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which is obtained form Equation (12) with neglect of the
contribution to o from dn,/dx. The values in Table I are
based on o/u = 3/2. For 1/h = 2, the practical upper limit
of p is about 0.3, whereas for 1/h = 6 (which seems
possible on the basis of Part I, table I), we might encounter
B~ 1

There are indications that the form of Green’s function
is only moderately sensitive to non-linearities in 2(x), so
that the weighting functions in Equations (18) or (17) are
applicable in a practical way to actual situations where the
longitudinal variations in #(x) are not strictly linear but do
not depart too wildly from linearity. The effect of
longitudinal variation in x can, on the basis of equation
(IA-22), be taken into account in a rough way by replacing
1 in Equations (17) or (18) by

B o=

N |-

du
19y~ 1[1 +1 dx]. (20)

The practical approximate solution of Equation (13),
obtained by combining Equations (15), (16), and (17) into a
single formula based on the above discussion is
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where 2, is given by Equation (17b) and F(x) by Equation
(16). In these formulae p = d2/dx.

The effects of the asymmetry in longitudinal averaging
on the flow response u,(x) are likely to be small in general,
first because p is probably in general small as noted above,
and secondly because u, is not in general very sensitive to
modest changes in the shape of the weighting function in
Equation (15). However, an exception occurs in places
where h, decreases to low values so that F(x) has an
exaggerated sensitivity to thickness perturbations via the
hy/hy term in Equation (16). Such places are near the ends
of a glacier and near ice falls. The inordinate influence that
such places would tend to exert via longitudinal coupling on
the flow response of adjacent, more "normal" parts of the
glacier will tend to be suppressed and mitigated by the
effects of asymmetric averaging, because the decrease in h
toward these places will in general be reflected in a
decrease in ! toward them. The asymmetry of the weighting
function in such situations, suggested in Figure 2, will tend
to shield the flow response in adjacent parts of the glacier
from the influence of these places where the extreme
response conditions arise. However, very near the terminus
the treatment here tends to fail for other reasons.

4. APPLICATION TO AN OBSERVED PERTURBATION
IN GLACIER FLOW

From 1957 to 1977, Blue Glacier (Washington) increased
in thickness by a few tens of meters. At the same time,
there was a general decrease in surface slope, corresponding
to a longitudinal gradient (a down-glacier increase) in the
thickening. The combined effect of these changes was a
marked increase, up to 40%, in the flow velocity. The
changes have been documented by Echelmeyer (unpublished),
building upon the basis laid in 1957-59 by Meier and
others (1974). From the measured perturbations, a
comparison can be made between the observed flow
response and the response expected from the slope and
thickness perturbations with and without longitudinal
averaging.

Figure 3a shows a plot of the observed "1/”0 values in
relation to the corresponding local perturbation hy/hg
without longitudinal averaging. The values of the local per-
turbations « /a, are given alongside the plotted points in
the figure. Throughout this discussion and in Figures 3-7
we use as our numerical measure of the perturbations u/u,,
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Fig. 3. Flow perturbation data for Blue Glacier. (a)
Perturbations in  flow velocity uy/u, ( expressed as
percentage change) are plotted against the corresponding
local perturbations in ice thickness hy/h, The associated
local perturbations in surface slope o /e, in per cent
(measured over a longitudinal interval of 350-500(m
centered on each data location), are given alongside each
data point. The perturbation quantities are calculated
logarithmically from the observed flow and surface
profile in 1957—58 and 1977-78 as explained in the text.
Data are from Echelmeyer (unpublished). (b) Plot of
perturbation data after performing symmetric longitudinal
averaging of thickness and slope perturbations according
to Equation (24), with averaging length 41 = 1.6(km in
Equation (A-21). The averaged values (atl/aa> are given,
in per cent, alongside each data point.

e /ey, and h,/h, the quantities In(uy/uy), In(ey/e), and
In(hy/h;), where subscripts 1 and 11 refer to values measured
in 1957-58 and 1977-79, respectively. We consider this to
be the optimum way to handle perturbations that are not
truly infinitesimal (see Echelmeyer, unpublished, section 5.1),
and it avoids the ambiguity in the choice of u, that arises
if linear quantities such as (uyy — u;)/u, are used. The
logarithmic pert urbation values are expressed in per cent.

