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function p(x.y) will result in replacing p in Equation (21) 
with Ps = P0•5) and in adding to the right side of 
Equation (21) the following terms: 

+ (p5 - p)ghsin-y + P,xghcos-;t, 

where p and p x are the averages of density and density 
gradient stated in section 2. 

4. EXAMINATION OF THE RESULT 

As an expression of the effects of longitudinal stress 
gradients and of longitudinal curvature of the glacier sur­
face (dafdx) on the basal shear stress, Equation (21) is use­
fully re-organized as follows. Let lls and lla be factors -1 
that relate o;, o5 t? a;, = lls o5 = SJ.8 :r:u· 
Then, re-arrangtng Equation (21 ), 

stress-gradient term in his equation (I 0) involves a stress­
deviator average that is different in general from our 
in Equation (2) above. 

The discussion by Paterson ( 1981, p. 99- 1 00) leaves 
some confusion as to whether the h in the main stress­
gradient term should be considered variable with 
x, as it appears to be in his equation (48), or should 
instead be treated as constant as far as the differentiation is 
concerned, as in his equation (44) and in equation (10) of 
Nye ( 1969). Confusion on this point might also stem from 
the fact that Budd (1970, p. 22) gave two "exact" 
equilibrium equations (his equations (13) and (20)), one of 
which involves, in effect, the inclusion of h within the 
differentiated bracket, and the other the exclusion of it. 
The issue can be settled decisively by considering the 
magnitudes of the terms in Equation (22), as is done in 
section 8 below. 

pghsina·(cosS+sinSsin2S} + T + 

d -. 3 d -. . 2 8T{ I + 2 - ( hT xx> + - h - (SJ.5T xx)sm 2& + 2h -- sin3s + 
dx 2 dx · 8TJ 

5 
(22) 

In Equation (22), the contributions to T 8 are arranged 
in a particular order , for clarity. In the first line is the 
direct body-force contribution ("down-slope stress" of Budd 
(1971, p. 179)), plus the special "T term" given by the "in­
tegrated stress-curvature" in Equation (3). The main body­
force effect goes as sina, with no approximations, modified 
bv a &-dependent factor, and also a 8-dependent factor (on 
the left side of Equation (22)), both near unity. The "T 
term" , or "variational stress" term of Budd (1971, p. 179), 
whose magnitude is the least apparent among the terms of 
Equation (22), is further considered in Part IV by Kamb 
and Echelmeyer (1986[a]). 

The second line of Equation (22) contains the stress­
gradient terms. The well-known main longitudinal 
stress-deviator gradient term 2G is at the far left. The 
middle term is a correction term of order &2 relative to G. 
The term on the right involves the "vertical" gradient of the 
longitudinal stress deviator at the surface, which is probably 
small in most glacier-flow situations, and moreover occurs 
in a term that is third order in the (often small) angle S. 

In the third line of Equation (22) are contributions 
stemming from the longitudinal deviatoric stress. The last of 
these involves also the longitudinal curvature of the ice sur­
face. 

It is useful to note a few points as to how Equation 
(22) compares with the corresponding equations of other 
authors. The result of Budd (1970, equation (17)) is in 
principle similar, but not developed to the point where the 
various contributions from the body forces, stress deviators, 
and gradients can be compactly grouped and isolated as 
they are in Equation (22). Because of one of the sign erro1 s 
noted, the higher-order contribution to the body-force term 
has the wrong sign in Budd's equation ( 17), and its form is 
in detail somewhat different because of omission of other 
contributions that come from the term 8Txxf Bxi 5 that is 
left unevaluated. Collins' exact equation ( 1968, equation (5)), 
which is similar in form to Equation (I), is not developed 
to the point where it can be compared closely with 
Equation (22). Equation ( 45) of Paterson ( 1981, p. 99), 
which follows equation (10) of Nye (1969, p. 211), generally 
resembles Equation (22) in form, but with most of the 
smaller terms not present and with a factor (I - 2sin28) 
multiplying T 8 on the left, rather than (1 + 2sin28) as in 
Equation (22). (Paterson's equation (45) is obtained in a co­
ordinate system with s = 0 and therefore 8 = a - 13.) 
However, a comparison is difficult to make, because, as 
Nye (1969, p. 209) pointed out, the main longitudinal 
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5. SIMPLIFICATION FOR SMALL s 

