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Model for the Fingering Instability of Spreading Surfactant Drops
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We show that the Marangoni effect drives the fingering instability observed at the edge of an aqueous
surfactant drop spreading on a thin film of water. A calculation of the unperturbed flow profile demon-
strates that the spreading of the drop is controlled by the dynamics of a thin layer which develops in
front of the drop. The surface-tension gradient in this region leads to the fingering instability via a
mechanism mathematically similar to that in Hele-Shaw flow despite the very different underlying phys-
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PACS numbers: 47.20.Dr, 68.10.Gw, 68.15.+e

We recently reported experimental results' on a hy-
drodynamic instability, first described by Marmur and
Lelah,? which occurs when a water drop containing sur-
factant spreads on a smooth glass surface premoistened
with a thin water film. Upon deposition of the drop on
the substrate, liquid in the thin water film is swept away
from the vicinity of drop causing thinning of the film
near the drop edge while a thickened corona, similar to a
shock front, travels away from the drop. As this profile
develops, the drop rapidly spreads into the thinned region
and begins propagating fingers from the spreading front.
Although the instability we observe leads to fingering
patterns similar to those arising in Hele-Shaw flow, den-
dritic growth, and systems related to diffusion-limited
aggregation, the reason for this has been unclear until
now since our system has no externally applied driving
force for the flow nor is it controlled by diffusive phe-
nomena.

Experimentally, the rapid spreading and fingering de-
pend on the initial surfactant concentration and the
thickness of the initial water film which strongly suggests
that the instability is driven by the Marangoni effect.?
Surface-tension gradients, established in our experiments
by spatial variations in surfactant concentration at the
air-liquid interface, cause a traction along the interface
which induces flow in the direction of increasing surface
tension (i.e., in the direction of decreasing surfactant
concentration). While the Marangoni effect has been
studied in a broad range of situations leading to both
stable and unstable flows,*> these experiments indicate a
new instability which occurs at the spreading front of a
drop.

We first calculate the time evolution of the unper-
turbed flow profile for a surfactant-coated drop spread-
ing on a preexisting thin viscous layer of the same fluid
but free of surfactant. Using asymptotic analysis, we
show that the Marangoni effect leads to the formation of
a long thin region ahead of the macroscopic drop in
which a surfactant-concentration gradient is established.
The concentration gradient produced in this region con-
trols the spreading velocity of the drop and leads to a

new spreading behavior which is independent of the ap-
parent contact angle in the drop. We then perform a
linear stability analysis which shows that this flow is un-
stable to perturbations in the position of the moving
front. Although the underlying physics is quite different,
the stability analysis is mathematically similar to that
for viscous fingering® and other “diffusion-limited”
growth processes. In the present case, however, there is
no apparent stabilization mechanism except at very
small length scales.

Applying the lubrication approximation,’ the Navier-
Stokes equations reduce to

6'1; (x,y,z,0)=Vp(x,y,1), 1)
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where u is the fluid velocity in the plane parallel to the
substrate, p is the pressure in the fluid, n is the fluid
viscosity (unchanged by low surfactant concentrations), ¢
is time, and V is the gradient in the x-y plane. In this
thin-film approximation, the pressure is constant in the z
direction (the direction perpendicular to the solid sur-
face) and is therefore equal to the capillary pressure at
the surface of the fluid which for small slopes is
p=—0V’h, where z=h(x,y,1) defines the free surface
of the fluid layer and o(x,y,t) is the local surface ten-
sion.

It is convenient to view the flow from a reference
frame attached to the edge (cf. region 4 in Fig. 1) of the
spreading drop which moves with speed U,.(¢), to be
determined later self-consistently. In this frame the
boundary conditions are (i) the no-slip condition for the
fluid at the solid surface, u(x,y,z=0,t) = —U,(z), and
(ii) the Marangoni stress condition, nu.- |:=h(‘.‘),,)=Vo
= —aVI', where the subscript z denotes differentiation,
I' is the surfactant concentration at the liquid surface,
and a=|80/8"| (which we will take as a constant).

From the solution of Eq. (1) subject to the two bound-
ary conditions, the fluid volumetric flux becomes
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FIG. 1. Schematic of the unperturbed height profile, 4 (x,z),
for a drop of surfactant solution, with surface tension oyrop,
spreading on a flat surfactant-free film of liquid. Other quanti-
ties are defined in the text.

where the surface velocity, U,(x,y,t) =ulx,y,z=h,t),
is given by

U, =%h2vv2h —”T"‘vr—u,ﬂ. 3)

Finally, to determine /4 and I" one solves the conservation
equations for the fluid volume and surfactant concentra-
tion,

oh/ot+V-Q=0, (42)
or/or+v-(U,I') =0, (4b)

with appropriate boundary and initial conditions. In the
surfactant conservation equation the surfactant is as-
sumed insoluble.

