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Abstract—This paper studies the minimum achievable source  « the stationary Gaussian memoryless source (GMS) with
coding rate as a function of blocklengthn and probability e that mean-square error distortion;
the distortion exceeds a given leval. Tight general achievability . the stationary binary memoryless source when the com-

and converse bounds are derived that hold at arbitrary fixed b it th h the bi h |
blocklength. For stationary memoryless sources with sepable pressor observes | roug € Dinary erasure channe

distortion, the minimum rate achievable is shown to be clody (BES), and the distortion measure is bit error rate.
approximated by R(d) + /@Q*1 (¢), where R(d) is the rate-  In the most basic special case, namely that of the equiptebab

distortion function, V(d) is the rate dispersiona characteristic of ~source with symbol error rate distortion, the rate-disjoers
the source which measures its stochastic variability, and) ™" (-)  function is zero, and the finite blocklength coding rate is

is the inverse of the standard Gaussian complementary cdf. approximated by
Index Terms—achievability, converse, finite blocklength 1loen 1
regime, lossy source coding, memoryless sources, ratedigion, R(n,d,e) = R(d) + = 8 +0 <_) 2
Shannon theory. 2 n
Sectionll sets up the problem, introduces the definitions
|. INTRODUCTION of the fundamental finite blocklengths limits and presents

The rate-distortion function characterizes the minimdhe basic notation and properties of the information dgnsit
source coding rate compatible with a given distortion leveand related quantities used throughout the paper. Settion
either in average or excess distortion sense, providedtleat reviews the few existing finite blocklength achievabilityda
blocklength is permitted to grow without limit. However, inconverse bounds for lossy compression, as well as various
some applications relatively short blocklengths are comméelevant asymptotic refinements of Shannon’s lossy source
both due to delay and complexity constraints. It is themefogoding theorem. Sectiolv shows the new general upper and
of critical practical interest to assess the unavoidableajtg lower bounds to the minimum rate at a given blocklength.
over the rate-distortion function required to sustain tesigtd SectionV studies the asymptotic behavior of the bounds using
fidelity at a given fixed blocklength. Neither the lossy seurcGaussian approximation analysis. Sectidfis VII, VIII and
coding theorem nor the reliability function, which givesethIX focus on the binary memoryless source (BMSPMS,
asymptotic exponential decay of the probability of excagdi BES and GMS, respectively.
given distortion level when compressing at a fixed rate, ig@v
an answer to that question. Il. PRELIMINARIES

This paper presents: new achievability ant_:i converse bOUW.SOperationaI definitions
to the minimum sustainable rate as a function of blocklength .
and excess probability, valid for general sources and géner In f|xed-length lossy compression, the_ Ol.Jtpu.t of a gen-
distortion measures. In addition, for stationary memcﬂs'leeral source with alphabed and source distributionPyx IS
sources with separable (i.e., additive, or per-letterjodim®n, mapped to one of thd/ codewords from the reproduction

i ; - IphabetB. A lossy code is a (possibly randomized) pair of
}/r\;eaf:gvg;hat the finite blocklength coding rate is well appro}?nappingsf: A {1 Myandc: {1,... M} = B.

A distortion measured: A x B — [0,4o00] is used to
N [V(d) .4 quantify the performance of a lossy code. Given decoder
R(n,d,e) ~ R(d) + n @7 (), (1) ¢, the best encoder simply maps the source output to the
where n is the blocklength,e is the probability that the closest (in the sense of the distortion measure) codeword,
distortion incurred by the reproduction exceegandV (d) is  1-e. f(x) = argmin,, d(z,c(m)). The average distortion over
therate-dispersion functioriThe evaluation of the new boundsthe source statistics is a popular performance criterion. A

is detailed for: stronger criterion is also used, namely, the probability of
. the stationary discrete memoryless source (DMS) wiftxceeding a given distortion level (callezkcess-distortion
symbol error rate distortion; probability). The following definitions abide by the excess

distortion criterion.
This research was supported in part by NSF under grants ©TE6R5
and CCF 09-39370. The first author was supported in part byNiéeiral 1Although the results in Sectiod| are a special case of those in Section
Sciences and Engineering Research Council of Canada. VII, it is enlightening to specialize our results to the simpjEssible setting.
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Definition 1. An (M,d,¢) code for{A, B, Px, d: A x B. Tilted information

B — [0,+00]} is a code with|f| = M such that pgnote by
Pld(X,c(f(X))) > d] <e.
The minimum achievable code size at excess-distortion ix.y (2;y) = log dPxy (z,y) (10)
probability ¢ and distortiond is defined by ' d(Px x Py)
M*(d,¢) = min {M: 3(M,d,¢) code 3) the information density of the joint distributioPxy at

(z,y) € Ax B. Further, for a discrete random variabig the
information in outcomer is denoted by

Note that the special case= 0 andd(z,y) = 1{z # y}

(z) =1 L (11)
corresponds to almost-lossless compression. xiw) = 08

Px (x)

Definition 2. In the conventional fixed-to-fixed (or block)Under appropriate conditions, the number of bits that iesak
setting in which A and B are the n—fold Cartesian to representr divided by :x(x) converges tol as these
products of alphabetsd and B, an (M,d,¢) code for quantities go to infinity. Note that ifX is discrete, then
{A™ B", Pxn, d": A" x B" — [0,+0cc]} is called an ux;x(z;2) = 1x(x).

(n,M,d,€) code. For a givenPx and distortion measure, denote

Fix €, d and blocklength:. The minimum achievable code _ . .
size and the finite blocklength rate-distortion functiordgss Rx(d) = Pi?)f : [(X:Y) (12)
distortion) are defined by, respectively Eld(X,Y)]<d

M*(n,d,e) = min {M: 3(n,M,d,e) code (4) We imposg the following basic restrictions on the source and
the distortion measure.

1
R(n,d,e) = —log M"(n,d, ¢) (5) (a) Rx(d) is finite for somed, i.e. dwin < oo, where

Alternatively, using an average distortion criterion, wa-e dmin = Inf {d: Rx(d) < oo} (13)

ploy the following notations. ) ) . . i
(b) The distortion measure is such that there exists a fieite s

Definition 3. An (M,d) code for {A, B, Px, d: A x E C B such that

B — [0,+c0]} is a code with|f| = M such that

E[d(X,c(f(X)))] < d. The minimum achievable code size E [mi}rﬂld(X,y)] < 0o (14)
ye

at average distortion/ is defined by
(c) The infimum in (2) is achieved by a uniqu@;‘x, and
distortion measure is finite-valued.

Definition 4. If A and B are the n—fold Cartesian  The counterpart of1(1) in lossy data compression, which
proguctsn of alphalbets::l ang B, an (M.d) code for roughly corresponds to the number of bits one needs to spend
{A", B", Pxn, d": A" x B" — [0,+00]} is called an 5 encoder within distortiond, is the following.
(n, M,d) code. o _ _ _

Fix d and blocklengthn. The minimum achievable codeDefinition 6 (d—tilted information) For d > duin, the
size and the finite blocklength rate-distortion functiongege d—tilted information inz is defined as

M*(d) = min {M: 3(M,d) codg (6)

distortion) are defined by, respectively 1
Ix (@, d) =log Nd — N d(z, Y (15)
M*(n,d) = min {M: 3(n, M,d) code @) [exp {A*d — A*d(z, Y*)}]
log M*(n, d) where the expectation is with respect to the unconditional
R(n,d) = ——"—— distributior? of Y*, and
In the limit of long blocklengths, the minimum achievable A = —R'(d) (16)

rate is characterized by the rate-distortion functioh[[].

It can be shown thatcf guarantees differentiability of

Rx(d), thus @5) is well defined. A measure-theoretic proof
R(d) = limsup R(n, d) (9) of the following properties can be found if,[Lemma 1.4].
o e _ S Property 1. For Py-almost everyy,

In a similar manner, one can define the distortion-rate
functions D(n, R, ¢), D(n, R) and D(R). Ix (@, d) =1xy (23y) + Nd(z,y) —Ad - (17)

In the review of prior work in Sectiorll we will use
the following concepts related to variable-length codiAg.
variable-length code is a pair of mappingsA — {0,1}* Rx(d) =E [)x(X,d)] (18)
andc: {0,1}* — B, where{0,1}* is the set of all possibly
empty binary strings. It is said to operate at distortioreleiif 2R_estriction €) is imposed for clarity of presentation. We will show in
P[d(X,c(f(X))) < d] = 1. For a given codéf,c) operating Sesctlonv that it can be dispensed Wlth. _ o '

RN —= 2 ) . Henceforth,Y* denotes the rate-distortion-achieving reproduction oamd
at distortiond, the length of the binary codeword assigned t@uriable at distortiond, i.e. its distributionP; is the marginal offy;,  Px,
xz € A is denoted by/(z) = length off(z). where Py, achieves the infimum in1@).

Definition 5. The rate-distortion function is defined as

hence the name we adopted in Definitignand



Property2. For ally € B,
Efexp {\d — Md(X,y) + )x(X,d)}] <1 (19)

with equality for P -almost everyy.

Remarkl. While Definition 6 does not cover the casé =
dmin, for discrete random variables with(x, y) = 1 {z # y}
it is natural to definé-tilted information as

Ix(x,0) =1x(x) (20)

Examplel. For the BMS with biagp < % and bit error rate

distortion,

Jxn (2", d) = 1xn(2") — nh(d) (21)

if 0<d<p,and0 if d>p.

the minimum in @7) is always achieved by &7. x that
satisfies §]

o dPz+x (y|x)
& dPy (y)
-y yd(z,
— Jog exp( X,y (z y)) (30)
E [exp (—/\j(yyd(:c, Y))]
= Ay (2, Nxy) — Ay yd(z,y) + Ax yd (31)
where

Xy = Ry y(d) (32)
IlIl. PRIOR WORK

In this section, we summarize the main available bounds on
the fixed-blocklength fundamental limits of lossy compiass

Example2. For the GMS with variance? and mean-square and we review the main relevant asymptotic refinements to

error distortior*

n n, o2 |zm |2 loge
jxn(l' ,d)—§10g7+ ( 0_2 —n)T (22)
if 0<d<o? and0 if d > o2
The distortiond-ball aroundz is denoted by
Ba(z) ={y € B: d(z,y) <d} (23)

Tilted information is closely related to the (unconditina
probability thatY™* falls within distortiond from X. Indeed,
since \* > 0, for an arbitrary P we have by Markov's

inequality,

Py (By(z)) = Pd(z,Y) < d|
< E[exp {\'d— Nd(z,Y)}]

(24)
(25)

Shannon’s lossy source coding theorem.

A. Achievability bounds

Returning to the general setup of Definitidn the basic
general achievability result can be distillegd from Shannon’s
coding theorem for memoryless sources:

Theorem 1 (Achievability, [2] [5]). Fix Px, a positive integer
M andd > dp;,. There exists ariM, d, ¢) code such that

e < inf

Py | x

+ inf {]P’ lixay (X;Y) > log M — ] +e™ EXPW)} } (33)
v>0

{IP’ [d(X,Y) > d]

Theoreml is the most general existing achievability result
(i.e. existence result of a code with a guaranteed upperdoun
on error probability). In particular, it allows us to dedubat

where the probability measure is generated by the uncontfit stationary memoryless sources with separable distorti

tional distribution ofY. Thus

1
log W > jx (v, d)

As we will see in Theoren®, under certain regularity condi-

tions the equality inZ6) can be closely approached.

C. Generalized tilted information
Often it is more convenient/] to fix Py defined onB

(26)

measure, i.e. whelPx» = Px x ...
LS~ d(wg,y;), it holds that

n

x Px, d(z",y™) =

limsup R(n,d) < Rx(d) (34)
n—oo
limsup R(n,d, €) < Rx(d) (35)
n—oo

whereRx(d) is defined in 12), and0 < e < 1.

For three particular setups of i.i.d. sources with separa-
ble distortion measure, we can cite the achievability bsund
of Goblick [6] (fixed-rate compression of a finite alphabet

and to consider, in lieu of1Q), the following optimization source), Pinkston7] (variable-rate compression of a finite-

problem:

nyy(d) = min
PZ\X :
E[d(X;2)]<d

D(Pz x| Py|Px)

In parallel with Definition6, define for anyA > 0

1
exp (Ad — Ad(z,Y))]

Ay (z, X)) = log £
As long asd > d,,in x,y, Where
dmin\X,Y = inf {d R)Qy(d) < OO}

“We denote the Euclidean norm by|, i.e. |z"|? = 2?2 + ... + z2.

(29)

alphabet source) and Sakrisci] [variable-rate compression
of a Gaussian source with mean-square error distortion).

(27)  sakrison’s achievability bound is summarized below as the

least cumbersome of the aforementioned:

Theorem 2 (Achievability, [8]). Fix blocklengthn, and let
X™ be a Gaussian vector with independent components of

(28) variance o%. There exists a variable-length code achieving

average mean-square erref such that

" n—1 d 1 1
2 5loge
+10g4ﬂ'+ gloge—i- m (36)



B. Converse bounds where the maximization is over the set of all probability

The basic converse used in conjunction wi@)(to prove distributions on.A, then
the rate-distortion fundamental limit with average distor is Do(R) —d
the following simple result, which follows immediately fro €> sup (Qi - Q”(GMC))
the data processing lemma for mutual information: 6>0.Q \ Bmax — d
~exp (—n (D(Q||P) +9)), (45)

Theorem 3(Converse,]]). Fix Px, integerM andd > din.

Any (M, d) code must satisfy where the supremization is over all probability distribu-

Rx(d) <log M (37) tions onA satisfyingRq(d) > R, and
whereR x (d) is defined in(12). 1 n(pn
_ _ Gan = {om e s Liog T < DQ)p) + 5
Shannon f] showed that in the case of stationary memo- n pPr(azm)

ryless sources with separable distorti@y - (d) = nRx(d).