The importance of the various contributions in 
Equations (21) or (22) can be judged in terms of their 
order in the angles s and 9. If the undulations in the sur­
face are rather smooth compared to those in the underlying 
bed, as can in general be expected, then the longitudinal 
variations in S will be smaller than those of e and may be 
small enough that when the x-axis is chosen to lie along 
the mean slope of the glacier surface, S will be everywhere 
small compared to unity. ln this case the higher-order terms 
in S can be out of Equation (22), which will 
become, to first order in s, 

2 d -. (I + 2sin 9)T 8 = pghsina + 2 - (hT xx> + T + 
dx 

da 
+ o

8
' sin29tan29 + 2o' h - s = 5 dx 

= pghsina + 2G + T + B + K. 

6. THE K TERM 

(23) 

To first order, S enters Equation (23) only in the 
surface-curvature term, which we call the "K term". In view 
of da/ dx = dS/ dx, the K term may be rewritten 

K 
d6 

2o$h& -
dx 

(24) 

It seems likely that in most flow situations the variation in 
surface slope over a longitudinal interval of one ice 
thickness h will be of order 6 or less, so that we may 
assume hids2j dxl- &2• In this case the K term is actually 
second order in S, and could probably be dropped along 
with the other terms in Equation (22) that are neglected in 
Equation (23), except in flow situations like ice falls. 

In the K term, the longitudinal curvature, stress devia­
tor, and relative surface slope S enter in such a way as to 
cause an accentuation in the basal shear stress within an ice 
fall in zones near the head and foot where S > 0, and a 
relaxation in T 8 just outside these zones, where S < 0. Put 
another way, in flow with "staircase" surface topography, 
the K term tends to cause a decrease of T 8 in the 



peripheral parts of the "treads" and an increase in the per­
rpheral parts of the "risers". We can estimate the magnitude 
of the effect for a sinusoidal staircase with Is I • 15 •, 
I o~ I • I 2 bar (based on 115 • 3 bar year and"i du/ dx I • 
0.2 a·• at the surface), and ~/h "" 4 where ). is the 
wavelength of the staircase. From Equation (24) the 
maxrmum value of I K I is then 0. 12 bar, not large but 
appreciable in relation to a basal shear stress of I bar. For 
these same (fairly extreme) conditions, the •s term in 
Equation (::::!), 

(25) 

has ma"<imum value 0.04 bar, so its neglect in Equation (23) 
"'hile the K term was retained there has a measure of 
justification . The secondary stress-gradient term 

(26) 

in Equations (21) or (22), is, at maximum, about 20% of 
the main stress-gradient term 2G under the above 
conditions. For the more typical glacier situations to which 
we apply Equation (23) in Parts r (Kamb and Echelmeyerd 
1986(b), and II (Echelmeyer and Kamb, 1986) with a "" 6 
and 6 .( 3 •• the K and G2 terms are reduced by a factor 
0.04 relati ve to the values estimated in the rather extreme 
case evaluated above, and they therefore become negligible, 
as does of course S also. 

7. THE B TERM 

If there is no basal sliding, then o8 • 0 (see again 
Nye, 1969. p. 210) and the o9 term in Equation (23) drops 
out. We label this term ·a·. 

(27) 

It is a kind of "basal drag• term, which contributes a 
resistance to sliding now over basal hills (or, more 
precisely, ridges oriented crosswise to the now). This is 
seen as follows If the surface topography renects only 
gently the underlying ridges, so that lsi « I a I. then on 
the stoss side of a hill there must be convergent, extending 
flow such that iih constant (ignoring accumulation/ 
ablation). hence 

h 
dii 

dx 

dh 
• ii(tan6 - taoS) ::: -iltan9 

dx 
(28) 

where 9 < 0 on the stoss side. On the lee side, Equation 
(28) remains valid and describes the diverging, compressing 
now there (9 > 0). If we designate by n8 the effective 
viscosity of the basal ice, and suppose that the longitudinal 
strain-rate parallel to the basal surface is approximate!) 
equal to du/ dx, then 

(29) 

Thus the 8 term in Equation (27) is 

(30) 

From the form of Equation (30), it follows that the 8 term 
gives a basal drag resistance that is independent of the sign 
of e. It constitutes a resistance to the now because it sub­
tracts from the basal shear stress T 8 , which is linked to the 
flo..., "eloc lly ~ ra the mechanics of basal sliding and of 
shear deformation of the basal ice, as in Equations (I- I) or 
(1-3). 

