











peripheral parts of the “treads” and an increase in the per-
ipheral parts of the “"risers". We can estimate the magnitude
of the effect for a sinusoidal staircase with [6__ | = 5"
lcgl = 1.2 bar (based on ng = 3 bar year and 1du/dx| =
0.2 a! at the surface), and M/hA ™~ 4 where ) is the
wavelength of the staircase. From Equation (24) the
maximum value of |K| is then 0.12 bar, not large but
appreciable in relation to a basal shear stress of 1 bar. For
these same (fairly extreme) conditions, the *S$* term in
Egquation (22),

§ = — og sin26tan’s, (25)
has maximum value 0.04 bar, so its neglect in Equation (23)

while the K term was retained there has a measure of
justification. The secondary stress-gradient term

3. d;
Gy = = h =5~ 5in%28 (26)
2 dx

in Equartions (21) or (22), is, at maximum, about 20% of
the main stress-gradient term 2G under the above
conditions. For the more typical glacier situations to which
we apply Equation (23) in Parts I (Kamb and Echelmeyer
1986[b], and Il (Echelmeyer and Kamb, 1986) with « ~ 6
and 8 € 3°, the K and G, terms are reduced by a factor
0.04 relative to the values estimated in the rather extreme
case evaluated above, and they therefore become negligible,
as does of course § also.

7. THE B TERM

If there is no basal sliding, then op = 0 (see again
Nye, 1969, p. 210) and the oy term in Equation (23) drops
out. We label this term "B,

B = opsin26tan’e. (27)

It is a kind of "basal drag® term, which contributes a
resistance to sliding flow over basal hills (or, more
precisely, ridges oriented crosswise to the flow). This is
seen as follows. If the surface topography reflects only
gently the underlying ridges, so that [8] << |B|, then on
the stoss side of a hill there must be convergent, extending
flow such that uh = constant (ignoring accumulation/
ablation), hence

du _ dh o =,
h — = -u — = y(ran® — 1an8) = —utand (28)
dx dx

where 8 < 0 on the stoss side. On the lee side, Equation
(28) remains valid and describes the diverging, compressing
flow there (8 > 0). If we designate by ny the effective
viscosity of the basal ice, and suppose that the longitudinal
strain-rate parallel to the basal surface is approximately
equal to du/dx, then

. du u
oy & 20y ; = =2ng ; tan®. (29)
Thus the B term in Equation (27) is
B = —4ny E tan?8sin?8. (30)

From the form of Equation (30), it follows that the B term
gives a basal drag resistance that is independent of the sign
of 8. It constitutes a resistance to the flow because it sub-
tracts from the basal shear stress Ty, which is linked to the
flow wvelocity via the mechanics of basal sliding and of
shear deformation of the basal ice, as in Equations (I-1) or
(I-3).

We can estimate the drag resistance due to B in a
near-maximal practical case for, say, 8 = 30°, by taking ng
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~ | bar year (appropriate 10 Ty = 1 bar), & = 50 m a’}, &
= 200 m. These give B = —0.1 bar, which is an appreciable
but not large fraction of the basal shear stress. It might
have detectable effects.

For flow over a roughly sinusoidal topography of
transverse ridges, the B term will tend to cause the appear-
ance in the surface topography of a wave that is the second
harmonic of the bedrock sinusoid, because it will tend to
require a compensating variation in surface slope « in
Equation (23) at twice the bedrock wave number on account
of the tan’8sin?@ variation in Equation (30).

The overall drag resistance arising from the B term
goes as the longitudinal average of tan®8sin?®, which is
approximately 38% /8 for sinusoidal topography with
maximum slope angle 0 .- This overall drag resistance is
somewhat akin to the sliding resistance due to short-
wavelength roughness in the basal topography, but the two
cannot be equated. It might be thought that the short-
wavelength drag could be described by a meodification of
Equation (30) in which h is replaced by ~\/m, where ) is
the roughness wavelength, but this is not correct. The drag
calculated in this way from B in Equation (30) contains an
extra factor of sin’8 by comparison with the ordinary basal
sliding drag for a roughness wave of wavelength X

az u
Tp = <.°° 5}3 = 4mny —*: (:an’s> (31)

Equation (31) is obtained from Kamb (1970), equations (40),
(30), (26), and (21), with 620/8.\: = —an8. The reason why
Equations (31) and (30) give different results here is that
the stoss- and lee-side pressure distribution responsible for
the drag in Equation (31), at roughness wavelengths
A ~ Il m important in basal sliding, is generated via its
coupling through the x-equilibrium equation to a'rxvla.r.
and is thus in effect contained in the T term in Equation
(23), rather than in the B8 term. If Equations (23) or (22)
were used to treat the short-wavelength drag, Ty on the
left side of these equations would be zero (shear stress
across the ice-rock interface), and the basal drag would
appear mainly as a negative value of T = -T,, where the
value of T, would correspond to the value given by
Equation (31). On the other hand, in the use of Equation
(23) in longitudinal coupling theory (Parts 1, II, and IV) we
treat the motions and stresses at distance scales ~ h and
larger, smoothing out the short-wavelength effects
responsible for the basal drag in Equation (31). (The
smoothing is suggested by the way Figure | is drawn.) In
this case, the short-wavelength drag given by Equation (31)
is equated to Ty on the left side of Equations (22) and
(23), and the terms on the right describe in effect the
source of the basal shear stress, including some reduction in
Ty due to the long-wavelength basal drag term B in
Equation (30). Moreover, in this case the 7 term is
generally small, as discussed in Part IV.