Using Theorens, it follows that for such sources It turns out that the converse in Theoré&mesults in rather

loose lower bounds om(n,d,€) unlessn is very large, in
Rx(d) < R(n,d) (38) which case the rate-distortion function already gives ttig
lower bound. Generalizations of the error exponent results

for any blocklengthn and anyd > d.in, Which together with [19 are found in [A-[14].

(34) gives
R(d) = Rx(d) (39)

The strong converse for lossy source codiflg [1(] states C. Gaussian Asymptotic Approximation
that if the compression rat& is fixed andR < Rx(d), then _ S
¢ — 1 asn — oo, which together with 35) yields that for ~ The “lossy asymptotic equipartition property (AEP)']],

i.i.d. sources with separable distortion and @ny ¢ < 1, which leads to strong achievability and converse bounds for
. variable-rate quantization, is concerned with the almosé s
1171115;1313 R(n,d,e) = Rx(d) = R(d) (40)  asymptotic behavior of the distortiof—balls. Second-order

. . . refinements of the “lossy AEP” were studied inl], [20],
For prefix-free variable-length lossy compression, the k %l] 5

non-asymptotic converse was obtained by Kontoyianhi§ [
(see also ]7] for a lossless compression counterpart). Theorem 6 (“Lossy AEP”). For memoryless sources with sep-

Theorem 4 (Converse, 11]). Assume that the infimum in theqrab_le (_1|st0rt|o_n measure satisfying the regularity restions
()—(iv) in SectionV,

right side of (12) is achieved by some conditional distribution

P;;‘ - If a prefix-free variable-length code fdrx operates at 1 n 1
distortion leveld, then for anyy > 0, log ———— = X, d)+ =logn + O (loglogn
¥y 8 Br (Ba (X)) ;Jx( )+ log (loglog n)
PlU(X) < x(X,d) —y] <277 (41)

For DMS with finite alphabet and bounded separable digl_most surely.

tortion measure, a finite blocklength converse can be léidtil Remark2. Note the different behavior of almost lossless data
from Marton’s fixed-rate lossy compression error exponegbmpression:

[13):
Theorem 5 (Converse, [3)). Consider a DMS with finite log 1 = log 1 — 3 w(X:)  (46)
input and reproduction alphabets, source distributi#hand P (Bo(X™)) Pxn(X™) ; (%)

separable distortion measure withhax, min, d(x,y) = 0,

Apax = Maxyey d(x,y) < 4+00. FiX 0 < d < Apax. Let the Kontoyiannis [L1] pioneered the second-order refinement of
corresponding rate-distortion and distortion-rate fuiocts be the variable-length rate-distortion function showing ttter
denoted byRp(d) and Dp(R), respectively. Fix an arbitrary memoryless sources with separable distortion measures the

(n,M,d,e) code. optimum prefix-free description length at distortion levél
« If the code rateR = 2 satisfies satisfies
R < Rp(d), (42) *(X") =nR(d) + V/nGp + O (logn) a.s.  (47)
then the excess-distortion probability is bounded away o )
from zero: where GG,, converges in distribution to a Gaussian random
Dp(R)—d variable with zero mean and variance equal to the rate-
€= Apax —d (43) dispersion function defined in Sectidh

« If R satisfies
5The result of Theoren6 was pointed out in 1, Proposition 3] as a
Rp(d) < R < max Rg(d), (44) simple corollary to the analyses ifi(], [21]. See PZ] for a generalization to
Q a-mixing sources.



D. Asymptotics of redundancy Qy denote the marginal afy|;Qz. We havé, for any~y > 0

Considerable attention has been paid to the asymptotic Plx (X, d) = log M +1] (51)
behavior of the redundancy, i.e. the difference between th& Pljx(X,d) = log M +~,d(X,Y) > d]
average distortiorD(n, R) of the bestn—dimensional quan- + P[jx(X,d) > logM +,d(X,Y) <d] (52)
tizer and the distortion-rate functian(R). For finite-alphabet
i.i.d. sources, Pilc{J strengthened the positive lossy source < ¢ + Z Px(x ZPZ|X z|x)

coding theorem by showing that €A
> Pyiz(yl2)1{M < exp (hx(2,d) =)} (53)

dD(R) logn logn Y€Ba(z)

_ < _
Pl ) = DUR) < =g 5, to {7 40 <o 7)Y Px(x)exp (gx (w, d))
z€A
M

Zhang, Yang and WeiZ4] proved a converse tatg), thereby Z > Pyiz(yle) (54)

showing that for memoryless sources with finite alphabet, =M B

=e+exp(— Z Px(z)exp (x (z,d)) Qv (Ba(z)) (55)

D(an)_D(R)__ﬁD(R)logn+0<1ogn) (49) z€A
OR 2n n < e+exp( Z Qy (y
yeb
Using a geometric approach akin to that of Sakriséh [ - ZPX z) exp (\'d — \d(z,y) + jx (2, d)) (56)
Wyner [25] showed that48) also holds for stationary Gaussian — zc4
sources with mean-square error distortion, while Yang and ¢ + exp (—7) (57)

Zhang p(] extended48) to abstract alphabets. Note that as the

average overhead over the distortion-rate function is thdar Where

by its standard deviation, the analyses of][ [23]-[25] are o (54) follows by upper-bounding
bound to be overly optimistic since they neglect the stoihas

variability of the distortion. Pgix (z[2)1{M < exp (yx (2,d) —7)}
ex —
< 2 C o () (59
for every (z,z) € A x {1,...,M},
IV. NEW FINITE BLOCKLENGTH BOUNDS o (56) uses R5) particularized toY distributed according
to Qy, and
e (57) is due to (9).
In this section we give achievability and converse results f m

any source and any distortion measure according to the se
of Sectionll. When we apply these results in Sectidhs 1X,
the sourceX becomes am—tuple (X1, ..., X,).

ﬁlgmark& Theorem?7 gives a pleasing generalization of the
almost-lossless data compression converse bouGhd[?6,
Lemma 1.3.2]. In fact, skippingsg), the above proof applies
to the casel = 0 andd(x,y) = 1{x # y} that corresponds
to almost-lossless data compression.

Remark4. As explained in AppendiX, condition €) can be
A. Converse bounds dropped from the assumptions of Theor@m

Our next converse result, which is tighter than the one
Our first result is a general converse bound. in Theorem?7 in some cases, is based on binary hypothe-
sis testing. The optimal performance achievable among all
randomized testsPy x: A — {0,1} between probability
distributions P and @ on A is denoted by { indicates that

Theorem 7 (Converse) Assume the basic conditioifa)—(c)
in Sectionll are met. Fixd > dmin. Any (M, d, €) code must

satisfy the test choose®):’
L(P,Q)= min Q[W =1 59
e > sup {P[1x(X,d) > log M +~] — exp(—)}  (50) PalP Q)= ol QW =1 (59)
>0 PW=1]>o

Proof: Let the encoder and decoder be the rando 6We write summations over alphabets for simplicity. All owsults in
gt'ectlonslv andV hold for arbitrary probability spaces.

tranSfOrmat'()nSPZIX and PYIZ* where Z takes values in "Throughout, P, Q denote distributions, whered® Q are used for the
{1,...,M}. Let Qz be equiprobable of1,..., M}, and let corresponding probabilities of events on the underlyingbpbility space.



Theorem 8 (Converse) Let Px be the source distribution B. Achievability bounds

defined on the alphabet. Any (M, d, ¢) code must satisfy The following result gives an exact analysis of the excess
probability of random coding, which holds in full generglit
B1-e(Px,Q)

M > Sgp ;gg Q(X,y) < d| (60)  Theorem 9 (Exact performance of random codin@enote by
€q (c1,...,cp) the probability of exceeding distortion levél
where the supremum is over all distributions dn achieved by the optimum encoder with codeb@gk. . . , car).
Let Y7,...,Yy be independent, distributed according to an

Proof: Let (Pzx, Py|z) be an(M,d,¢) code. Fix a arbitrary distribution on the reproduction alphabét, . Then
distribution@ on A, and observe thdll’ =1 {d(X,Y) < d} o
defines a (not necessarily optimal) hypothesis test betifgen Efeq (Y1,...,Yu)] = E[1 — Py (Ba(X))] (65)
and@ with P[W = 1] > 1 — . Thus, Proof: Upon observing the source outputthe optimum
encoder chooses arbitrarily among the members of the set
Br-e(Px,Q)

Ny arg min , d(zx,c;)

ey b

- Z4QX($) Z—l Pax k) Z Pyiz(ylm)H{d(@,y) < d} The indicator function of the event that the distortion esd=
””fw "= ver dis
< D> Prizlylm) Y Qx(@)1{d(z,y) < d} (61) . -
=5 = 1 o d(z,¢;) >dpy = 1_[1 1{d(z,c;) >d}  (66)
M =
< Z Z Py z(ylm) sup Q[d(X, y) < d] (62) Averaging over both the inpuX’ and the choice of codewords
B m=1ycB yEB N chosen independently of, we get
= MsupQ[d(X,y) < d] (63) M
yeB E|[[1{ax,vi) > d}
- i=1 y
Suppose for a moment that' takes values on a finite =E|E Hl{d(X,Yi) >d} | X (67)
alphabet, and let us further lower boun@O) by taking @ i—1
to be the equiprobable distribution ofy, @@ = U. Consider M
the set2 C A that has total probability — e and contains the = IEHE 1{d(X,Y;) > d}|X] (68)
most probable source outcomes, i.e. for any source outcome i=1
x € , there is no element outsid@ having probability =EP[dX,Y) > dX])" (69)
greater thanPx (z). For anyxz € €, the optimum binary .
hypothesis test (with error probabilie) betweenPy and Where in 68) we have used the fact that,,..., Yy are
must choosePy. Thus the numerator o() evaluated with "dependent even when conditioned &n u

Invoking Shannon’s random coding argument, the following

Q@ = U is proportional to the number of elements{in while X 9 ) :
gchievability result follows immediately from Theoredn

the denominator is proportional to the number of elements
a distortion ball of radiusi. Therefore §0) evaluated with Theorem 10 (Achievability). There exists ar{M, d, ¢) code
@ = U yields a lower bound to the minimum number &f with
balls required to covef. €< 11£le [1— Py(Bd(X))]M (70)
Remark5. In general, the lower bound in Theore8nis not 3
achievable due to overlaps between distortibaballs that
comprise the covering. One special case when it is in fa@t
achievable is almost lossless data compression on a cdentabWhile the right side of 70) gives the exact performance of
alphabetA. To encompass that case, it is convenient to relagndom coding, Shannon’s random coding bound (Thedjem
the restriction in §9) that requires?) to be a probability mea- was obtained by upper bounding the performance of random
sure and allow it to be a-finite measure, so that,(Px,Q) coding. As a consequence, the result in Theoldns tighter
is no longer bounded by % Note that Theoren8 would still than Shannon’s random coding bound (TheorBmbut it is
hold. Letting U to be the counting measure ofh (i.e. U also harder to compute.
assigns unit weight to each letter), we have (Appemfgix Applying (1 — )™ < e M® to (70), one obtains the
following more numerically stable bound.

where the infimization is over all random variables defined on
independent ofX .

< M* < o .
Bre(Px,U) < M*(0,€) < Br—(Px, U) +1 (64) Corollary 11 (Achievability). There exists arf)M, d, ¢) code

The lower bound in &4) is satisfied with equality WheneverWlth ¢ < infE [e=MPy(Ba(X) (71)
B1-<(Px,U) is achieved by a non-randomized test. ~ Py

where the infimization is over all random variables defined on
8The Neyman-Pearson lemma generalizesfiinite measures. B, independent o .



The last result in this section will come handy in the analysB. Main result

of the bound in TheoreniO (see Sectionl-C for related |, 5qgition to the basic conditiong)(c) of Sectionll-B,

notation). in the remainder of this section we impose the following
Lemma 1. For an arbitrary Py on B, restrictions on the source and on the distortion measure.
N (i) The source{X;} is stationary and memorylesBx~ =
> A
Py (By(z)) > P;flvaeXP ( Ay (z, X Y) /\X,Y/y) Py x ... x Px.
Bl e 54 < dIR - (i) The distortion measure is separabld(z",y") =
Pli—y<dw2)sdX =] 72 7 iy gy
where the supremization is over alP; on A such that (iii) The distortion level satisfiesiyi < d < dimax, where
d_.. %y <d, andZ* achievesR ; , (d). i 1S defined in 13), anddmax = infyes E [d(X, y)],
min| X, _ ' _ _ where averaging is with respect to the unconditional dis-
Proof: We streamline the treatment iR(, (3.26)]. Fix tribution of X. The excess-distortion probability satisfies
v > 0 and distributionPg; on the input alphabetl. We have 0<e<l.
Py (Ba(x)) (iv) E[d°(X,Y*)] < oo where averaging is with respect to
. 73 Px x Py«.
= e; : v () (73) The main result in this section is the followihg
Yy alZ
- Z Py(y) (74) Theorem 12 (Gaussian approximation)under restrictions
YyEBa(x)\Ba—~ () (OHW).
— *A 1
> GXP( )‘X,YV) R(n,d,e) \/ Q ( Ogn) (82)
: > Py (y) exp ()‘X,Yd — A% ydl, y)) V(d) = Var [jx(X, d)] (83)

yEBq(z)\Ba—~(z)
(75) and the remainder term i82) satisfies

= exp (_AY(%)‘}(,Y) - /\}73/7) _ llogn Lo (l) <9 (logn> (84)
2 n n/) n
. Psio_ 76
Z 71%=: ) (76) logn loglogn 1
y€Ba(2)\Ba—~(2) <C——+>=2>"-+0|~=- (85)
n n n
- ( A X y) = /\}’Yv) where
Pld—v<d@2) <dX =q] (77) oL, Var[AL (X, A1) (86)
2 E[JAY. (X, 2%)|] loge

where {5) holds becausg ¢ By~ (z) implies
In (86), (-)’ denotes differentiation with respectXo Ay (x, A)

Ad = Ad(x,y) = Ay <0 (78) s defined in(28), and A* = —R/(d).
for all A > 0, and [6) takes advantage 080). " Remarks. Since the rate-distortion function can be expressed
V. GAUSSIAN APPROXIMATION as (see 18 in Sectionll)
A. Rate-dispersion function R(d) = E [3x(X, d)] (87)

In the spirit of [27], we introduce the following definition. . i _
it is equal to the expectation of the random variable whose

Definition 7. Fix d > dwmin. The rate-dispersion function variance we take in83), thereby drawing a pleasing parallel
(squared information units per source output) is defined aswith the channel coding results i {].

