of
large numbers that (343) tends to1 ask, n→ ∞.

We proceed to show that for all large enoughk, n, if there
is a sequence of(k, n, d, ǫ′) codes such that

−3kτ ≤ nC − kR(d) (345)

≤
√
nV + kV(d)Q−1 (ǫ) + θ (n) (346)

thenǫ′ ≥ ǫ.
Note that in general the bound in Theorem1 with the choice

of PȲ n as above does not lead to the correct channel dispersion
term. We first consider the general case, in which we apply
Theorem3, and then we show the symmetric case, in which
we apply Theorem2.

Recall thatxn ∈ An has typePX if the number of times
each lettera ∈ A is encountered inxn is nPX(a). In Theorem
3, we weaken the supremum overW by lettingW mapXn

to its type,W = type(Xn). Note that the total number of
types satisfies (e.g. [25]) T ≤ (n + 1)|A|−1. We weaken the
supremum over̄Y n in (39) by fixing PȲ n|W=PX

= PY× . . .×
PY, wherePX → PY|X → PY, i.e.PY is the output distribution
induced by the typePX. In this way, Theorem3 implies that
the error probability of any(k, n, d, ǫ′) code must be lower
bounded by

ǫ′ ≥ E

[
min
xn∈An

P

[
k∑

i=1

S(Si, d)−
n∑

i=1

ıX;Y(xi;Yi) ≥ γ | Sk
]]

− (n+ 1)|A|−1 exp (−γ) (347)

Choose

γ =

(
|A| − 1

2

)
log(n+ 1) (348)

At this point we consider two cases separately,V > 0 and
V = 0.

A. V > 0.

In order to apply Lemma1 in AppendixB, we isolate the
typical set of source sequences:

Tk,n =

{
sk ∈ Sk :

∣∣∣∣∣
k∑

i=1

S(si, d)− nC

∣∣∣∣∣ ≤ n∆̄− γ

}
(349)

Observe that

P
[
Sk /∈ Tk,n

]

= P

[∣∣∣∣∣
k∑

i=1

S(Si, d)− nC

∣∣∣∣∣ > n∆̄− γ

]
(350)

≤ P

[∣∣∣∣∣
k∑

i=1

S(Si, d)− kR(d)

∣∣∣∣∣ + |nC − kR(d)|+ γ > n∆̄

]

(351)

≤ P

[∣∣∣∣∣
k∑

i=1

S(Si, d)− kR(d)

∣∣∣∣∣ > k
∆̄R(d)

2C

]
(352)

≤ 4C2

R2(d)∆̄2

V(d)
k

(353)

where

• (352) follows by lower bounding

n∆̄− γ − |nC − kR(d)|
≥ n∆̄− γ − 3kτ (354)

≥ n
3∆̄

4
− 3kτ (355)

≥ k
3∆̄

4C
(R(d)− 3τ)− 3kτ (356)

≥ k
∆̄R(d)

2C
(357)

where

– (354) holds for large enoughn due to (345) and
(346);

– (355) holds for large enoughn by the choice ofγ
in (348);

– (356) lower boundsn using (345);
– (357) holds for a small enoughτ > 0.

• (353) is by Chebyshev’s inequality.

Now, we let

ǫk,n = ǫ+
B√
n+ k

+
1√
n+ 1

+
4C2

R2(d)∆̄2

V(d)
k

(358)

whereB > 0 will be chosen in the sequel, andk, n are chosen
so that both (345) and the following version of (346) hold:

nC−kR(d) ≤
√
nV + kV(d)− L2|A|

n+ k
Q−1 (ǫk,n)−γ (359)

whereL2 <∞ is defined in (291). Denote for brevity

r(xn, yn, sk) =

n∑

i=1

ıX;Y(xi; yi)−
k∑

i=1

S(si, d) (360)
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Weakening (347) using (348) and Lemma1, we can lower
boundǫ′ by

E

[
min
xn∈An

P
[
r(xn, Y n, Sk) ≤ −γ | Sk

]
· 1
{
Sk ∈ Tk,n

}
]

− 1√
n+ 1

≥ E

[
P
[
r(xn⋆, Y n, Sk) ≤ −γ | Sk

]
· 1
{
Sk ∈ Tk,n

}
]

− K√
n
− 1√

n+ 1
(361)

= P
[
r(xn⋆, Y n, Sk) ≤ −γ, Sk ∈ Tk,n

]
− K√

n
− 1√

n+ 1
(362)