We now determine the unperturbed flow profile for the
case of a 2D drop with a planar front® where U
=U€.. Asshown in Fig. 1, five distinct regions devel-
op in the unperturbed flow profile. Region 1 is the
preexisting film of height b which remains free of surfac-
tant throughout the spreading process. Viewed in the
reference frame moving with the edge of the drop, the
velocity profile is uniform with u = —U,. In region 3,
whose length L(¢) is initially zero but quickly increases,
the fluid height remains ~b but the surfactant concen-
tration changes from the value in the drop to zero at the
boundary of region 1. The flow in this region is driven
by the Marangoni effect which acts to spread the concen-
tration jump which is established when the drop is first
placed on the precursor layer. The velocity scale estab-
lished by the Marangoni boundary condition dictates
that the capillary-pressure terms are negligible in this re-
gion provided that L(¢) is large compared to b, which is
true except for extremely early times. Region 5 extends
over the radius of the drop, which to leading order is a
spherical cap over which the surfactant concentration
varies little. We characterize this region as a reservoir of
fluid with asymptotic slope 8(¢), and with constant sur-
face tension ogrop. In regions 2 and 4 the capillary pres-
sure plays an important role and allows the solutions in
regions 1, 3, and 5 to smoothly match to each other. The
capillary-pressure terms operate on a smaller length
scale than the Marangoni force and so the lengths of re-
gions 2 and 4 are short compared to those of 3 or 5 (but
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long enough that the lubrication approximation applies).

The conditions governing the growth of L(z) and the
layer height at x=L(¢) can be obtained by the matching
of regions 1 and 3. Since region 2 defines the separation
point between the regions with and without surfactant,
no surfactant can flow in or out of region 2. Hence,
viewed in a frame moving with region 2, the surface ve-
locity at the edge of region 3 must vanish. Also, the fluid
flux coming into region 2 from the uniform flow on the
right must equal that flowing out in the simple shear flow
on the left. Together, these two conditions require that
h(L,t)=2band

AL L) =—2r (x=L)=U.. (5)
dt n

The discontinuity in the height profile from 2b to b is
smoothed in region 2 by the inclusion of the capillary-
pressure terms, but the details play no role to leading or-
der.

Region 4, which matches regions 3 and 5, is important
in determining the spreading velocity of the drop. Be-
cause this region is much shorter than region 3, it
responds relatively quickly and to leading order the
fluxes of liquid and of surfactant in this region can be
treated as quasisteady. Furthermore, because this region
is short, the Marangoni boundary condition requires that
the change in concentration across region 4 is small. The
surfactant conservation equation then requires that U, be
constant in order to maintain a constant flux of surfac-
tant from the drop to region 3. Letting / denote the
length of region 4 and defining the stretched variables
H=h/h, and X=x/I, Eq. (4a) together with the
matching of the fluid flux across the boundary between
regions 3 and 4 gives

Odrop { h 1

6'](Uref_U|) —[_

with the asymptotic boundary conditions H(+o) =1,
Hy(+ ) =0, and Hyy(—)=0. In Eq. (6), h,(z) and
U, (1) are defined as the height and surface velocity of
region 3 at x=0. The capillary-pressure term in Eq. (6)
becomes comparable to the Marangoni term when
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With Eq. (7) defining /, Eq. (6) can be solved indepen-
dently of any of the solutions coming from regions 3 or
S.

Matching regions 4 and 5 requires the asymptotic
slope emerging from region 4 to be equal to 6(z), the
slope at the edge of region 5; i.e., 8(¢) =(h,) —=(h/1)
xS, where S =Hy(—o0) is obtained from the solution
of Eq. (6). Substituting Eq. (7) for h,// and Eq. (3) to
evaluate U,, we obtain

R Odrop
= L (x=0)+ 2
di 27 ox 1
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where R(¢) is the radius of the drop. Finally, conserva-
tion of the drop volume relates 6(z) to R(z); e.g., for an
axisymmetric spherical cap with small 6, 6(t) =4V,/
7nR3(1), where Vy is the initial volume of the drop, while
for a 2D drop, 8(t) =34¢/2R*(1), where Ay is the initial
volume per unit length of the drop. The entire spreading
process can now be determined by solving Eqs. (4a) and
(4b) for region 3 subject to Egs. (5) and (8) which con-
trol L(¢) and R(z).