V(d) = lim lim supn

=0 pooo

R(n,d,e) — R(d)\” 79 Remark?7. For almost lossless data compression, Theat@m
( Q1 (e ) (79) " still holds as long as the random variabl€X) has finite third
(R(n,d, €) R(d))2 moment. Moreover, usingd) the upper bound in85) can be

(80) strengthened (Appendi) to obtain forVar [1x(X)] > 0

= lim lim sup

=0 pnooo 2 lOge %
' i i V. X
Fix d, 0 < e < 1, > 0, and suppose the target is to sustain R(n,0,6) = H(X) + 1/ ¥ [1x (X)] Q' (o)
the probability of exceeding distortiahbounded by at rate n
R = (1+n)R(d). As (1) implies, the required blocklength 1 logn 1
. i : o ——— 40| - (88)
scales linearly with rate dispersion: 2 n
-1 2
n(d n e) ~ V(d) Q (6) (81) 9Recently, using an approach based on typical sequencesramderpo-
B RQ(d) n nents, Ingber and Kochmanq] independently found the dispersion of finite

h te that Iv the first factor d d th alphabet sources. The Gaussian i.i.d. source with meaaraguror distortion
where note that only the Tirst tactor aepends on e SOUrGes treated separately iad]. The result of Theoreni2 is more general as

while the second depends only on the design specifications.applies to sources with abstract alphabets.



which is consistent with the second-order refinement f@. Proof of Theorem2
almost lossless data compression developed 4A]. [ If

Before we proceed to proving Theoreh2, we state two
Var [1x(X)] = 0, then

auxiliary results. The first is an important tool in the Gaaiss
approximation analysis aR(n, d, ).

Theorem 13(Berry-Esseen CLT, e.g3[, Ch. XVI.5 Theorem
where 2] ). Fix a positive integern. Let Z;, i = 1,...,n be

0<o,< w (90) independent. Then, for any real
—€)n

R(n,0,e) = H(X) — ! log 1 ! + on (89)
n

— €

As we will see in SectiolVI, in contrast to the lossless case in P Xn: Zi>n |+t /& —QW)| < ﬁ (95)
(88), the remainder term in the lossy case8R2)(can be strictly = n - n’
larger than—%k’% appearing in 88) even whenV/(d) > 0. h
. . ere

Remark8. As will become apparent in the proof of TheoremW
12, if V(d) = 0, the lower bound in&2) can be strengthened 1 &

fV(d =0, the % g o = ~ S E[Z] (96)
non-asymptotically: n &

1 1 n
1

which aligns nicely with 89). X o
Remark9. Let us consider what happens if we drop restriction T, =— ZE [IZZ- - mlg] (98)
(c) of Sectionll-B that R(d) is achieved by the unique i
conditional distributionFy,, . If several P|x achieve R(d), B —6 Ty (99)
writing jx.v (x, d) for the d—tilted information corresponding " V32

to ¥, Theorem12 still holds with The second auxiliary result, proven in Append is

Vid) = max Var [jx,y(X,d)] 0<e< 3 oz) 2 nonasymptotic refinement of the lossy AEP (Theo®m
(d) = min Var [jx.y (X, d)] 1 <e<1 (92)  tailored to our purposes.

where the optimization is performed over &y that achieve Lemma 2. Under restrictions(i)—(iv), there exist constants
the rate-distortion function. Moreover, as explained in- Aglo: ¢ & > 0 such that for alln > n,
pendix C, Theorem7 and the converse part of Theorelid

do not even require existence of a minimiziﬁ’g‘x. P [log . < ng(Xi, d) 4+ Clogn+c
. . : Pyni(Ba(X™)) — =
Let us consider three special cases wHef€) is constant =
as a function ofd. >1- K (100)
a) Zero dispersionFor a particular value ofl, V(d) = 0 vn

if and only if jx (X, d) is deterministic with probability 1. In \yhereC is given by(86).
particular, for finite alphabet sourcels(d) = 0 if the source _
distribution Px maximizesRx (d) over all source distributions Ve start with the converse part. Note that for the converse,
defined on the same alphabéid]. Moreover, Dembo and festriction (v) can be replaced by the following weaker one:
Kontoyiannis B0] showed that under mild conditions, th€iv’) The random variablgx (X, d) has finite absolute third
rate-dispersion function can only vanish for at most figitel moment.
many distortion levelsi unless the source is equiprobablerg verify that fv) implies (i), observe that by the concavity
and the distortion matrix is symmetric with rows that args the logarithm,
permutations of one another, in which cag¢d) = 0 for
all d € (dmin, dmax)- 0 < gx(x,d) + Xd < NE[d(x,Y*)] (101)

b) Binary source with bit error rate distortianPlugging
n = 1 into (21), we observe that the rate-dispersion function®
reduces to the varentropy][of the source,

E [| x(X, d) + /\*dﬂ < MR [d3(X, Y1) (102)
V(d) = V(0) = Var [1x(X)] (93)

Proof of the converse part of Theorel2: First, observe
c) Gaussian source with mean-square error distortiBtug- that due toi) and (i), Py. = P x...x Py, and thed—tilted

gingn =1 into (22), we see that information single-letterizes, that is, for a#’,
1 n
d) = = log? 94 "
V(d) = 5log e (94) (e d) =3 gx(ai,d) (103)
i=1

for all 0 < d < o2 Similar to the BMS case, the rate
dispersion is equal to the variancelof fx(X), where fx(X) Consider the cas& (d) > 0, so thatB,, in (99 with Z; =
is the Gaussian probability density function. x(X;,d) is finite by restriction (V). Lety = %logn in (50),



and choose
log M = nR(d) + /nV(d)Q " (e,) — 7 (104)
en = €+ exp(—y) + D (105)

NG

so thatR = l‘)gTM can be written as the right side 0823)
with (84) satisfied. SubstitutinglQ3 and @04 in (50), we
conclude that for anyM, d, ') code it must hold that

ijxl,dmR )+ v/nV(d)Q
=1

(106)

inequality @5) to the first term in {11), we conclude that
€ < e for all n such thate,, > 0.

It remains to tackle the casE(d) =
x(X,d) = R(d) almost surely. Let

0, which implies

log M = nR(d) + C'logn + ¢+ loglog, —=
€

vn

SubstitutingM into (109 we obtain immediately that < e,
as desired. ]

(114)

D. Distortion-dispersion function

—exp(=7) One can also consider the related problem of finding the
The proof forV(d) > 0 is complete upon noting that theminimum excess distortioD(n, R, ¢) achievable at block-
right side of (06 is lower bounded by by the Berry-Esseen lengthn, rate R and excess-distortion probability We define

inequality ©5) in view of (105).

If V(d) =0, it follows that jx (X, d)
Choosingy = log =~ andlog M = nR(d) — v in (50) it is
obvious thate’ > e. |

Proof of the achievability part of Theoret® The proof
consists of the asymptotic analysis of the bound in Corgllar
11 using Lemma2. Denote

= R(d) almost surely.

G =logM = jx(xi,d) — Clogn — ¢
=1
where constants and C' were defined in Lemma. Letting
X = X"in (71) and weakening the right side of1) by
choosingPy = Py, = Py x
exists an(n, M, d, €') code Wlth

(107)

e <E |:€71\1P;}n(Bd(X"’)):| (108)
K
< — exp(Gn) kel
_E[e ]+ 7 (109)
_]E{eCXpG)l{G <lo 1%”}}
+ E |e=exp(Gn) {Gn > 1o 10g2€nH
K
— 110
+ NG (110)
<P|G, <]l ! g;n}
1 log, n K
—P|G, >1 < — 111
et s

where (09 holds forn > ng by Lemma2, and (L11) follows
by upper bounding~¢**(») by 1 and ﬁ respectively. We

need to show thatl(l]) is upper bounded by for someR =
log M

(85) Considering first the casgé(d) > 0, let

log M =nR(d) + /nV(d)Q " (e

1
+Clogn+logw+c (112)
€n = € — Bnt K+1 (113)
vn

where B,, is given by 09) and is finite by restriction (i.

.x P}, we conclude that there (d: d] €

the distortion-dispersion functioat rate R by

n(D(n, R,€) — D(R))?

V(R) = lim li
(R) = lim lim sup 210, L

=0 pooo

(115)

For a fixedn ande, the functionsR(n,-,e) and D(n, -, €)

are functional inverses of each other. Consequently, the ra
dispersion and the distortion-dispersion functions alstine
each other. Under mild conditions, it is easy to find one from
the other:

Theorem 14. (Distortion dispersion) IfR(d) is twice differen-
tiable, R'(d) # 0 and V' (d) is differentiable in some interval
(dmin, dmax] then for any rateR such thatR = R(d)
for somed € (d, d) the distortion-dispersion function is given

by

V(R) = (D'(R))*V(D(R)) (116)
and
D(n,R,e¢) \/ Q (R)Y <1oin)
(117)
wheref(-) satisfies(84), (85).
Proof: AppendixE. [ |

In parallel to 81), suppose that the goal is to compress
at rate R while exceeding distortiom@ = (1 + n)D(R) with
probability not higher thar. As (117) implies, the required
blocklength scales linearly with the distortion-dispersfunc-

tion: )
V(R) (Q " (¢)
D*(R) ( 7 >

The distortion-dispersion function assumes a particylarl
simple form for the Gaussian memoryless source W|th mean-

n(R,mn,€) =

(118)

that can be written as8@) with the remainder satisfying square error distortion, in which case for ahy d < o2

(R) = 02 exp(—2R) (119)
V(R) _
DR) 2 (120)
(@Y
n(R,n,¢) ~ 2 < p ) (121)

so in the Gaussian case, the required blocklength is eaBgnti

Substituting 112 into (111) and applying the Berry-Esseenindependent of the target distortion.
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VI. BINARY MEMORYLESS SOURCE ]

Section IV and the asymptotic analysis in Section to €Xistan(M,d,E[eq (Y1, ..., Ya)]) code.

the stationary binary memoryless source with bit error rateorollary 17 (Achievability EBMS) There exists an
distortion measure, i.el(z",y") = 2 3" | 1{z; # y;}. For (n, M, d, ) code such that

convenience, we denote

(1=3" (%) (122 < (1= >)M (92

J
As mentioned in SectioV after Theoreml2, the EBMS
with the convention(}) = 0 if & < 0 and (}) = (') if with bit error rate distortion has zero rate-dispersionction

n

k> n. for all d. The asymptotic analysis of the bounds ¥88 and
(124 allows for the following more accurate characterization
A. Equiprobable BMS (EBMS) of R(n,d,e).
The following results pertain to the i.i.d. binary equipaeb Theorem 18(Gaussian approximation, EBMSyhe minimum
ble source and hold fab < d < % 0<e< achievable rate at blocklength satisfies
Particularizing 21) to the equiprobable case, one observes
: . n 1logn 1
that for all binaryn—stringsz R(n,d,e) =1log?2 — h(d) + 3 +0|( = (133)
n n
Jxn(z",d) = nlog2 — nh(d) = nR(d) (123)
if 0 <d< 3, and
Then, Theorem7 reduces to §1). Theorem8 leads to the
following stronger converse result. R(n,0,6) = log 2 — 1 log 1 1 Lo, (134)
n _
Theorem 15 (Converse, EBMS)Any (n, M, d, ¢) code must ‘
satisfy: where0 < o,, < (12—;5)11
n/ n .
e>1— M2 < (nd] > (124) Proof: AppendixF. [ ]

A numerical comparison of the achievability boungiBy
evaluated with stationary memorylesBy» x~, the new
bounds in 132 and (24 as well as the approximation in
M>sup  inf B1—e(Pxn, Q) (125) (133 negle?ting theD (1) term is presented in Fidl. Note

=70 vrelonyr QX yn) < d] that Marton’s converse.(Th.eorelﬁ) is not appllcab!e to _the

. Bi_o(Pxn, Pxn) EBMS _because the region |r4_4) is empty. Tr_\e aqh|evabll|t)_/

> inf — (126) bound in @3), while asymptotically optimal, is quite loose in
yre(o.n Pld(Xm,ym) < d] the displayed region of blocklengths. The converse bound in

Proof: Invoking Theorem8 with the n—dimensional
source distribution playing the role dfy therein, we have

__ e (127) (124 and the achievability bound inl82) tightly sandwich
Pld(X™,0) < d] the finite blocklength fundamental limit. Furthermore, the
— l1—e (128) approximation in {33 is quite accurate, although somewhat
9-n < Lv?dJ> optimistic, for all but very small blocklengths.
where (L26) is obtained by substitutio) = Px. |

) B. Non-equiprobable BMS
Theorem 16 (Exact performance of random coding, EBMS)

The minimal averaged probability that bit error rate exceed '€ results in this subsection focus on the i.i.d. binary

d achieved by random coding with/ codewords is memoryless source witl X = 1] = p < 5 and apply for