≥ P
[
r(xn⋆, Y n, Sk) ≤ −γ

]
− P

[
Sk /∈ Tk,n

]
− K√

n

− 1√
n+ 1

(363)

≥ P
[
r(xn⋆, Y n, Sk) ≤ −γ

]
− 4C2

R2(d)∆̄2

V(d)
k

− K√
n

− 1√
n+ 1

(364)

≥ ǫ (365)

where (361) is by Lemma1, and (363) is by the union bound.
To justify (365), observe that the quantities in Theorem25
corresponding to the sum of independent random variables in
(364) are

Dn+k =
n

n+ k
I(Π(PX⋆))− k

n+ k
R(d) (366)

≤ n

n+ k
C − k

n+ k
R(d) (367)

Vn+k =
n

n+ k
V (Π(PX⋆ )) +

k

n+ k
V(d) (368)

≥ n

n+ k
V +

k

n+ k
V(d)− L2|A|

n+ k
(369)

Tn+k =
n

n+ k
T (Π(PX⋆)) +

k

n+ k
E

[
|S(S, d)−R(d)|3

]

(370)

where the functionsΠ(·), I(·), V (·), T (·) are defined in
(225), (267)–(269) in AppendixB. To show (369), recall that
V (PX⋆) = V by Property4 in AppendixB, and use (291) and
(320). Further,Tn+k is bounded uniformly inPX, so (223)
is upper bounded by some constantB > 0. Finally, applying
(367) and (369) to (359), we conclude that

− γ ≥ (n+ k)Dn+k −
√
(n+ k)Vn+kQ

−1 (ǫk,n) (371)

which enables us to lower bound the probability in (364)
invoking the Berry-Esseen bound (Theorem25). In view of
(358), the resulting bound is equal toǫ, and the proof of (365)
is complete.

B. V = 0.

Fix 0 < α < 1
6 .

If V(d) > 0, we chooseγ as in (348), and

ǫk,n = ǫ +
B√
k
+ (n+ 1)|A|−1 exp (−γ) + 1

n
1
4− 3

2α
(372)

whereB > 0 is the same as in (358), andk, n are chosen so
that the following version of (346) hold:

nC − kR(d) ≤
√
kV(d)Q−1 (ǫk,n)− γ − ∆̄n

1
2−α (373)

where∆̄ > 0 was defined in Lemma1. Weakening (347) using
(231), we have

ǫ′ ≥ min
xn∈An

P

[
ıX;Y(xi, Yi) ≥ nC + ∆̄n

1
2−α

]

· P
[

k∑

i=1

S(Si, d) ≥ nC + ∆̄n
1
2−α + γ

]

− (n+ 1)|A|−1 exp (−γ) (374)

≥
(
1− 1

n
1
4− 3

2α

)

· P
[

k∑

i=1

S(Si, d) ≥ kR(d) +
√
kV(d)Q−1 (ǫk,n)

]

− (n+ 1)|A|−1 exp (−γ) (375)

≥
(
1− 1

n
1
4− 3

2α

)(
ǫk,n − B√

k

)

− (n+ 1)|A|−1 exp (−γ) (376)

≥ ǫk,n − B√
k
− 1

n
1
4− 3

2α
− (n+ 1)|A|−1 exp (−γ) (377)

= ǫ (378)

where (375) uses (231) and (373), and (376) is by the Berry-
Esseen bound.

If V(d) = 0, which impliesS(Si, d) = R(d) a.s., we let

γ = (|A| − 1) log(n+ 1)− log

(
1− ǫ− 1

n
1
4− 3

2α

)
(379)

and choosek, n that satisfy

kR(d)− nC ≥ γ + ∆̄n
1
2−α (380)

Then, pluggingS(Si, d) = R(d) a.s. in (347), we have

ǫ′ ≥ min
xn∈An

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ kR(d)− γ

]

− (n+ 1)|A|−1 exp (−γ) (381)

≥ min
xn∈An

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ nC + ∆̄n
1
2−α

]

− (n+ 1)|A|−1 exp (−γ) (382)

≥ 1− 1

n
1
4− 3

2α
− (n+ 1)|A|−1 exp (−γ) (383)

= ǫ (384)

where (382) is by the choice ofk, n in (380), (383) invokes
(231), and (384) follows from the choice ofγ in (379).
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C. Symmetric channel.

We show that if the channel is such that the distribution
of ıX;Y⋆(x;Y) (according toPY|X=x) does not depend on the
choicex ∈ A, Theorem2 leads to a tighter third-order term
than (119).