We can estimate the drag resistance due to 8 in a 
near-maxim:~l practical case for, say, 9 • 30", by taking 118 
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"" I bar year (appropriate to T 8 • I bar), ii = SO m a -•. h 
• 200 m. These give 8 • -{). I bar, which is an appreciable 
but not large fractron of the basal shear stress. It might 
have detectable effects. 

For now over a roughly sinusoidal topography of 
transverse ridges, the 8 term will tend to cause the appear­
ance in the surface topography of a wave that is the second 
harmonic of the bedrock sinusoid, because it will tend to 
require a compensating variatjoo in surface slope a in 
Equation (23) at twice the bedrock wave number on account 
of the tan29sin29 variatjon in Equation (30). 

The overall drag resistance arising from the B term 
goes as the longitudinal average of tan29sin2 9, which is 
approximately 394 / 8 for sinusoidal topography with . max 
maxrmum slope angle em .... · This overall drag resistance is 
somewhat akin to the sliding resistance due to short­
wavelength roughness in the basal topography, but the two 
cannot be equated. It might be thought that the short­
wavelength drag could be described by a modification of 
Equation (30) in which h is replaced by -). j n, where ). is 
the roughness wavelength, but this is not correct. The drag 
calculated in this way from 8 in Equation (30) contains an 
extra factor of sin29 by comparison with the ordinary basal 
sliding drag for a roughness wave of wavelength ).: 

(31) 

Equation (31) is obtained from Kamb (1970), equations (40), 
(30), (26), and (2 1), with Bz0 / Bx .. -tanS. T he rea.son why 
Equations (31) and (30) give different results here is that 
the stoss- and lee-side pressure distribution responsible for 
the drag in Equation (31 ), at roughness wavelengths 
). - I m important in basal sliding, is generated via its 
coupling through the x-equilibrium equation to &r xvfBx, 
and is thus in effect contajned in the T term in Equation 
(23), rather than in the 8 term. If Equations (23) or (22) 
were used to treat the short-wavelength drag, T 8 on the 
left side of these equations would be zero (shear stress 
across the ice-rock interface), and the basal drag would 
appear majnly as a negative value of T • --r 

8
, where the 

value of T would correspond to the value given by 
Equation (3 1,. On the other hand, in the use of Equation 
(23) in longitudinal coupling theory (Parts r, 11, and IV) we 
treat the motions and stresses at distance scales - h and 
larger, smoothing out the short-wavelength effects 
responsible for the basal drag in Equation (31 ). (The 
smoothing is suggested by the way Figure I is drawn.) In 
this case, the short-wavelength drag given by Equation (31) 
is equated to T 8 on the left side of Equations (22) and 
(23), and the terms on the right describe in effect the 
source of the basal shear stress, including some reduction in 
r 8 due to the long-wavelength basal drag term 8 in 
Equation (30). Moreover, in this case the T term is 
generally small, as discussed in Part IV. 

8. DIFFERENTIATION OF h IN THE G TERM 

If in Equation (23) the longitudinal stress-gradient term 
G is expanded, 

d _ dTu 
- (hT~x> • h - f~x(tan6 - tanS), 
dx dx 

(32) 

then there will appear in Equation (23) an extra term that 
is first order in 6 and 9 and therefore in general much 
larger than all of the terms second- or higher-order in 6 
that were neglected in going from Equation (2::!) to 
Equation (23). Thus, there is no question that at the level 
of accuracy of Equation (21) it is necessary to retlin the h 
within the differentiated bracket in Equation (32), or else 
to include the corresponding T~:((tan6 - tanS) term from 
Equation (32). This settles the point raised in section 5. 
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9. FURTHER SIMPLIFIED EQUILIBRIUM EQUATION 