2
" 0 <d < p, 0<e< 1 The following converse result is a
minE feq (V... Yar)] = (1 _g-n < Ln | >> (129) simple calculation of the bound in Theoréfrusing @1).
Y

nd Theorem 19 (Converse, BMS) For any (n, M, d, €) code, it

attained byPy equiprobable on{0, 1}". holds that
Proof: For all M > 1, (1 — z)™ is a convex function of ¢ > sup (P[0, (Z) > log M 4+~ — exp (— 135
zon0 < z < 1, so the right side of@5) is lower bounded by o 72%{ 192(2) 2 log g P=m} (139)

Jensen’s inequality:

E[1 = Py (Ba(X™")]" > (1= E[Pyn(Ba(X™)])"
(130) whereZ is binomial with success probabilifyandn degrees
Equality in (L30) is attained byY™ equiprobable o{0,1}", of freedom.
because then

gn(Z) = Zlog% +(n—2Z)log — nh(d) (136)

1-p

An application of Theoren8 to the specific case of non-

Pyn(Bg(X™) =2"" < LnJ > a.s. (131) equiprobable BMS yields the following converse bound:
nd



Shannon’s achievability3@)

0.85 ‘

Achievability (132

Converse 124)
Approximation (L33

055 Wl R(d)
05 L ““ It z T
0 200 400 600 800 1000
n
Fig. 1. Bounds toR(n, d,¢) and Gaussian approximation for EBM& =

0.11, e = 1072
Theorem 20 (Converse, BMS) Any (n, M, d, ¢) code must
satisfy

o L)

T ()

where we have denoted the integer

r* = max{r : i (Z)pk(l —p)n—k <1- 6} (138)

k=0
and o € [0,1) is the solution to

(137)

*

- n k _ \n—k r* 41 _ o\n—r*—1 n
> (k>p 1=p)" F+ap” T (1-p) (7,* N 1)
k=0
e (139)

Proof: In Theorem8, the n—dimensional source distri-

bution Px~ plays the role ofPx, and we make the possibly
suboptlmal choice) = U, the equiprobable distribution on € < Z
= {0,1}". The optimal randomized test to decide between

PXn andU is given by

0, |z"|>r"+1
Pyxn(1]z") = 41, 2" <7 (140)
a, |a"=r"+1

where|z"| denotes the Hamming weight of*, and« is such

that) .. P(z")Pwx(1]z") =1 —¢, SO
Bi-e(Px,U)
= i 27 3" Py (12"
Jnin, Y Pwix(tlz")

Yonea P@™) Py x(1lz™)>1—e  "€A

()]

(141)

11

The result is now immediate fron®Q). |
An application of Theorem0to the non-equiprobable BMS
yields the following achievability bound:

Theorem 21 (Achievability, BMS) There exists an

(n, M,d, €) code with

€< ,é) <Z>pk(1

M

[ ZL (k,t)g" (1 — q)" f]

(142)
where 4
p—
= 143
4= 154 (143)
and L L
n—
L,(k,t) = (t()) (t B to) (144)
with tg = [2=0d] T if ¢ _nd < k < t+nd, and L, (k,t) = 0
otherwise.

Proof: We compute an upper bound t@Qj for the
specific case of the BMS. LePy» = R x ... X P,
where /(1) = ¢. Note that Py is the marginal of the
joint distribution that achieves the rate-distortion ftioo (e.g.
[37]). The number of binary strings of Hamming weight
that lie within Hamming distanced from a given string of
Hamming weightk is

06 (67)

as long ag —nd < k < t+nd and is0O otherwise. It follows
that if 2 has Hamming weighk,

(145)

Pyn (Ba(z")) > Y Lu(k,t)g" (1 — g)"" (146)
t=0
Relaxing {0) using (L46), (142 follows. [ |

The following bound shows that good constant composition
codes exist.

Theorem 22 (Achievability, BMS) There exists an
(n, M,d, €) constant composition code with

] TR

(147)
-) are defined in(143 and (144 respec-

k=0

whereq and L, (-,
tively.

Proof: The proof is along the lines of the proof of
Theorem?21, except that now we lefPy. be equiprobable
on the set of binary strings of Hamming weighin]. [ ]

The following asymptotic analysis dk(n, d, €) strengthens
Theoreml12.

Theorem 23 (Gaussian approximation, BMSYhe minimum
achievable rate at blocklength satisfies(82) where

R(d) = h(p) — h(d)
V(d) = Var [ix(X)]

(148)

—p(1—plog? =2 (149)
p
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and the remainder term i(82) satisfies 1

0 (l) <9 (1ogn) (150) 0.95 ‘
" " 0.9
llogn loglogn 1
<= == -
-2 n * n +0 <n) (151) 0.85
if 0 < d < p, and o.sLs‘
1 11 1 ) Shannon’s achievability3@)
9<ogn) _ 1 Ogn+o(_) (152) e 075 |
if d=0. e Achievability (142
Proof: The cased = 0 follows immediately from §8). W Approximation 82

For 0 < d < p, the dispersion 149 is easily obtained  %°[

pluggingn = 1 into (21). The tightened upper bound for ossl ., Jconversel3y , ]
the remainder 51) follows via the asymptotic analysis of Wm/j(gz;l/\//frtons conversedy
Theorem22 shown in AppendixG. We proceed to show the 5| /L i T
converse part, which yields a bett&£” term than Theorem 0 200 400 600 800 1000
12 n

According to the definition of* in (138),

1, Converse 137)

n Fig. 2. Bounds toR(n,d, ¢) and Gaussian approximation for BMS with
P [Z X; > r} > e (153) P= 2/5,d=0.11, €= 1072,
for anyr < r*, where{ X;} are binary i.i.d. withPx, (1) = p. 1
In particular, due to45), (153 holds for 095 |
r=np+/np(l—p)Q~ (e + —) (154) 0.9 ‘ .
vn Shannon's achievability3@)
=np+/np(1—p)Q " (e)+ 0 (1) (155) 085 1
where @255) follows because in the present casg, = 0.8 M _ N 1
ﬁ%, which does not depend on. Using (137, we . 07| | Achievability (142
ave ;
<Lnj> 0.7y \M‘ Approximation 82) )
M > - (156) (g5l Converse 137)
< Lnd] > ol [
Taking logarithms of both sides ol%6), we have '
0.55¢
log M
n n 0.5}
> 1 —1 157 \ ‘ ‘ ‘
- Og< [7] > Og< [nd] > (157 0 200 400 600 800 1000
1 _ n
=t (p+ T2 VAT PQ )] = k(@) + O (1)
(158) Fig. 3. Bounds toR(n,d, ¢) and Gaussian approximation for BMS with
=2/5,d=0.11,e=10"%
= nh(p) — nh(d) + v/n\/p(1 — p)h'(p €)+0(1)
where (58 is due to 859 in Appendle. The desired bound
(152) follows sincer/(p) = log 1%’_ ] VIl. DISCRETE MEMORYLESS SOURCE
Figures2 and 3 present a numerical comparison of Shan-
non’s achievability bound3@), the new bounds in 142, This section particularizes the bounds in Sectignto sta-

(137) and (@39 as well as the Gaussian approximation ifionary memoryless sources with alphaeand symbol error
(82 in which we have neglectel 1"% . The achievability rate distortion measure, i.€(z",y") = %2?21 1{x; £y}
bound @3) is very loose and so is Marton’s converse whicfror convenience, we denote the number of strings within
is essentially indistinguishable fron®(d). The new finite Hamming distancé from a given string by

blocklength boundsl42) and (37) are fairly tight unless the

blocklength is very small. In Fig3 obtained with a more ko /n ,

stringente, the approximation of Theorer®3 is essentially Se=> ( ) (14— 1) (159)
halfway between the converse and achievability bounds. =0 M
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A. Equiprobable DMS (EDMS) where0 < n < 1 is the solution to

In this subsection we fi¥ < d <1 — %‘, 0<e<1and m
assume that all source letters are equiprobable, in whisa ca d= Y Px(a)+(my—1) (169)
the rate-distortion function is given by a=mn+1
my, = max{a: Px(a) > n} (170)

R(d) = log |A| — h(d) — dlog(J4] — 1) (160)

As in the equiprobable binary case, Theorgmeduces to

(92). A stronger converse bound is obtained using ThedBem o
in a manner analogous to that of Theoréf R(d) = Z Px(a)ix(a) + (1 —d)log(1—d)+ (my —1)nlogn
a=1

Theorem 24 (Converse, EDMS)Any (n, M, d, ¢) code must 7_ (171)
satisfy: Note that if0 < d < (m—1)Px(m), thenm,, =m, n = —4,

€>1— MJA ™S na (161) and (167), (168 and (L71) can be simplified. In particular, the

) _ ) o rate-distortion function on that region is given by
The following result is a straightforward generalizatioh o

Theorem16 to the non-binary case. R(d) = H(X) — h(d) — dlog(m — 1) (172)

Theorem 25 (Exact performance of random coding, EDMS)The first result of this section is a particularization of Huaind
The minimal averaged probability that symbol error ratd? Theorem? to the DMS case.

exceeds! achieved by random coding with/ codewords iS  Theorem 28 (Converse, DMS) For any (n, M, d, ¢) code, it
nginE leq (Yr,..., V)] = (1 — |~A|_nSLndJ)M (162) holds that
Y

The rate-distortion function can be expressed$ [

— exp {—7}}
720
Theorem?25 leads to the following achievability bound. (173)

attained byPy- equiprobable onA™. € > sup {P [Z Ix(Xi,d) > log M + 7
=1

Theorem 26 (Achievabilityy, EDMS) There exists an where

(n,M,d,€) code such that x(a,d) = (1 —d)log(1 — d) + dlogn

M
< (1-=5), - 163
€= ( L dJ|~A| ) (163) + min {zx(a),logl} (174)
The asymptotic analysis of the bounds 68 and (L61) n
yields the following tight approximation. andn is defined in(169.
Theorem 27(Gaussian approximation, EDMSyhe minimum Proof: Cased = 0 is obvious. For) < d < 1 — Px(1),
achievable rate at blocklength satisfies differentiating (71) with respect tod yields
1—d
Mm¢qzm@+y%”+oc> (164) A* = log (175)
2 n n n
fo<d<1-- and Plugging (68 and A* into (17), one obtains174). ]
A We adopt the notation of3f]:
R(n,0,¢) = log |A| — 1 log 1 + o, (165) o type of the stringk = (k1,...,kn), k1i+...+kn =n
n I—e « probability of a given string of typek: p* =
where0 < o, < {1 Px(1)™ ... Px(m)"m _
o « type orderingj < k if and only if pJ > pk
Proof: AppendixH. u « type 1 denotegn,0,...,0]
o previous and next typeg:— 1 andj + 1, respectively
!

B. Nonequiprobable DMS . . . n n!
multinomial coefficient:

In this subsection we assume that the source is stationar)7 k) Fil.. k!
memoryless on an alphabet of = |.A| letters labeled by ~ The next converse result is a particularization of Theorem
8.

A={1,...,m}. We assume

Px(1) > Px(2) > ... > Px(m) (166) Theorem 29 (Converse, DMS) Any (n, M, d,¢) code must
satis
and0<d<1-Px(1),0<e<l. fy .
Recall that the rate-distortion function is achieved 8] [ i <n) n < n >
(0%
% b<m, — i k*+1 (176)
Py (b) =4 1-d=m - 167 M > =
v (%) 0 otherwise (167) S|nd|
1—d a=b,a<m, where

. k
Pv(alb) = 41 a#b, a<my (168) k* =max< k: Z (n)pi <l-—ce¢ (177)
Px(a) a>my, i -
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and o € [0,1) is the solution to

k*
LAY n k*+1
:1—
0 O

i=1

(178)

Proof: Consider a binary hypothesis test between ”]8

n—dimensional source distributioRx~» andU, the equiprob-
able distribution on4™. From Theorens,

ﬂlfe(PX"a U)

Mz AP

(179)

The calculation of3, . (Px~U) is analogous to the BMS case.

[ |
The following result guarantees
of a good code with all codewords of
t* = ([nPy(1)],...,[nPy(my)],0,...,0) where []

existenc®f ka-typest, = (ta1,...
type(189-(187), and inequality 188) is obtained by lower bound-

of type k, observe that by fixing:” we have divided am-
string intom bins, thea-th bin corresponding to the letter
and having sizé,. If ¢, ; is the number of the lettersin a
sequence™ of type t* that fall into a-th bin, the stringse™
and y™ are within Hamming distanced from each other as
ng as (85 is satisfied. Therefore, the number of strings of
type t* that are within Hamming distanced from a given
string of typek is bounded by

Zf[l (f) > L (k,t)

where the summation in the left side is over all collections
stam,), a = 1,...m that satisfy

(188)

ing the sum by the term with, , given by (82). It follows

denotes rounding off to a neighboring integer so th#fat if 2™ has typek,

won [nPy(b)] = n holds.
Theorem 30 (Achievability,

t* and

1 M
€< Zk: (Z) Pk (1 - (:‘) Ln(k,t*)> (180)

113

, km] ranges over alln-types, andc,-types

(181)

wherek = [k, ...

to = (ta,1,-- - ta,m,) are given by
tas = | By (alb)t; + 8(a, b)n] (182)
where
A mL% ngnﬂ A a=b,a<my
0(a,b) = m—z + thyimn+lAi a#b,a<m,
0 a > my
(183)
nA, = kg —nPx(a), a=1,....m (184)
In (182, a = 1,...,m, b = 1,...,m, and [-] denotes
rounding off to a neighboring nonnegative integer so that
my
Z to,p > n(l —d) (185)
b=1
Z ta,b = kq (186)
b=1
D tap =1 (187)
a=1

and among all possible choices the one that results in the

DMS) There exists an
(n,M,d,e) fixed composition code with codewords of typﬁelaxing 70) using (89, (180 follows.