If either V > 0 or V(d) > 0, let

γ =
1

2
log n (385)

ǫk,n = ǫ+
B√
n+ k

+
1√
n

(386)

whereB > 0 can be chosen as in (358), and letk, n be such
that the following version of (346) (with the remainderθ(n)
satisfying (119) with c = 1

2 ) holds:

nC − kR(d) ≤
√
nV + kV(d)Q−1 (ǫk,n)− γ (387)

Theorem2 and Theorem25 imply that the error probability of
every(k, n, d, ǫ′) code must satisfy, for an arbitrary sequence
xn ∈ An,

ǫ′ ≥ P




k∑

i=1

S(Si, d)−
n∑

j=1

ıX;Y⋆(xi;Yi) ≥ γ


− exp (−γ)

(388)

≥ ǫ (389)

If both V = 0 andV(d) = 0, choosek, n to satisfy

kR(d)− nC ≥ γ (390)

= log
1

1− ǫ
(391)

Substituting (391) and S(Si, d) = R(d), ıX;Y⋆(xi;Yi) = C
a.s. in (388), we conclude that the right side of (388) equals
ǫ, so ǫ′ ≥ ǫ whenever a(k, n, d, ǫ′) code exists.

D. Gaussian channel

In view of Remark12, it suffices to consider the equal
power constraint (133). The spherically-symmetricPȲ n =
PY n⋆ = PY⋆ × . . . × PY⋆ , whereY⋆ ∼ N (0, σ2

N
(1 + P )),

satisfies the symmetry assumption of Theorem2. In fact, for
all xn ∈ F(α), ıXn;Y n⋆(xn;Y n) has the same distribution
underPY n|Xn=xn as (cf. (168))

Gn =
n

2
log (1 + P )− log e

2

(
P

1 + P

n∑

i=1

(
Wi −

1√
P

)2

− n

)

(392)
whereWi ∼ N

(
1√
P
, 1
)

, independent of each other. Since

Gn is a sum of i.i.d. random variables, the mean ofGn

n is
equal toC = 1

2 log (1 + P ) and its variance is equal to (118),
the result follows analogously to (385)–(389).

APPENDIX D
PROOF OF THE ACHIEVABILITY PART OFTHEOREM 10

A. Almost lossless coding (d = 0) over a DMC.

The proof consists of an asymptotic analysis of the bound
in Theorem9 by means of Theorem25. Weakening (113) by

fixing PXn = P ⋆Xn = PX⋆ × . . .×PX⋆ , we conclude that there
exists a(k, n, 0, ǫ′) code with

ǫ′ ≤ E


exp


−

∣∣∣∣∣
n∑

i=1

ı⋆X;Y (X⋆
i ;Y

⋆
i )−

k∑

i=1

ıS(Si)

∣∣∣∣∣

+





(393)
where (Sk, Xn⋆, Y n⋆) are distributed according to
PSkPXn⋆PY n|Xn . The case of equiprobableS has been
tackled in [8]. Here we assume thatıS(S) is not a constant,
that is,Var [ıS(S)] > 0.

Let k andn be such that

nC−kH(S) ≥
√
nV + kVQ−1

(
ǫ− B + 1√

n+ k

)
+
1

2
log(n+k)

(394)
whereV = Var [ıS(S)], andB is the Berry-Esseen ratio (223)
for the sum ofn+ k independent random variables appearing
in the right side of (393). Note thatB is finite due to:

• Var [ıS(S)] > 0;
• the third absolute moment ofıS(S) is finite;
• the third absolute moment ofı⋆

X;Y(X
⋆;Y⋆) is finite, as

observed in AppendixB.

Therefore, (394) can be written as (114) with the remainder
therein satisfying (125). So, it suffices to prove that ifk, n
satisfy (394), then the right side of (393) is upper bounded by
ǫ. Let

Tk,n =

{(
sk, xn, yn

)
∈ Sk ×An × Bn :

n∑

i=1

ı⋆X;Y (xi; yi)−
k∑

i=1

ıS(si)

≥ nC − kH(S)−
√
nV + kVQ−1

(
ǫ− B + 1√

n+ k

)}
(395)

By the Berry-Esseen bound (Theorem25),

P
[(
Sk, Xn⋆, Y n⋆

)
/∈ Tk,n

]
≤ ǫ− 1√

n+ k
(396)

We now further upper bound (393) as

ǫ′ ≤ E

[
exp


−

∣∣∣∣∣
n∑

i=1

ı⋆X;Y (X⋆
i ;Y

⋆
i )−

k∑

i=1

ıS(Si)

∣∣∣∣∣

+



· 1Tk,n

(
Sk, Xn⋆, Y n⋆

)
]
+ P

[(
Sk, Xn⋆, Y n⋆

)
/∈ Tk,n

]

(397)

≤ 1√
n+ k

P
[(
Sk, Xn⋆, Y n⋆

)
∈ Tk,n

]
+ ǫ− 1√

n+ k
(398)

≤ ǫ (399)

where we invoked (394) and (395) to upper bound the expo-
nent in the right side of (397).