In Figure 3a there is considerable scatter of the data
points about a bi-linear regression line of the type

G e d) ¥y B (22)
U ho @,

that would be expected for the response to small changes in
thickness and slope for flow in a cylindrical channel
without effects of longitudinal stress gradients (Echelmeyer,
unpublished, p. 258). Here Y is a response factor whose
value depends on the shape of the channel cross-section and
for Blue Glacier is approximately 0.85 (Echelmeyer,
unpublished, p. 284). The scatter in Figure 3a is not so
great as to obscure the existence of the expected regression
of uy/u, against h,/h,, but there is no detectable correlation
of u,/u, with the ul? values, which scatter widely.

The expected effect of longitudinal stress-gradient
coupling in modifying Equation (22) is obtained by
:gplication of Equation (21). It can be written, for small
0!

LI < £L> < :1)
S o), hy + (®g - (23)

where the angular brackets represent the weighted
longitudinal averaging specified by the integral in Equation
(21) and where the influence coefficients ¢, and ¢, are
given by Equations (8) and (9). The response factor ¥ in
Equation (23), which is not present in Equation (16), is
introduced on the basis of the reasoning developed by
Echelmeyer (unpublished, sections 9.2-9.4) for channels of
finite width, leading to Equation (22). Inasmuch as Equation
(21) describes perturbations u, in the mean velocity u, in
applying Equation (23) to observed perturbations in the sur-
face velocity u we assume that the two perturbations at any
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Fig. 9. Comparison of exact Green's [functions (dotted
curves) for a/u = 3/2 with symmetric exponentials {solid
curves) and asymmetric exponentials with v = | (dashed
curves). These curves are calculated from Eguations
(A-20). (A-21), and (A-24), respectively, with 2 taken
equal to pz. Detailed explanation as in figure 13 of Part
|
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Fig. 10. Green's function for o/p = 3/2, g = 1/4. shown
in terms of functions of % for four separate values of x.
The dotted curves are the exact Green's function as in
Equation (A-23), and the solid curves are its approximation
by asymmetric exponentials from Eguation (A-24), scaled
to the same peak heights. Detailed explanation as in figure
14 of Part I.

Echelmeyer and Kamb: Stress-gradient coupling in glacier flow

Gx|x,) and Glx|x,), for ¢ at the boundaries x, and x,,
are small. In terms of the approximating asymmetric
exponential in Equation (A-24), this means that x should be
farther than distances ~22, from the boundaries.

A.5. GREEN'S FUNCTIONS FOR o/u = 9/4
Because o/u = 9/4 is  appropriate for flow

perturbations in valley glaciers (see section A.l), we give in
Figures 11, 12, and 13 a representation of the Green's

Fig. 11. Exact Green's functions for o/u = 9/4, plotted as
in Figure 8. from Equation (A-25).

Fig. 12. Comparison of Green's functions for o/u = 9/4, as
in Figure 9. The dotted curves are the exact Green's
functions, the dashed curves are asymmelric exponentials
with v = 1. from Equation (A-24), and the solid curves
are symmetric exponentials. Scaling and other details are
as explained in figure 13 of Part I.
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Fig. 13. Green's function for o/pu = 9/4, g = 1/4, as in
Figure 10. The dotted curves give the exact Green's function
as in Egquation (A-26). and the solid curves the asymmetric
exponential represeniation for v = 1, from Equation (A-24).

functions for this case, entirely parallel to the representation
for o/u = 3/2 in Figures 8, 9, and 10. The functions are
calculated from

3
T OF /A9 + 16/4u
%uz./49u"' + 16G(z]p) = [:5]4 (A-25)

and

% ¥ J49u? + 16/4u
%./49;;’ + 16G(x|t) = [1 +u£—x] (A-26)

1(x)

wherein the upper sign applies for § 3 x, the lower for
t ¢ x. Equations (A-25) and (A-26) are of course obtained
from Equations (A-16) and (A-17) with o/u = 9/4. #(x) in
Equation (A-26) is the linear function in Equation (A-12).
The plotted values G and ¢ are scaled in the same way as
in section A-6.