Py (Ba(a™) > (j) Lt?)  (189)

Remark 10. As n increases, the bound inl§8 becomes
increasingly tight. This is best understood by checking tha
all strings withk,_;, given by (L82) lie at a Hamming distance
of approximatelynd from some fixed string of typk, and re-
calling [24] that most of the volume of an—dimensional ball
is concentrated near its surface (a similar phenomenonrsccu
in Euclidean spaces as well), so that the largest contabuti
to the sum on the left side oft88 comes from the strings
satisfying (L82).

The following second-order analysis makes use of Theorem
12 and, to strengthen the bounds for the remainder term, of
Theorems29 and 30.

Theorem 31 (Gaussian approximation, DMSYhe minimum
achievable rate at blocklength, R(n,d,¢), satisfies(82)
whereR(d) is given by(171), andV(d) can be characterized
parametrically:

V(d) = Var [min {zx(X), log %H

wheren depends oni through (169, (170. Moreover, (85)
can be replaced by:
+0 (1)

; (10gn) L (m= 1)émn ~1)

(190)

logn  loglogn
g i g log

largest value for(181) is adopted. If no such choice exists,

L,(k,t*)=0.
Proof: We compute an upper bound t@Qj for the

specific case of the DMS. Ldty~ be equiprobable on the set
of m—ary strings of type*. To compute the number of strings

of type t* that are within distortioni from a given stringz™

n n n n
(191)
If 0 <d< (m—1)Px(m), (190 reduces to
V(d) = Var [1x(X)] (192)
and if d > 0, (84) can be strengthened to
0 (1) <9 (loﬂ> (193)
n n
while if d = 0,
1 11 1
9<°g”) S Og”+o(_) (194)
n 2 n n
Proof: Using the expression for d—tilted

information (74, we observe thatVar [jx(X,d)]



Var [min {zx(X), log %
is verified using 88). T
in Appendix|.

When0 < d < (m — 1)Px(m), not only (L71) and (90
reduce to {72 and (192 respectively, but a tighter converse
for the 105 “ term (193 can be shown. Recall the asymptotic:
of S|na in (388 (AppendixH). Furthermore, it can be shown

)- )}

for some constanCC. Armed with (195 and 389, we are
ready to proceed to the second-order analysisl@g) From
the definition ofk* in (177),

|

for any A with Y- | A, = 0 satisfyingn(p + A) < k*,
wherep = [P(1),..., Px(m)] (we slightly abused notation
here asn(p + A) is not always precisely an-type; natu-
rally, the definition of the type orderingt extends to such
cases). Noting thak [1x(X;)] = H(X) and Var [ix(X;)]
Var [1x(X)], we conclude from the Berry-Esseen CL95) that
(196 holds for
By,

; Agix(a) = Tn

where B,, is given by 09). Taking logarithms of both sides
of (176), we have

k] and @90 follows. The casel = 0
eorem30 leads to 191), as we show

k

D

i=1

k

n

n

(;

1

¢ exp {nH (

NG (195)

n

Dl

i=1

Xl) > H(X) + i Aalx(a)‘| > € (196)
a=1

Var [ix (X)]

log M

k‘k
> log [Z (?) + a(;)} —log S| nay (198)
i=1
Ko
> logz (i —log S|4 (199)
i=1
> nH(p+ A) — nh(d) — ndlog(m — 1) + O(1) (200)

nH(p) + nz Agix(a) — nh(d) — ndlog(m — 1) + O(1)
! (201)

where we used389 and (195 to obtain £00), and Q01) is
obtained by applying a Taylor series expansiotit + A).
The desired result in103 follows by substituting 197) in
(201), applying a Taylor series expansion @' (e — Bn

in the vicinity of e and noting thatB,, is a finite constaﬁ.l
The rate-dispersion function and the blockleng®i)(re-
quired to sustainR = 1.1R(d) are plotted in Fig.4 for a
quaternary source with distributidd, 1, 1, £]. Note that ac-
cording to 81), the blocklength required to approath R(d)
with a given probability of excess distortion grows rapidly

d — dmax-

15

0.12

0.1f

0.02}

0.2 0.3 0.4 0.5 0.6

0.1

0.7

required blocklength

Fig. 4. Rate-dispersion function (bits) and the blocklén(@1) required to
sustainR = 1.1R(d) provided that excess-distortion probability is bounded

by e for DMS with Px = [137 i1 %]

VIIl. ERASED BINARY MEMORYLESS SOURCE

Let S™ € {0,1}" be the output of the binary equiprobable
source,X™ be the output of the binary erasure channel with
erasure raté driven by S™. The compressor only observes
X", and the goal is to minimize the bit error rate with respect
to S™. Ford = g codes with rate approaching the rate-
distortion function were constructed iG4. For % <d< %
the rate-distortion function is given by

) ) (202)

Throughout the section, we assurfie< d < 1 — § and0 <
e <1.

1-—

)
2

]

R(d) = (1-19) <1og2—h<

Theorem 32 (Converse, BES)Any (n, M,d,e) code must
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satisfy representation exceedsaveraged over the code ensemble is
found as in Theorem7:

(Z) oF (1 — o)t P [(n — k)d(S"*, C(F(X"5))) > £]§"* = X" ]

(o)) =0 ()

nd — j|
whereC(m), m = 1,..., M are i.i.d on{0, 1}"~*. Averaging
Proof: Fix an (n, M, d, ¢) code(Pygn|xn, Pyn|zn). Even OVer the erasure channel, we have
if the decompres_sor knows erasure Ioceuons, the probgb|l| P[d(S™, C(f(X™)))) > d]
that £ erased bits are at Hamming distanéefrom their "
representation is

€>

’ ol
k\lMﬁ
o

J=0

= P[k erasures in5"]
k
14

Pk d(S"YF) =¢| XF=(?...7)] =2k< ) (204) i . . .
P [k d(S*,C(f(X"))) = j| X" =?...7]

because giveX* = (7...7), S;’s are i.i.d. binary independent 7=0

of Y%, P[(n—k)d(S" %, C(F(X" %)) > nd — jlX" " = 5" "]
The probability thatn — k& nonerased bits lie within n N .
Hamming distance from their representation can be upper Z ( )5 (1-
bounded using Theorel®t: k=0
k M
—k
P [(n —k)d(S" 7k, y"F) < ¢ X"k = gnF] Z ()( 27 <"-’€><L:d_jj>> (209)
k =0
n+k
< M2 < 14 > (205) Since there must exist at least one code whose excess-

) . distortion probability is no larger than the average over th
Since the errors in the erased symbols are independent of ern§emble there exists a code satisfyiBg7. -
errors in the nonerased ones,

Theorem 34 (Gaussian approximation, BESThe minimum

Pd(S™, Y™) <d] achievable rate at blocklength satisfies(82) where
n ) N 5
= P[k erasures in5™ = - 2 A2
k; [ ] V(d) = 6(1 — ) log? cosh (QIOge) + 1A (210)
k * / 1 - g —d
Y Pk d(SF YF) =X =27 A =—R(®==bg—gj§— (211)
=0
. EJD [(n — K)A(S™*, Y"*) < nd — j| X" = §7¥] and the remainder term i(82) satisfies
n ’ a 1 logn 1logn loglogn 1
)< < Z _
< Z(Z)zskn—a)”k O<n>_9< n )—2 Wt T9\n) @19
kzo Proof: AppendixJ. ]

9~k (k) min{l, MQ—(n—k)< "_k, >} (206) Remark 11 It is satisfying to observe that even though
[nd —j] Theorem 12 is not directly applicable, stillV(d) =

Var [3s x(S, X, d)], where js x (s, x, d) is spelled out in 214

below. Indeed, since the rate-distortion function is aodieby

Theorem 33(Achievability, BES) There exists afn, M, d,e) Py (0) = Py(1) = 5 and

code such that

1-d—3% b=a
=0 k 1) a="?
k

ok k Lotk [ k M (207) wherea € {0,1,7} andb € {0,1}, we may adapt1(7) to
: J |nd — j] obtain

7=0

Proof: Consider the ensemble of codes witli code- 15:x(S, X, d) N N

words drawn i.i.d. from the equiprobable distribution on = 1x;v+ (X;0) + A%d(S,0) — A*d (214)
{0,1}™. As discussed in the proof of TheoreB2 the 103#(4*) wp.1-4

distortion in the erased symbols does not depend on the  _ —Nd 44 w.p
codebook and is given by204). The probability that the b
Hamming distance between the nonerased symbols and their 0 W.p-

(215)

N[ N[
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Fig. 5. Rate-dispersion function (bits) and the blocklén(l) required to

sustainR = 1.1R(d) provided that excess-distortion probability is bounded

by e for BES with erasure raté = 0.1.

The variance ofZ15 is (210.

The rate-dispersion function and blocklength required to

sustain a given excess distortion are plotted in BidNote that
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0.95

0.9

0.8 Achievability (207)
Converse 203

0.75 o

Approximation 82)
0.7 f

A

““““““Hun““

0.65 /R(d)
0 200 400 600 800 1000
n
Fig. 6. Bounds toR(n,d,¢) and Gaussian approximation for BES with

6§=0.1,d=0.1,e=0.1

Theorem 12. Throughout the section, it is assumed that
X; ~N(0,6%),0<d<o*and0 < e < 1.
The particularization of Theoremto the GMS using Z2)

yields the following result.

Theorem 35 (Converse, GMS) Any (n, M, d, ¢) code must
satisfy

€ >sup {P[g,(Z) > logM +~] —exp(—7)} (216)
~>0
gn(Z) = log E + 2 > "oge (217)

where Z ~ xg (i.e. chi square distributed with degrees of
freedom).

The following result can be obtained by an application of
Theorem8 to the GMS.

Theorem 36 (Converse, GMS) Any (n, M, d, e) code must

asd approache%, the rate-dispersion function grows withoukatisfy

3 a code

limit. This should be expected, because tbr= g,

that reconstructs a sequence with vanishingly small excess

distortion probability does not exist, as about half of thesed
bits will always be reconstructed incorrectly, regardleSthe
blocklength.

The bounds in Theoren®2 and33 as well as the approxi-

mation in Theoren84 are plotted in Fig6. The achievability

M (%()) (218)
wherer, (e) is the solution to
P[Z<nri(e)) =1—¢, (219)

and converse bounds are extremely tight. At blocklengtmlotﬁnd Z ~ Xz

the penalty over the rate-distortion function9%.

IX. GAUSSIAN MEMORYLESS SOURCE

This section applies Theoreriis8 and10to the i.i.d. Gaus-
sian source with mean-square error distortid(y"™, y™)

LS ((zi — y;)% and refines the second-order analysis in

Proof: Inequality 18 simply states that the minimum
number of n-dimensional balls of radius/nd required to
cover ann-dimensional ball of radiug/nor, (¢) cannot be
smaller than the ratio of their volumes. Since

1 n
70_2

(220)
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is x2-distributed, the left side of219 is the probability
that the source produces a sequence that falls inBjdte
n-dimensional ball of radius/nor,(¢) with center ato.

far from the origin, that is, ifa"| < \/noa or |z"| > \/nob,
where | - | denotes the Euclidean norm. To treat the more
interesting case/noa < |z"| < +/nob, it is convenient to

But as follows from the spherical symmetry of the Gaussiantroduce the following notation.

distribution, B has the smallest volume among all sets in Sp(r) =

R™ having probabilityl — e. Since any(n, M, d, ¢)-code is
a covering of a set that has total probability of at lebst e,
the result follows.

Note that the proof of TheoreB6 can be formulated in the
hypothesis testing language of Theor&nby choosingQ to
be the Lebesgue measure &f.

The following achievability result can be regarded as the

rate-distortion counterpart to Shannon’s geometric a@islgf
optimal coding for the Gaussian channet].

Theorem 37 (Achievability,
(n, M,d, €) code with

e<n [ 1= pn ) fg 002 ds

where f,- () is the 7, probability density function, and

GMS) There exists an

(221)

o r(2+41) (142- 20)2
p(”’z)‘ﬁn%—wl)(l -2
(222)
if a2 < z < b?, where
:,/1—%—\/% (223)
TEE

and p(n, z) = 0 otherwise.

Proof: We compute an upper bound t@Qj for the
specific case of the GMS. Lét ~ be the uniform distribution
on the surface of the-dimensional sphere with center @t

and radius

d

To = \/ﬁO’ 1-— - (225)
g

n
nm2

= r"~': surface area of an-dimensional
r(5+1)
sphere of radius;
o Sy(r,0): surface area of an-dimensional polar cap of
radiusr and polar anglé.
Similar to [8], [25], from Fig. 7(b),

n—1

WT
T(s5+1)
where the right side of 226) is the area of anln — 1)-
dimensional disc of radiussin§. So if /noa < [2"| =1 <

Vnob,

Sp(r,0) > (rsin@)"! (226)

Sn(|2z"],0)
P n B xn = (227)
L(2+1) el
0 228
> e Ty RO @28)
whered is the angle in Fig7(b); by the law of cosines
2 2
cos — 70— nd (229)
2rrg
Finally, by Theorenl0, there exists afin, M, d, ¢) code with
e <E[1— Pyn(Bag(X"N)™ (230)

—E [[1 ~ Pyn(Ba(X"N)M | Vioa < | X7 < \/ﬁab}
+P[|X"| < Vnoa] + P [|X"| > /noal (231)

Smce ‘X2| is x2-distributed, one obtain221) by plugging
sin?f = 1 — cos?# into (228 and substituting the latter in
(23D. [ |
Essentially Theorer37 evaluates the performance of Shan-
non’s random code with all codewords lying on the surface
of a sphere contained inside the sphere of radiigr. The
following result allows us to bound the performance of a code

This choice corresponds to a positioning of representatismose codewords lie inside a ball of radius slightly lardpert

points that is optimal in the limit of large, see Fig.7(a),

[8], [25]. Indeed, for largen, most source sequences will ber

concentrated within a thin shell near the surface of the iphe
of radius/no. The center of the sphere of radiy8:.d must

be at distance, from the origin in order to cover the largest by

area of the surface of the sphere of radigso.
We proceed to lower-boundy . (Bgi(z™)), 2™ € R™.
Observe thaPy - (Bg(xz™)) = 0 if 2™ is either too close or too

Vno.

heorem 38(Rogers B7] - Verger-Gaugry §€)). If » > 1 and
n > 2, an n—dimensional sphere of radiuscan be covered
|M(r) | spheres of radiug, whereM(r) is defined in232).