B. Lossy coding over a DMC.

The proof consists of the asymptotic analysis of the bound
in Theorem8 using Theorem25 and Lemma5 below, which
deals with asymptotic behavior of distortiond-balls. Note that
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Lemma5 is the only step that requires finiteness of the ninth
absolute moment ofd(S,Z⋆) as required by restriction (iv) in
SectionV.

Lemma 5 ( [9, Lemma 2]). Under restrictions(ii )–(iv), there
exist constantsk0, c,K > 0 such that for allk ≥ k0,

P

[
log

1

PZk⋆(Bd(Sk))
≤

k∑

i=1

S(Si, d) +

(
c̄− 1

2

)
log k + c

]

≥ 1− K√
k

(400)

where c̄ is given by(122).

We weaken (108) by fixing

PXn = PXn⋆ = PX⋆ × . . .× PX⋆ (401)

PZk = PZk⋆ = PZ⋆ × . . .× PZ⋆ (402)

γ =
1

2
loge k + 1 (403)

where∆ > 0, so there exists a(k, n, d, ǫ′) code with error
probability ǫ′ upper bounded by

E


exp


−

∣∣∣∣∣
n∑

i=1

ı⋆X;Y(X
⋆
i ;Y

⋆
i )− log

γ

PZk⋆(Bd(Sk))

∣∣∣∣∣

+





+ e1−γ (404)

where (Sk, Xn⋆, Y n⋆, Zk⋆) are distributed according to
PSkPXn⋆PY n|XnPZk⋆ . We need to show that fork, n sat-
isfying (114), (404) is upper bounded byǫ.

We apply Lemma5 to upper bound (404) as follows:

ǫ′ ≤ E

[
exp

(
− |Uk,n|+

)]
+
K + 1√

k
(405)

with

Uk,n =

n∑

i=1

ı⋆X;Y(X
⋆
i ;Y

⋆
i )−

k∑

i=1

S(Si, d)−
(
c̄− 1

2

)
log k

− log γ − c (406)

We first consider the (nontrivial) caseV(d) +V > 0. Let k
andn be such that

nC − kR(d) ≥
√
nV + kV(d)Q−1 (ǫk,n)

+ c̄ log k + log γ + c (407)

ǫk,n = ǫ− B√
n+ k

− K + 2√
k

(408)

where constantsc and c̄ are defined in Lemma5, andB is
the Berry-Esseen ratio (223) for the sum ofn+k independent
random variables appearing in (405). Note thatB is finite
because:

• eitherV(d) > 0 or V > 0 by the assumption;
• the third absolute moment ofS(S, d) is finite by restric-

tion (iv) as spelled out in (339);
• the third absolute moment ofı⋆

X;Y(X
⋆;Y⋆) is finite, as

observed in AppendixB.
Applying a Taylor series expansion to (407) with the choice
of γ in (403), we conclude that (407) can be written as (114)
with the remainder term satisfying (120).

It remains to further upper bound (405) using (407). Let

Tk,n =

{(
sk, xn, yn

)
∈ Sk ×An × Bn :

n∑

i=1

ı⋆X;Y(xi; yi)−
k∑

i=1

S(si, d)

≥ nC − kR(d)−
√
nV + kV(d)Q−1 (ǫk,n)

}

(409)

By the Berry-Esseen bound (Theorem25),

P
[(
Sk, Xn⋆, Y n⋆

)
/∈ Tk,n

]
≤ ǫk,n +

B√
n+ k

(410)

so the expectation in the right side of (405) is upper-bounded
as

E

[
exp

(
− |Uk,n|+

)]

≤ E

[
exp

(
− |Uk,n|+ 1

{(
Sk, Xn⋆, Y n⋆

)
∈ Tk,n

})]

+ P
[(
Sk, Xn⋆, Y n⋆

)
/∈ Tk,n

]
(411)

≤ 1√
k
P
[(
Sk, Xn⋆, Y n⋆

)
∈ Tk,n

]
+ ǫk,n +

B√
n+ k

(412)

where we used (407) and (409) to upper bound the exponent
in the right side of (411).