Figure 11 shows that the Green's functions for
o/p = 9/4 have increased skewness by comparison with the
functions in Figure 8. In Figure 12, the advantage of the
asymmetric exponential in Equation (A-24) in representing
G, by comparison with the symmetric exponential from
Equation (A-21), is even clearer than in Figure 9. For
u = 1/4 it appears that the choice v ® |2 in Equation
(A-24) would give about the best overall match between
Equations (A-24) and (A-26). The plot of Eguation (A-26)
in Figure 13 shows that the Green's function can be well
represented by the asymmetric exponential but again
suggests that the asymmetry of the exact Green’s function
for o/p = 9/4 is somewhat greater than that of Equation
(A-26) with v = 1.

Although the Green's functions in Figure 11 are more
asymmetric than the corresponding functions in Equation
(A-1), one cannot draw the simple conclusion that
asymmetry in longitudinal averaging will generally be more
important in valley glaciers than in ice sheets. The reason is
that for an ice sheet and a valley glacier with the same
thickness profile ho(x), while o/p is greater for the valley
glacier, g will in general be smaller according to Equation
(19), both on account of the factor (o/p) in Equation (19)
and because we expect from equation (I-19) that 2/h, will
be smaller for the valley glacier. The two changes, in o/
and in p, approximately compensate in their net effect on
the overall asymmetry of the Green's function.

A.6. OTHER VALUES OF o/u

Cases other than o/u = 1, 3/2, and 9/4 can of course
also be treated on the basis of Equation (A-17). General
features to be expected are as follows. For o/ in the range
3/2 to =, the Green's function is asymmetric in the same
general way as it is for o/p = 3/2 or 9/4, the extent of
asymmetry increasing as o/u increases, for fixed u. As o/u
decreases below 1, the type of mixed asymmetry described
above (section A.4) for o/u = 1, with reversed skewness for
! near x, becomes more and more pronounced, and the
symmetric exponential becomes a poor representation.
Because section A.l indicates that for a "wedge-shaped"
terminal region the case o/u = 1/4 seems to arise, this calls
into question the detailed applicability of the foregoing dis-
cussion of asymmetry to such a terminus. However, further
modifications in the treatment of the terminal region are
also needed for a different reason, namely, that the pro-
gressive predomination of basal sliding as the terminus is
approached (except in polar glaciers) will invalidate the flow
relation in equation (I-1) on which the conclusion
o/ = 1/4 for this case is based in section A.l.

A.7. EFFECT OF NON-LINEAR 1(x)

Although the Green's functions in Equations (A-23)
and (A-26) are strictly valid only for the linear function
2(x) in Equation (A-12), there are two indications that the
form of the Green's function is not very sensitive to non-
linearities in #(x). 1. In the Appendix to Part I it is found
that the form of G around an "angular minimum" in #(x),
where there is a discontinuity in slope of 2#(x) giving
effectively a non-zero d?2/dx* (and higher derivatives), is
not much altered from that for g = 0; the alteration can be
expressed as a modest change in the effective local f, given
by equation (IA-22). 2. If Equation (A-12) is replaced by
the non-linear relation

1= A2+ 20 x, (A-27)

the Green’s function for o/u =1 can be found as a
solution to equation (IA-6), involving combinations of
Modified Bessel Functions of order zero. When these are
evaluated by methods similar to those used in the Appendix
to Part I, but with more complexity, results very similar to
those portrayed in figures 1-13 and I-14 are obtained.
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