The first two cases in232 (at the bottom of the page)
are encompassed by the classical result of Roderkthat
appears not to have been improved since 1963, while the last

e (nlog, n + nlog, log, n + 5n)r"
n (nlog, n 4+ nlog,log, n + 5n)r"

74 101?le 7/7 \/ﬂn\/ﬁ{(nfl) log, rn+(n—1)log, log, n+% log, n+log,

(1*W)(

2
VTn

r(1-m2s) (1-

\/2—\/_{(71 1)log, rn+(n—1) log, log, n+3 log, n+log,
7

)

r>n
KéLZ <r<n
] IO (232)
1-—2) log2 n Tog.
;F;%E]r" 1<r<2
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Theorem 40 (Gaussian approximation, GMSThe minimum
achievable rate at blocklength satisfies

1 2 1 1
R(n,d,¢) = ilog% +1/55Q7 (9 loge +6 < Oi”)
(234)

where the remainder term satisfies

19 <1> <0 <1°g”) (235)
n n

11 log 1 1
g_ﬂ+w+o(_) (236)

2 n n n

Proof: We start with the converse part, i.236).

Since in Theoren86 Z = 5 > | X2, X; ~ N(0,0?),
we apply the Berry-Esseen CLT (Theord®) to 2, X?2. Each

o

24 X? has mean, second and third central moments equal to
1, 2 and8, respectively. Let

r? =1+ \/%Ql <e + %‘?) (237)

=1+ \/%Q‘l (e)+O <%> (238)

Then by the Berry-Esseen inequali9s)
P [Z > nFQ] >€ (239)

and therefore-, (¢) that achieves the equality i219 must
satisfy r,(¢) > r. Weakening 218 by pluggingr instead of
r,(€) and taking logarithms of both sides therein, one obtains:

2,.2
log M > n log ar (240)
2 d
2
b) = glog % + \/gcz-l ()loge + O (1)  (241)
Fig. 7. Optimum positioning of the representation sphere sad the Where @41 is a Taylor approximation of the right side of

geometry of the excess-distortion probability calculatib). (24().
The achievability part436) is proven in AppendidX using
Theorem37. Theorem39 leads to the correct rate-dispersion
two are due to the recent improvement by Verger-Gaugi}; [ term but a weaker remainder term. ]
An immediate corollary to Theorei®8 is the following: Figures8 and 9 present a numerical comparison of Shan-
Theorem 39 (Achievability, GMS) For n > 2, there exists ?20;:; ?;Té)e \;ilzjlllglgo:g?/vf’l)l ZgghtgzZEgsg%ugdsrgzﬁ)a,\tion
an (n, M,d, ¢) code such that . TS . | O pp . :
in (234) in which we tookd ( =2= ) = 5 =2, The achievabil-
a ity bound in @33 is tighter than the one in2@1) at shorter
M<M|(|——=r, 233 - .
- (\/_T (6)) (233) blocklengths. Unsurprisingly, the converse bound 24§ is

wherer, () is the solution 1219, quite a bit tighter than the one ir216).

Proof: Theorem38 implies that there exists a code with X. CONCLUSION
no more tharvi (%rn(e)) codewords such that all source To estimate the minimum rate required to sustain a given

sequences that fall insid®, the n-dimensional ball of radius fidelity at a given blocklength, we have shown new achiev-

Vo, (€) with center ato, are reproduced within distortion @Pility and converse bounds, which apply in full generality

d. The excess-distortion probability is therefore given by t and which are tighter _than existing bounds. The tightness of

probability that the source produces a sequence that fdfi§Se bounds for stationary memoryless sources allowed us

outsideB. m 0 obtain a compact closed-form expression that approxisnat
Note that Theoren39 studies the number of balls of radiudhe excess rate over the rate-distortion function incuimettie

V/nd to coverB that is provably achievable, while the conversBOnasymptotic regime (Theoref®). For those sources and

in Theorem36 lower bounds the minimum number of balls of!NIess the blocklength is small, the rate dispersion (aloitiy

radiusv/nd required to coveB by the ratio of their volumes. the rate-distortion function) serves to give tight appnoations
to the fundamental fidelity-rate tradeoff.
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decreasing probabilities:

1.9 Px(1) > Px(2) > ... (242)

1.8
Observe that

17 Shannon’s achievability3@)

M*(0,¢) =min{m >1:P[X <m]>1—¢€}, (243)
1.6
and the optimal randomized test to decide betwBgnand U

Achievability 233 is given by

Achievability (221)

Approximation 82) 1 1, a< M*0,¢)—1

Py x(lla) = S o, a=M*0,¢) (244)
0, a>M*0,¢)+1

K 15

1.3

Converse 218
Converse 216)

121

It follows that

14 ' ' : ' ﬁl—e(PXaU):M*(OaE)_l—i_O‘ (245)
0 200 400 600 800 1000

wherea € (0,1] is the solution to

Fig. 8. Boimds toR(n, d, ¢) and Gaussian approximation for GMS with P [X < M*(0,¢) — 1] + aPx(M*(0,e)) =1 —¢, (246)
c=1d=3; Le=10"2.

hence 64).
2
1.9 R APPENDIXB
GAUSSIAN APPROXIMATION ANALYSIS
18 Shannon’s achievability3g) 1 OF ALMOST LOSSLESS DATA COMPRESSION

17 1 In this appendix we strenghten the remainder term in

Achievability (221) Theorem12 for d = 0 (cf. (88)). Taking the logarithm of

161 (64), we have

S Achievability (233 ]

log B1-(Px,U)

14F 1 < log M™*(0,€) (247)
13l _ Approximation g2) < log (Bi—e(Px,U) +1) (248)
T~ Converse 218 1
Ry =1 —e(Px,U)+1 1+ —-— 249
12y — Og/Bl ( X ) + Og ( + ﬂl,e(PX7 U)) ( )
1
1.1} <1 _(Px,U)+ —————1 250
1 R o 250
L £ ‘ Converse 216) ‘
0 200 400 600 800 1000  where in 250 we usedog(l + z) < zloge, z > —1.

n Let Px~» = Px x...x Px be the source distribution, and let

U™ to be the counting measure off". Examining the proof of
Fig. 9. Boi,lnds toR(n, d,€) and Gaussian approximation for GMS with_emma 58 of P7] on the asymptotic behavior Qﬂl—e(P Q)
_ — — 104 o . o
o=ld=73,e=10"% it is not hard to see that it extends naturallycdefinite Q’s;
thus if Var [1x(X)] > 0,

ACKNOWLEDGEMENT log B1—(Px», U") = nH(X) + /nVar ix(X)]Q " (¢)
Useful discussions with Dr. Yury Polyanskiy are gratefully — %bgn +0(1) (251)

acknowledged. In particular, Theoreéwas suggested by him.
and if Var [ix(X)] = 0,
APPENDIXA

HYPOTHESIS TESTING
AND ALMOST LOSSLESS DATA COMPRESSION

log f1—c(Pxn,U™) = nH(X) — log (252)

1—e€

Letting Px~» andU™ play the roles ofPx andU in (247) and

To show 64), without loss of generality, assume that th¢250 and invoking 251) and @52, we obtain 88) and g89),
letters of the alphabetd are labeledl,2,... in order of respectively.
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Observe that

dyk(z,0) =E [d*(z,Y)] (260)

We show that even if the rate-distortion function is nO(tthe expectations in269 and @60) are with respect to the

achieved by any output distribution, the definitiondbftilted

unconditional distribution ot"). Denoting by(-)" differentia-

information can be extended appropriately, so that Theatenoy with respect to\ > 0, we state the following properties

and the converse part of Theoret still hold.

We use the following general representation of the rats\-

distortion function due to Csiszag]|

Theorem 41 (Alternative representation d&(d) [3]). Under
the basic restrictionga)-(b) of Sectiorll-B, for eachd > dyyin,
it holds that

Rx (d)

= max {E[a(X)] — A\d}

253
a(z), A ( )

where the maximization is ovefz) > 0 and A > 0 satisfying
the constraint

E[exp{a(X) - Md(X,y)}] <1VyeB (254)

Let (a*(z), A*) achieve the maximum in263 for some
d > dpin, and define thel—tilted information inz by

Ix(x,d) = a*(x) — \*d (255)

Note that (9), the only property ofi—tilted information we
used in the proof of Theorem still holds due to 254), thus
Theorem7 remains true.

The proof of the converse part of Theordr generalizes

immediately upon making the following two observations.

First, 87) is still valid due to 253. Second,d-tilted infor-

whose proofs can be found i2(]].
(E[Ay(X, 3% y)])" = 0 wheredy , = R,
E[AY (X, )] <0 forall A > 0if E [dy,2(X,0)]
ANy (z,N) = —d+dy(x, N).
A (x,N) = [d3 (2, A) — dya(2,\)] (loge) ™ <0
It dyJ(,T,O) < .
E. dy(z,A) <0if dy(z,0) < oo.
F. dminjx,y = E[ay (X)], whereay (z) = essinf d(z,Y").
Remarkl2. By PropertiesA andB,

(d)

B. < Q.
C.

D.

E [Ay (X, /\}y)] = iupIE [Ay (X, \)] (261)
>0
Remark13. PropertiesC andD imply that
—-d< A/Y(xv)‘) < _d+JY,l(x70) (262)

Therefore, as long @B [dy,1(X,0)] < oo, the differentiation

in PropertyA can be brought inside the expectation invoking
the dominated convergence theorem. Keeping this in mind
while averaging the equation in Prope®/with A = X%
with respect toPyx, we observe that 7

E [dy,1(X,\x.y)] =d (263)
Remark14. Properties 17) and (L8) of d—tilted information

mation in @55 still single-letterizes for memoryless sourceq‘mply that the equality in 263 holds if \% - is replaced

Lemma 3. Under restrictiong(i) and (ii) in Sectionv-B, (103
holds.

Proof: Let (a*(x), A*) attain the maximum in 253

for the single-letter distributiorPx. It suffices to check that

(>, a*(xi), nA\*) attains the maximum in263) for Px» =
Px X ... X Px.
As desired,

E lzﬂ: a*(Xi)] — nM\d =nRx(d) = Rx«(d)  (256)
i=1

and we just need to verify the constraints 254 are satisfied:

E leXp {Z a*(X;) = A Z d(Xs, U)H

= JIE[exp {a*(X:) = Ad(Xi,9)}] (257)
=1
<1Vy"eB® (258)
[ |
APPENDIXD

PROOF OFLEMMA 2

Before we prove Lemma3, let us present some background

results we will use. Fok = 1,2,..., denote

B [dh(z, ) e (Ad(z, V)]
E [exp (—Ad(z,Y))]

dy (2, \) = (259)

by \* = —R/(d), andY is replaced byY* - the Rx (d)-
achieving random variable. It follows that

* _ \k
A=Ay

(264)
Remark15. By virtue of Propertied andE we have
—dy2(2,0) < AY(z,\)loge <0 (265)

Remark16. Using 263, derivatives ofRx y (d) are conve-
niently expressed Vvi& [dy,k(a:, /\}y)}; in particular, at any

Ainix,y < d < diax|x,y = E [dy,1(X,0))] (266)
we have
Ry (d) = ————— : (267)
( [dva (X 2%.1)])
B _ loge _ (268)
ooy - E[Ea)]
>0 (269)

where @68 holds by PropertyD and the dominated conver-
gence theorem due t@§9 as long ask [dy2(X,0)] < oo,
and @69 is by PropertyB.