Putting (405) and (412) together, we conclude thatǫ′ ≤ ǫ.
Finally, consider the caseV = V(d) = 0, which implies

S(S, d) = R(d) andı⋆
X;Y(X

⋆
i ;Y

⋆
i ) = C almost surely, and let

k andn be such that

nC − kR(d) ≥
(
c̄− 1

2

)
log k + log γ + c+ log

1

ǫ− K+1√
k

(413)
where constantsc and c̄ are defined in Lemma5. Then

E

[
exp

(
− |Uk,n|+

)]
≤ ǫ− K + 1√

k
(414)

which, together with (405), implies thatǫ′ ≤ ǫ, as desired.

C. Lossy or almost lossless coding over a Gaussian channel

In view of Remark12, it suffices to consider the equal power
constraint (133). As shown in the proof of Theorem18, for
any distribution ofXn on the power sphere,

ıXn;Y n(Xn;Y n) ≥ Gn − F (415)

whereGn is defined in (392) (cf. (168)) and F is a (com-
putable) constant.

Now, the proof for almost lossless coding in Appendix
D-A can be modified to work for the Gaussian channel
by adding logF to the right side of (394) and replacing∑n
i=1 ı

⋆
X;Y (X⋆

i ;Y
⋆
i ) in (393) and (397) with Gn− logF , and

in (395) with Gn.
Similarly, the proof for lossy coding in AppendixD-B is

adapted for the Gaussian channel by addinglogF to the right
side of (407) and replacing

∑n
i=1 ı

⋆
X;Y (X⋆

i ;Y
⋆
i ) in (404) and

(406) with Gn − logF , and in (409) with Gn.
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Applying the Berry-Esseen bound to (190), we obtain

D1(n, ǫ, α)

≥ min
PZ|S :

I(S;Z)≤C(α)

{
E [d(S,Z)] +

√
Var [d(S,Z)]

n
Q−1

(
ǫ+

B√
n

)}

(416)

= D(C(α)) +

√
W1(α)

n
Q−1

(
ǫ+

B√
n

)
(417)

whereB is the Berry-Esseen ratio, and (417) follows by the
application of Lemma3 with

D =
{
PSZ = PZ|SPS : I(S;Z) ≤ R(d̄)

}
(418)

f(PSZ) = −E [d(S,Z)] (419)

g(PSZ) = −
√
Var [d(S,Z)]Q−1

(
ǫ+

B√
n

)
(420)

ϕ = 1 (421)

ψ =
1√
n

(422)

Note that the mean and standard deviation ofd(S,Z) are
linear and continuously differentiable inPSZ, respectively, so
conditions (242) and (244) hold with the metric being the usual
Euclidean distance between vectors inR|S|×|Ŝ|. So, (417)
follows immediately upon observing that by the definition
of the rate-distortion function,E [d(S,Z)] ≥ E [d(S,Z⋆)] =
D(C(α)) for all PZ|S such thatI(S;Z) ≤ C(α).
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[5] S. Verdú and I. Kontoyiannis, “Lossless data compression rate: Asymp-
totics and non-asymptotics,” inProceedings 2012 46th Annual Confer-
ence on Information Sciences and Systems (CISS), Princeton, NJ, March
2012, pp. 1–6.

[6] ——, “Lossless data compression at finite blocklengths,”submitted to
IEEE Transactions on Information Theory, 2012.

[7] M. Gastpar, B. Rimoldi, and M. Vetterli, “To code, or not to code:
lossy source-channel communication revisited,”IEEE Transactions on
Information Theory, vol. 49, no. 5, pp. 1147–1158, May 2003.

[8] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel codingrate in finite
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tinez, “Random-coding joint source-channel bounds,” inProceedings
2011 IEEE International Symposium on Information Theory, Saint-
Petersburg, Russia, Aug. 2011, pp. 899–902.

[18] D. Wang, A. Ingber, and Y. Kochman, “The dispersion of joint source-
channel coding,” in49th Annual Allerton Conference on Communica-
tion, Control and Computing, Monticello, IL, Sep. 2011.

[19] I. Csiszár, “On an extremum problem of information theory,” Studia
Scientiarum Mathematicarum Hungarica, vol. 9, no. 1, pp. 57–71, Jan.
1974.

[20] H. V. Poor,An introduction to signal detection and estimation. Springer,
1994.
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