8. DIFFERENTIATION OF k& IN THE G TERM

If in Equation (23) the longitudinal stress-gradient term
G is expanded,

Tt [ dr =
o (AT x) = h Irn = Tyx(tans — tan8), (32)

then there will appear in Equation (23) an extra term that
is first order in & and 8 and therefore in general much
larger than all of the terms second- or higher-order in &
that were neglected in going from Equation (22) to
Equation (23). Thus, there is no question that at the level
of accuracy of Equation (21) it is necessary to retain the h
within the differentiated bracket in Equation (32), or else
to include the corresponding T),(tan§ - tan8) term from
Equation (32). This settles the point raised in section 5.
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If « and 8 are also assumed small, then Equation (21)
reduces to

= pgha + 2 — (h'r ) * T (33)

which is a simplified longitudinal equilibrium equation often
quoted (e.g. Budd, 1971, equation (5); Paterson, 1981, p.
100, equation (46)), and which, with neglect of the T term,
is used in Part I (Kamb and Echelmeyer, 1986[b]) of this
series.
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APPENDIX

CALCULATION OF LONGITUDINAL DERIVATIVES AT
THE ICE SURFACE

A detailed but significant and slightly subtle point in
developing the longitudinal equilibrium equation is the way
in which partial derivatives of stress components with
respect to §, in the (§,n) coordinate system locally tangent
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to the ice surface, can be represented in terms of longi-
tudinal derivatives of o's. the surface-parallel longitudinal
stress-deviator component at the surface. The geometrical
situation in the vicinity of the tangency point, taken as the
origin (£,n) = (0,0), is shown in Figure 2. Position along
the surface is given by coordinate {, and the shape of the

%

~. point “of
tangency / ‘E

Fig. 2. Detail in the vicinity of a surface point 0 at which
a local ¥.n coordinate system is defined. At an adjacent
point P, whose coordinates in the ¥.n system are ({.ng).
the local surface tangent and normal vectors are defined
as axes g and V, the p-axis being tilted by the angle ¢
relative to the UY-axis. Surface curvature is greatly
exaggerated for clarity.

surface is represented by the function ng(%), which to
lowest order in [ can be written

d
ng(t) = icﬁ ¢ (A-1)
(4]

because of the tangency condition. The local orientation of
the surface is specified by local axes u and v, respectively
tangent and perpendicular to it. The angle between the local
p-axis and the {-axis is €({). The g and v axes correspond
to the ¥ and 7 coordinates introduced in obtaining Equation
(12); u and v are used to make the distinction from § and
n better visible.

Any stress component T;; can be expressed as a
function of §{ and n by a Tayldr series expansion about the
point (§,75) on the surface:

T8 = T;{%.ng) + e ! o R 1 (A-2)

to lowest order in (n = ng). The stress components 'r, j at
the surface can be obtained in terms of T/ » Tays Ty bY
the standard transformation formulae for plane stram.

similar to Equation (8)

T:“ - ?Lucosh - T“Vsinu. (A-3)
TH =Ty + Tim(l + cos2e) - rwsinh, (A-4)
Ton = Tyy + T;‘u(l — cos2¢) + ruvsinh. (A-5)
Ten = 'r“vcosze - Tuusane. (A-6)

In these formulae we put T ° ™ o‘s, by definition, and,
because the surface is stress-free, Ty = Tyy = 0 (ignoring




atmospheric pressure). The calculation of any desired
derivative 8T; -/atlo at the origin consists in introducing
Tii from the appropriate Equations (A-3)—(A-6) into
Equation (A-2), setting 7 = 0, taking ng from Equation
(A-1), differentiating with respect to §, and evaluating at }
= 0, where ¢ = 0. Thus, for Ten from Equation (A-6),

8Ten a(,.z)l 8 [ de ,aftn]

— = — € - — |=— —_— =

a |, & i PRI PRFT PRI

ar

dog de]' 18 [de tn ] 5
= — gt v — - e f— e, -

[df. sane] 0+ [2(.}J 0s2¢€ atll, "2 aelag |, on I

ot d ds

N [95 k% ]{ - 20— =205 —, (A-T)

dgly, an lg)7l, del, dg

assuming 8Tgp/07 and its § derivative are bounded. The
last step in Equation (A-7) follows from the fact that

€(8) = 8(0) — 8(%)
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where 6(0) is the value at the local origin. Equation (A-7)
is the basis for Equation (14), in which the evaluation
symbol lo is replaced by |g.

By the same type of procedure, it is shown that

Sy g0y Tu ¥ oD
& 1, dt s B 13

and
ar
—t, =0 (A_g)
8t |,

which are utilized in Equations (13) and (16).

The only one of the above results that departs from
what might be expected from simple intuition is Equation
(A-7). This departure has a definite effect on the develop-
ment of the longitudinal equilibrium equation. With
Equation (A-7), the two independent evaluations of 31,/
Ox|g discussed in the main text lead to exactly the same
result, Equation (19), whereas if instead one takes
ar,_,,/agl o = 0, as might be thought from simple intuition,
then these two independent evaluations give different results.
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