The proof of Lemma consists of Gaussian approximation
analysis of the bound in Lemnda First, we weaken the bound
in Lemmal by choosingP¢ and~ in (72) in the following
manner. Fixr > 0, and lety = =, Py = Py« = Py« X ... X
Py~, whereY* achievesRx(d), and choosePy = Py, =
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Py x ... P, whereP; is the measure onl generated by the (the right side of 278) is positive by restrictioniif) in Section

empirical distribution ofz™ € A™: V-B) and denote
L 2= (a+2) (279)
’ 2
Py(a) = — > Hai=a} (270) A
=1 A=—Ryy. (d - 7) (280)
Since the distortion measure is separable, for any 0 we p = E[|AY. (X, \9)]] (281)
have 3A
5 = 7 SUIS)A RX Y * (d + 9) (282)
Ayns (2™, An) ZAY* 20 271) o
V(z™) Z sup |A"(z;, A+ 0)|loge (283)
i—1 10]<6
so by Lemmal, for all 1o
V(z") = — Z Iéln<f |A" (2, \* + 0)|loge (284)
d> dyy o yne (272)
' We say that” € F,, if it meets the following conditions:
it holds that 1
- Z ay+ (i) < dinjx,y+ + A (285)
Pyns(Bg(z™)) > exp Ay (x4, A = Aa"™)T 1< -
Z E Z dY*,l('riv O) > dmax\X,Y* - A (286)
_ < no_ gn noo
[nd T< Z d(zi, Z nd| X" = L Zdy*yl(zmﬁ) >d+ A (287)
n
(273)
= Zdy* i, \) <d—A (288)
where we denoted
A(a") = ~RY,.(d) (274) - de (€5,0) < E [dy-3(X,0)] + A (289)
_ ‘LL”
(A\(z™) depends on:" through the distribution oX in (270), V") 2 9 loge (290)
andPy,. = Py, x. X Py, . WhereP;, ¢ achievesRy ... (d). Vi) < 3u" g 29

The probab|I|ty appearmg in273 can be lower bounded by
the following lemma. Let us first show thatZ77) holds with§ given by @82 for
Lemma 4. Assume that restriction&)-(iv) in Sectionv-B &l 2" satisfying the conditions285~(288. From @87) and

hold. Then, there exisfy,no > 0 such that for all§ < 4, (289,
n > ng, there exist a sef),, C A" and constants, Cy, K1 >
0 such that — Zdy* 2, \) <d < = Zdy*l (zi,A) (292)

11
K

P[X" ¢ F,] < N (275) On the other hand, fron263 we have

_ % S dye 1 (@i A@™)) (293)
i=1

and for all z,, € F,,

Therefore, since the right side &243) is decreasing (Property
L (276) B)

Q

nd—T<Zd:1:l, <nd|X"*:1:" >

E

A< A(@™) <A (294)

[A(") = A" <6 (277) Finally, an application Taylor's theorem t@749 and @80
using @64 expands294) as
where \* = —R{ (d).
<D S —3AR§£Y*(d)+/\*<)\(x )<)\*+%RXY*(c_i) (295)
Proof: The reasoning is similar to the proof ¢i(, (4.6)]. 2
Fix for somed € [d,d + 22], d € [d,d — 22]. Note that 278),
(285 and @86) ensure that

1 .
0<A< g min {d — dmin\X,Y*a dmax|X,Y* — d} (278) dmin\X,Y* +2A <d < dmax|X.,Y* —2A (296)
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so the derivatives in295 exist and are positive by RemarkDue to @77), (290 and @91, & loge <V(z™) < 3’2‘” loge

16. Therefore 277) holds withé given by @82). as long ast” € F,. Furthermore
We are now ready to show that as long/agand, therefore, -
6) is small enough, there exists &; > 0 such that 275 T(x™) < 8E [dy~3(X,0)] 4+ 8A (310)

holds. Holder's inequality and assumptioiv)(in Section

V-B imply that the third moments of the random variable®r such z" due to @89. Therefore, by the Berry-Esseen
involved in conditions 287)—(289 are finite. By the Berry- inequality we have for alk™ € F;:

Esseen inequality, the probability of violating these dtods

is O (%) To bound the probability of violating conditions

(290 and @91), observe that sinc&l. (X, \) is dominated by [nd —T< Z d(z;, ZF) < nd)X™ = ”] (311)
integrable functions due t®65, we have by Fatou’s lemma
and continuity ofAZ, (x, - Ve 127 (z™) 1
y (%, ) > L /ww o= g — 3(17)_ (312)
V2m Vz(zn) vn
1 : : * /
# <liminf E [ inf [AG.(X, N+ 0 )|] (297) n
510 107|<5 > T e 712?(17 )| L (313)
27V (z™) Vs (am) n
<limsupE | sup |[AY.(X,\* +6')] (298) - o 1
610 0"]<8 > (7(3%““@@ - 2B> — (314)
< (299) V3muloge n
Therefore, ifs is small enough, where B = 96\/_% The proof is complete upon
oge
" " observing that as Iong as is large enough, we can always
3p — o
1 loge <E[V(X™)] <E[V(X")] < 1 loge (300) chooser > 0 so that 814 is positive. ]

To upper-boundy"" ; Ay« (z;, A(z™)) appearing in 273,
The third absolute moments &f(X™) andV (X™) are finite we invoke the following result.
by Hbélder’s inequality, 265 and assumptioniy) in Section
V-B. Thus, the probability of violating condition2%0 and
(291 is also O (ﬁ) Now, (275 follows via the union
bound. n n
To complete the proof of Lemmd, it remains to show P ZAY*(Xi,)\(X")) < ZAY* (Xi, ") + Calogn
(276). Toward this end, observe, recalling Properfleand E i=1 i=1

Lemma 5. Assume that restrictions$i)-(iv) in SectionV-B
hold. There exist constants,, Ko > 0 such that forn > ny,

that the corresponding moments in the Berry-Esseen theorem | _ & (315)
are given by n
1 — L where
u(z"™) = - ZE [d(Ii, Z*)|X = xz} (301) o Var [AQ* (X, /\*)] s
| S E[AV. (X A [Toge
== dvea(zi Ma") (302)
1=1 ] .
—d (303) Proof: Using 277, we have for allz,, € F),,
n 1 S 7 n n n
V(z™) = EZ [dY*,Q(l’i;)\(l' ) —CR*J(%',/\(ZC ))] Z [Av (2, A(z™)) = Ays (25, A7)]
i=1 =1
(304) n
n = Ay« (:Eia A + 9) - AY" (xia )\*)] (317)
1 " sup Z[ Y
= — — . n |9|<5 =
- ;A (zi, A(z")) loge (305) 3 )
T(z") = 306) = sup 0> Al (i, \Y) v ZA”* (zi, A" +&,) (318)
1 n 3 101<é i=1 =1
* * o o ) 2
w2t Ud(% £)-E [d(x“ 21X = “’”} | X = "’”} < sup 05'(a") - 9_,5'”(17") (319)
=1 16]<s 2
<2 Zn:E Ud(arr 79| 1% = x] @307) . (8'@")” (320)
B ni 1 - 2587(am)
= Z dy-3(2i, A(z")) (308) where
<2 Zdv*g i, (309) e (317 is due to R61);

(318 holds for somé¢,,| < 6 by Taylor's theorem;
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o in (319 we denoted

=3 A (@i,\Y) (321)
=1
§"(x") = — Z nf AV (50, X +0)](322)

and used Propert;
« in (320 we maximized the quadratic equation iB10)
with respect to).

Note that the reasoning leading ®2() is due to P21, proof of

Theorem 3]. We now proceed to upper-bound the ratio in the gla
right side of 820. SinceE [dy* (X, 0)] < oo by assumption

(iv) in SectionV-B, the differentiation in PropertA can be

brought inside the expectation b2 and the dominated

convergence theorem, so

E [%s'(xn)} =E[Ay. (X, A\*)] =0 (323)

Denote
V' = Var [A{. (X, \")] (324)
T' =E ||Ay. (X, A*) — E[Ad. (X, %) (325)

If V! = 0, there is nothing to prove as that meai6§X") =
0 a.s. Otherwise, since262 with Holder’s inequality and
assumptioniy¢) in SectionV-B guarantee thdf” is finite, the
Berry-Esseen inequality9p) implies

P [(s’(xn)f > V'nlog, n}
1277

inequality ©5),

i i
1" vn M 6T o
P |:S (X ) < n7:| < <ﬁ + me 32V %

(331)
61" gV 1
KY
=—= 333
Tn (333)
where in 831 we used 830. Finally, denoting
Z Ay (5, A - Z Av-(z;,\*)  (334)
and lettingG,, be the set ofc” € A” satlsfylng both
(S'(z™)* < V'nlog, n (335)
"
S (z") > n% (336)

we see from 275, (329, (333 applying elementary proba-
bility rules that

P [g(X") > Cy logn]

_ n oy (87(X™)°
=P |g(X") > Cslogn, g(X") < 257 (X")
n oy (87(X™)°
+ P |g(X") > Cylogn, g(X") > 257X ") (337)
[ (5(xm))? K
<
P 257 (X") > Cylogn| + NG (338)
sy .
=P 257X > Cslogn, X" € G,
[ (5(xm))? . K
+ P 2S”(X”) > Cylogn, X" ¢ G, | + NG (339)
K} K K
<0+—2+—2+— (340)
We conclude that315 holds forn > ng with Ky = K7 +
Kl + KY. ]

To apply Lemmast and 5 to (273, note that 272 (and
hence 273) holds forz™ € F), due to 96). Weakening273
using Lemmag and5 and the union bound we conclude that
Lemma2 holds with

< W+2Q( Viog, n) (326)
- (V w_) @2
< (fT +\/I> = (328)
_% (329)
In (327, we used
Q) < ﬁe_é (330)

C= % +Cy (341)
K=K+ K> (342)
c= (N +0)1—logCy (343)

and @28 obviously holds fom > 2. To treatS” (X ™), observe
that 5”(z") = nV(z") (loge) ' (see 284), so as before,
the variancel’” and the third absolute momeffit’ of Z; =
inf g/ <5 | AY. (X3, A + 0)| are finite, andE[Z,] > 2~ by
(300, where” > 0 is defined in 281). If V" = O we

APPENDIXE
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In this appendix, we show thatl17) follows from (82).
Fix a point (d«, R~) on the rate-distortion curve such that

haveZ; > “ almost surely. Otherwise, by the Berry-Esseeih, € (d,d). Let d, = D(n, Rw,¢), and leta be the acute



angle between the tangent to tfd) curve atd = d,, and
the d axis (see Figl0). We are interested in the difference

dy, — dso. Since [LO]
lim D(n, R,¢) = D(R), (344)
there exists @ > 0 such that for large enough,
dp € Bs(doo) = [doo — 0, doo + 0] C (d, d) (345)
For suchd,,,
|dy — doo| < ‘R(iaii;nm"‘ (346)
S ey 2t G
—0 (%) (348)
where

« (346 is by convexity of R(d);

o (347 follows by substitutingR(n,d,,e) = R and
tan ay, = |R'(dy)];

(348 follows by Theoreml2. Note that we are allowed
to plug d,, into (82) because the remainder iB2) can
be uniformly bounded over ali from the compact set
Bs(do) (just swapB,, in (105 for the maximum ofB,,’s
over B;s(d), and similarly swap:, K, B,, in (112 and
(113 for the corresponding maxima); thud2j holds not
only for a fixedd but also for any sequendg € Bs(dx).

It remains to refine348 to show (L17). Write
1

%)
R(dn) = R(deo) + R (doo)(dy, —

N cspe

V(d,) = V(ds) + O ( (349)

)+o( ) (350)

+ R'(do)(dy —d )+9<1°g”) (351)
\/ Q
+ R'(do)(dy —d )+9<1°i") (352)

where

e (349 and @50 follow by Taylor's theorem and348
using finiteness o¥’(d) and R"(d) for all d € Bs(dwo );

e (35) expandsR., = R(n,d,,¢€) using 82);

o (352 invokes 349.

Rearranging352), we obtain the desired approximatiati(y)
for the differenced,, — d

25

Fig. 10. Estimatingd,,

— dso from R(n,d, €)

— R(d).

APPENDIXF
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From the Stirling approximation, it follows that (e.c29)

s 01 ()}

< (Z) (353)
mmmer{(B)) e

In view of the inequality

n n k J
()0 e
we can write
()<
DS e
j=0

()i

where @58 holds as long as the series converges, i.e. as long

as 2k < n. Furthermore, combining366) and @58 with
Stirling’s approximation 353 and @54), we conclude that
for any0 < a < 3,

n 1
1Og<LnaJ> =nh(a) — 510gn+0(1) (359)
Taking logarithms in 124) and lettinglog M = nR for any
R > R(n,d,¢), we obtain

log(1 — ¢) < n(R — log2) —|—1og< L:dj> (360)

<n(R—1log2+ h(d)) — % logn+ O (1) (361)

Since @61 holds for anyR > R(n,d, ¢), we conclude that

o(})

R(n,d,¢) > R(d) + =

1logn
- (362)
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Similarly, Corollary 17
(exp(nR),d, e) code with

(363)

{ L;%J >>

loge

loge < exp (nR) log (1 —

(o)
277.

where we usedog(l + z) < zloge, z > —1. Taking the
logarithm of the negative of both sides iB64), we have

< —exp (nR) (364)

log log% >n(R—1log2) + 10g< L:dJ > + logloge (365)

=n(R —log2+ h(d)) — élogn +0(1), (366)
where 366 follows from (359. Therefore,
Rin,d,e) < R(d) + - 18" 1 o (1) (367)
n n

The cased = 0 follows directly from @9). Alternatively, it
can be easily checked by substitutily) = 1 in the analysis
above.

APPENDIX G

GAUSSIAN APPROXIMATION
OF THE BOUND INTHEOREM 22

By analyzing the asymptotic behavior af47), we prove

that
\/ Q

logl
og 0gn+0<_)
n

R(n,d,e) <

= log Dy (368)

2 n n

where V(d) is as in (L49, thereby showing that a constant < P
composition code that attains the rate-dispersion functio

exists. LettingM = exp (nR) and using(l — 2)M < e~ M=
in (147), we can guarantee existence of @n M, d, ') code
with

¢ < i (Z)p’“(l

k=0

) e rr)” Lo (k. [nq]) exp(nR)

(369)
In what follows we will show that one can choose &h

satisfying the right side of368 so that the right side of

implies that there exists anlt follows that

n \ ! C
(fnq]) L,(np+nA,[gn]) > % exp{—ng(A)} (372)

wheneverL,,(k, [¢qn]) is nonzero, that is, whenevéng]| —
nd < k < [nq] + nd, andg(A) = 0 otherwise.