If a and e are also assumed small, then Equation (21) 
reduces to 

d -
T8 - pgha + 2 dx (hT~x> + T (33) 

which is a simplified longitudinal equilibrium equation often 
quoted (e.g. Budd, 1971, equation (5); Paterson, 1981, p. 
100, equation (46)), and which, with neglect of the T term, 
is used in Part I (Kamb and Echelmeyer, 1986[b]) of this 
series. 
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APPENDIX 

CALCULATION OF LONGITUDINAL DERIVATIVES AT 
THE ICE SURFACE 

A detailed but significant and slightly subtle point in 
developing the longitudinal equilibrium equation is the way 
in which partial derivatives of stress components with 
respect to L in the ( Lll) coordinate system locally tangent 

3-tO 

to the ice surface, can be represented in terms of longi­
tudinal derivatives of o~ . the surface-parallel longitudinal 
stress-deviator component at the surface. The geometrical 
situation in the vicinity of the tangency point, taken as the 
origin ( t,n) • (0,0), is shown in Figure 2. Position along 
the surface is given by coordinate l. and the shape of the 

/('«' 
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Fig. 1. Detail in the vicinity of a surface point 0 aJ which 
a local VI coordinaJe system is defined. At an adjacent 
pomt P. whose coordinates in the t .n system are (l.n5 ). 
the local surface tangent and normal vectors are defined 
as axes 11. and v. the JL-axis being tilted by the angle E 

relaJive 10 the t-axis. Surface curvaJure is greatly 
exaggeraJed for clarity. 

surface is represented by the function n5( 0. which to 
lowest order in l can be written 

(A-1) 

because of the tangency condition. The local orientation of 
the surface is specified by local axes JJ. and v, respectively 
tangent and perpendicular to it. The angle between the local 
IL-axis ~d the (-axis is E( 0 . The IL and v axes correspond 
to the l and ii coordinates introduced in obtaining Equation 
(12); JJ. and v are used to make the distinction from { and 
11 better visible. 

Any stress component T ij can be expressed as a 
function of l and ll by a Taylor series expansion about the 
point {l,ll5) on the surface: 

(A-2) 

to lowest order in (II - n5). The stress components T . at 
the surface can be obtained in terms of T ~IL' T Jtv• T ~ by 
the standard transformation formulae for plane strain, 
similar to Equation (8): 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

In these formulae we put T IL ~ o~, by defin ition. and, 
because the surface is stress-free, T ILV • T vv • 0 (ignoring 



atmospheric pressure). The calculation of any desired 
derivative 8T ij/ Bt I 

0 
at _the origin consists in introducing 

T .. from tlie appropnate Equations (A-3)--(A-6) into 
E

1
cfuation (A-2), setting 11 = 0, taking 115 from Equation 

(A-1 ), differentiating with respect to t, and evaluating at t 
= O, where E = 0. Thus, for T t 11 from Equation (A-6), 

8Tt11 I = ~ (o' sin2E)I - ~ r_ dE I tl a-rt I'll ] = 
at 

0 
at s 0 at [) dt 0 a11 s 

(~sin2E) L + p~ os2E :~J L ~ ~ (:~ 1
0 

:~l'liJ t 2 

- [~I 8Ttnl Jtl • 2o'dEI = -2o9 
d t 0 B11 5 0 

5 d t 0 

d& 

dt 
(A- 7) 

assuming 8T t 11/ BTI and its t derivative are bounded. The 
last step in Equation (A-7) follows from the fact that 

E(O ~ 5(0) - S(O 
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where &(0) is the value at the local origin . Equation (A-7) 
is the basis for Equation {14), in which the evaluation 
symbol I 0 is replaced by I 5 . 

By the same type of procedure, it is shown that 

(A-8) 

and 

I -o 
0 

(A-9) 

which are utilized in Equations (13) and (16). 
The only one of the above results that departs from 

what might be expected from simple intuition is Equation 
(A-7). This departure has a definite effect on the develop­
ment of the longitudinal equilibrium equation. With 
Equation (A-7), the two independent evaluations of 8T xxl 
ax I 5 discussed in the main text lead to exactly the same 
result, Equation (19), whereas if instead one takes 
8Tt 11! Bt 10 • 0, as might be thought from simple intuition, 
then these two independent evaluations give different results. 
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