Applying a Taylor series expansion in the vicinity &f= 0
to g(A), we get

g(A) = h(p) — h(d) + I (p)A + O (A?) (373)
Since g(A) is continuously differentiable withg’(0) =
h'(p) > 0, there exist constantls b > 0 such thatg(A) is
monotonically increasing ofr-b,b) and @71 holds. Let

p(l - p) Q_l (En)

b, = (374)
n
2B, V(d)1 g 1

n=€— —— —\/ —— = @ — — 375

= vn 2 b vn (379)
_ 2

B, = el=2p+2p° (376)
p(1—p)

B llogn 1 log, n
R—g(b)+2 + lo ( 20) (377)

Using 373 and applying a Taylor series expansior(io! (-),

it is easy to see thak in (377) can be rewritten as the right
side of 369. Splitting the sum in 69 into three sums and
upper bounding each of them separately, we have

n no\—1
(Z) (1 = pyrke (1) Ln (ki [an)) exp(n)

D

k=0
[np—nd| [np+nbn ] n
— Z + Z + Z (378)
k=0 k=|np—nb|+1 k=|np+nb, |+1

[i X; <np— nb}
i=1

[np+nb, |
+

k=|np—nb|+1

(})ha = gt el o)

P ZXZ' > np + nby, (379)
i=1
B, V(d)1 _, 5 1 B,
< —= — V() 4+ —— n+ — 380
=0 Vo e tE ety @80
_ (381)

(369 is upper bounded by whenn is large enough. Letting
k = np+nA, t = [ng], to = [+ and using where{X;,} are i.i.d. Bernoulli random variables with bias
Stirling’s formula @53, it is an algebraic exercise to showThe first and third probabilities in the right side &79 are

that there exist positive constanfsand C' such that for all pounded using the Berry-Esseen bou@8) @nd @30, while
A € [-4,4],

N AN A\ St of g(A) in (=b,b,] for large enoughn, in which case the
< > < )( >_ ( ) < )( > (370) minimum difference betweer®? and g(A) in (=b,by) is
t to) \t —to k to) \k —to Llogn | 1 log, n
C 2 log(
> —=exp {ng(A)} (371)
Vi APPENDIXH
where PROOF OFTHEOREM 27
B A A In order to study the asymptotics oi§1) and (63, we
9(A) = h(p+A)—qh (d B 2_q) —(1=q)h (d+ 2(1 — q)) need to analyze the asymptotic behaviorSpf,,; which can

the second probability is bounded using the monotonicity



be carried out similarly to the binary case.
inequality 355, we have

27

Recalling thehere 895 follows from (388. Therefore,

R(n,d,e) < R(d) +

(396)

1logn
;20 (2)

n
— _ J
Sk ZO <g> (m—1) (382) The casel = 0 follows directly from @89), or can be obtained
- . ; by observing thatS, = 1 in the analysis above.
n k k—
< _ J
- (k) ZO (n — k:) (m —1) (383) APPENDIX |
- o ; GAUSSIAN APPROXIMATION
< n (m — 1>’“Z k (384) OF THE BOUND IN THEOREM 30
k ; (n—Fk)(m—1) .
j=0 Using TheorenB0, we show that
_(n ok n—k
- (k) (m— 1" — e (385)  pen, \/ Vid) 51 (397)
where @85 holds as long as the series converges, i.e. as long ( -1) logn loglogn 0 1
as® < m=1 Using + 2 n » 1 %\a
n & wherem,, is defined in {70, andV (d) is as in (L90). Similar
Sk 2 <k> (m —1) (386) to the binary case, we expreds,(k,t*) in terms of the

and applying Stirling’s approximation3$3 and @54), we
have for0 < d < ™1

1og S|a) = log <Ln"dj) +ndlog(m — 1)+ O(1)  (387)

= nh(d) + ndlog(m — 1) — %logn +0(1) (388)
Taking logarithms in 161) and lettinglog M = nR for any

R > R(n,d,€), we obtain

log(1 — €) < n(R —logm) +log S|4 (389)
< n(R —logm + h(d) + dlog(m — 1))
- %logn—i—O(l) (390)

Since @90 holds for anyR > R(n,d, €), we conclude that

R(n,d,¢) > R(d) + ;log” +0 < > (391)
Similarly, Theorem 26 implies that there exists an
(exp(nR),d, €) code with
Sin
loge < exp (nR)log <1 — M) (392)
m’ﬂ
S\nd]
< —exp(nR) ——loge (393)
mn

rate-distortion function. Observe that whenever(k, t*) is

nonzero,
() mer=(0) TG o
() () e

wherek, = (t1p,...,tmp). It can be shown 34] that for
n large enough, there exist positive constaats C; such
that @00 and @01 at the bottom of the page hold for small
enough|A|, whereA = (Aq,...,A,,). A simple calculation
using " | A, = 0 reveals that

§(a,b)1
220 Ong*W( )
ZA log + Z Aqlog ) (402)

a=my-+1

so invoking 400 and @401) one can write

—1 my
t* m—1)(mqy—
(&) 1 (1) = o5 cxpnoa)}

(403)

where C' is a constant, and(A) is a twice differentiable

where we usedog(1l + x) < zloge, x > —1. Taking the function that satisfies

logarithm of the negative of both sides &3, we have

1 +ZAU )+ 0 (JAP) (404)
loglog — > n(R —logm) + log S|,,4) + logloge (394)
€
. 1
=n(R —logm + h(d)) — %10gn—|—0(1), (395) v(a) = mln{z)((a),logﬁ} (405)
n m—1 m 1
<On T — 2
<k) < O~ exp n{H X +;Aa log 75 +0 (14 )} (400)
t* m—1 m 1
( ) > Con™ "7 expn{ PY(D)H (X|Y* =b) + > " d(a,b)log 5——— + O (|A]?) (401)
ky, Pt Pyy(a alb)
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Similar to the BMS case,g(A) is monotonic in differentiable functiony(Aq, Ay) can be written as

S Agv(a) € (=bb) for some constantd,b > 0 _ 2
independent of. Let 9(A1, Ag) = R(d) + alA; a2l + 0 (|AF) (413)
ay = log ———2 = \* (414)
bn =4/ MQ*1 (€) (406) d=3
" 1 20 -d—3) 1 2 (415)
52 ag = log = log
€, =€ — 2B, 1 @le*%vb(d) (407) ? 1-46 1+ exp(—A*)
Vieoovn 2mn b It follows from (413 thatg(A1, Az) is increasing im; Ay +
R= max 9(A) asAy € (—b,b) for some constants,b > 0 (obviously, we
Yuti Aqv(a)e(=b,bn] can choosé, b small enough in order fof < C(A) < C'to
(m—1)(m,; —1)logn 1 1 log, n 408 hold). In the sequel, we will represent the probabilitieshia
+ 2 n + n 08 20 (408) right side of Q03 via a sequence of i.i.d. random variables
Z1, ..., Z, with common distribution
where B,, is the finite constant defined i®9). Using @04) s
and applying a Taylor series expansion@o! (-), it is easy ar W.p-3
to see thatR in (408 can be rewritten as the right side of Z=qa Wp.1-3§ (416)
(397). Further, we usetR = log M and (1 — 2)M < e=M= 0  otherwise
to weaken the right side ofLl80) to obtain Note that
a1
Z ( n )pn(p+A)6_(t7i)1 L, (n(p+A),t*) exp(nR) E [Z] = % + a2(1 — 5) (417)
n(p+A) 2
“ Var[Z] = 6(1 — 6) (a - ﬂ)g 29 ) (a1
= > + > + Y - 2T 4
A: A: A: and the third central moment @f s finite, so thatB,, in (99
a1 Bav(a)<—=b 301, Agv(a)€(—bbn) oy Agv(a)>by . i
(400) is@ finite constant. Let
n _ V@)
<P [ZU(Xk) <E[p(X)] - 4 bn= =@ (&) (419)
k=1 c\"' 2B, V1 _,
m—1)(mpy—1 n = 1 _— _ _ n2V(d) 420
+ sup e—C"’( S b n{R—g(A)) ‘ < \/ﬁ> et NG * 2mn b° (420)
>aa Aa'U%U:z)E(_b;bn) f= A?}iﬁz: 9(A1, A2) (421)
n bp<aiAi+asAa<b
+P ) o(Xk) 2 Efp(X)] + b, (410) = R(d) + b, + O (b2) (422)
e B With M = exp (nR), since R < g(Aq,As) for all 1A +
< Bn V(d) ie_nﬂl/)(d) + L Te, + Bn (411) 282 € [by, b], for such(Ay, A,) it holds that
—n 2mn b vn vn o N o
where Px, (a) = Px(a). The first and third probabilities in [1 B %MeXp{_" g(Al’AQ)}] =1- vn (423)
(409 are bqunded using.th.e Berry-Esseen bou@ﬁ) @nd Denoting the random variables
(330. The middle probability is bounded by observing that the "
difference betweerk andg(A) in ", Ajv(a) € (—b,by) N(z) = 1 Z 7 =z} (424)
is at least—Dmn—Dlogn | 174, (ng_cn) mia

Gn_ng<N(a1)—g,N(a2)—1—|—5> (425)
APPENDIXJ

PROOF OFTHEOREM 34 and using 412 to express the probability in the right side of

(203 in terms of 74, ..., Z,, we conclude that the excess-
Converse: The proof of the converse part follows thedistortion probability is lower bounded by
Gaussian approximation analysis of the converse bound in c +
. S .
Theorem32 Let j = n§ +nA; andk = nd — nA,. Using E <1 7 exp {log M — Gn}>
Stirling’s approximation for the binomial sum3%9), after

applying a Taylor series expansion we have < <1 c > Pl < i 7 E[Z] <5 (426)
- T = n > i — N
—(n—k) n—=k C(A) B \/ﬁ i=1
2 Lnd— J = \/ﬁ exp{—n g(AlaAQ)} (412) Cv 2B V(d) 1 52
J > (1—-— ) e, — =2 — —e M@ | (427)
= vn Vn 2mn b

whereC(A) is such that there exist positive constaftsC,
¢ such thatC < C(A) < C for all |A| < ¢, and the twice = € (428)
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where @26 follows from (423), and @27) follows from the From Stirling’s approximation for the Gamma function

Berry-Esseen inequalit®b) and 830), and @28) is equivalent 5 . 1
to (420. n I (z) = \/g (%) (1 +0 (E)) (437)

Achievability: We now proceed to the Gaussian approx- ¢
imation analysis of the achievability bound in Theor@&® it follows that

Let r(2+1) 1 1
2 . 140 (_)> . (438
) [V(d) 0 (e) (429) vl (252 +1)  2mn < n (438)
n — - €n
n which is clearly lower bounded b% when n is large
_ 2By V(@)1 _, 1 enough. This implies that for all2 < > < b2 and alln large
€n =€ _e V@ (430)
vn 2 b NG enough
logM =n min g(Aq1, Ag) 1 1
Ap, Ag: > _ _ 2
O p(n,z) 2 5= exp{(n 1)log (1 —g(z)) } (439)
+ L logn + log [ 108™ (431) Where )
=nR(d) + /nV(d)Q " (¢) 4(1—d)z
1 It is easy to check thajf(z) attains its global minimum at =
+ 5 logn +loglogn + O (1) (432) |1~ 24)* and is monotonically increasing far> [1 — 2d]*.
whereg(A1, Ay) is defined in 412, and @32 follows from Let
(413 and a Taylor series expansion @f ! (-). Using @12 bo— \/?Ql (en) (441)
and (1 — )™ < e~M* to weaken the right side o207 " Vn "
and expressing the resulting probability in terms of iid. =~ 2B, 1 1 od®n (442)
random variables1, ..., Z, with common distribution416), €n =€ vnooon 4d, T
we conclude that the excess-distortion probability is uppe 1 llogn 1
bounded by (recall notatior#25)) R=—5log(l—g(1+bn)) +5——+ ~log (v log, n)

i 443
E 67% cxp{longGn}:| ( )

where B,, = 121/2. Using a Taylor series expansion, it is not

- hard to check thaR in (443 can be written as the right side

Z Zi <nB[Z] - "4 of (234). So, the theorem will be proven if we show that with
=1 R in (443, (4306 is upper bounded by for n sufficiently

c n
+ E |~ vmoxpllosM=Gnly {nb <Y Zi-nE[Z] < nan large.

<P|> Z >nE[Z]+nb,| + P
i=1

P Toward this end, we split the integral id36) into three
(433) integrals and upper bound each separately:

B,  Bn V()1 _, 2 1 ol by oo
<éent+—=+—4=+\——=¢ V@D 4 — (434) / :/ +/ +/ (444)
vnoo\/n 2mn b n 0 0 [1—2d]+ 14b,
=€ (435)  The first and the third integrals can be upper bounded using
where the probabilities are upper bounded by the Berry&sséhe Berry-Esseen |nequa!|t§35) and @30: i
inequality @5) and 330, and the expectation is bounded using [1—2d]* n
the fact that inb < a1Aq + asAs < by, the minimum differ- /O <P ZXf <n(l-2d) (445)
ence betweetog M andn g(A1, As) is § log n+log (1"2%—0”) B-lzl 1 -
_ o _ = < Zn —2d°n 446
Finally, (439 is just @30 S + 4d\/ﬁe (446)
APPENDIXK / <P Y X7 >n(l+by) (447)
GAUSSIAN APPROXIMATION 1+bn Li=1 _
OF THE BOUND IN THEOREM 37 §€n+ﬂ (448)
Using Theoren87, we show thaf?(n, d, €) does not exceed v

the right-hand side of234) with the remainder satisfying Finally, the second integral is upper bounded%y because
(236). Since the excess-distortion probability 22() depends by the monotonicity ofy(z)
on o2 only through the ratio%, for simplicity we leto? = 1. ) .
Using inequality(1 — 2)™ < e~M<, the right side of 221) e~ exP(nfi) < ¢~ v ©P{ 3 logntlog(vlos. n) } (449)

can be upper bounded by _ 1 (450)
S Vn
(436) for all [1—2d" <2< 1+b,.

/ 67p(n7Z) exp(nR) fX?z (’]’LZ) n d27
0
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