We solved these nonlinear equations numerically® by
finite differencing the spatial derivatives and using the
program LSODE '? to integrate implicitly the resulting or-
dinary differential equations in time. Figure 2 shows typ-
ical time developments of the height, concentration, and
surface velocity profiles for the spreading layer in region
3 for small drops. The interesting feature, which agrees
with qualitative experimental observations, is that the
fluid layer, with initial uniform height 26 and uniform
concentration gradient I'y/L(z), begins to thin near the
drop edge. This occurs because although the initial
profiles of constant height and constant concentration
gradient give constant volume flux of liquid, and hence
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FIG. 2. The profiles in region 3 for the (a) height h/2b, (b)
concentration [/T'4p, and (c) relative surface velocity
W, =Uw)/L(2)/1]), as functions of t=t/t;, where 1
=72(al4rop/ Garop) (Nb/Gurop) [S/6(0)] 7.

solve the steady form of Eq. (4a) for A, the constant sur-
face velocity brings more surfactant in from the drop
than can be convected away. Hence, the concentration
gradient, and, therefore, the surface velocity, decrease
near the drop and the liquid is pulled into the layer faster
than it is supplied from the drop, thereby causing the
layer to thin.

At relatively early times when L(¢) is small, the
Marangoni terms dominate the capillary terms in Egs.
(5) and (8) and the spreading velocity is independent of
the apparent contact angle in the drop. Since A and T
change slowly compared to L(¢), Egs. (5) and (8) show
that both L(r) and R(r) — R(0) grows as V7 during this
regime. For intermediate times as L(r) becomes large,
the capillary spreading can become comparable to the
Marangoni contribution but as the drop radius increases
the contact angle decreases sufficiently fast that Maran-
goni spreading always dominates at late times. Of
course, with an insoluble surfactant, the concentration in
the drop (assumed constant in these calculations) will
decrease with time as the surface area of the drop and of
the layer in front of the drop increase. We have found
that this together with the thinning of the layer near the
drop causes the /> growth to slow down at late times.

These calculations of the unperturbed spreading
demonstrate that during most of the time (including
when the fingers first appear) the Marangoni effect dom-
inates the capillary force everywhere except in region
4."'" They also confirm that a thin layer develops ahead
of the drop in which a surfactant-concentration gradient,
which controls the spreading rate, is established. This
structure suggests that the onset of the fingering can be
explained by a model in close analogy to the Saffman-
Taylor instability. When the Marangoni terms are dom-
inant, the average velocity in the fluid layer is propor-
tional to the surfactant gradient I', times a mobility fac-
tor h/n. Hence, the surfactant concentration now plays
the same role as does the pressure in Hele-Shaw flow.
Of course, in Hele-Shaw flow the fingering occurs be-
cause the fluid mobility behind the front is higher due to
the lower viscosity there. In our problem the viscosity is
uniform but the layer height is greater in the drop.
Hence, the basic mechanism of fingering due to an ad-
verse mobility gradient applies to our problem even
though the detailed flow structure is much more compli-
cated.

If we consider disturbances with wavelengths satisfy-
ing / <A < L (1), the onset of the fingering can be simply
described by a linear stability analysis. First, although
the mobility increases continuously back towards the
drop, when A >/ the disturbances propagate far enough
into the drop that the typical mobility there is large com-
pared to that in the layer ahead of the drop. Conse-
quently, on the scale of / we can treat the edge of the
drop as a sharp front separating a region of large mobili-
ty from one of low mobility. Second, for disturbances
with A < L (1), the base flow profiles in region 3 evolve on
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time and length scales which are slow compared to those
appropriate to the perturbations. Consequently, within
the framework of multiple-scales analysis,'> the base
flow variables can be treated as constants and Egs. (4a)
and (4b) governing the disturbances have quasiconstant
coefficients.

We consider disturbances caused by a corrugation in
the position of the edge of the drop given by x(¢)
=Ae“' 114" where A< 1, w is the growth constant, and g
is the wave number of the disturbance. The unperturbed
flow variables in region 3 are denoted by 4 and I', while
the disturbances are represented by he® tF¥*i%" and
[e® t#x*14v where only spatially decaying (i.e., 8 <0)
solutions are physical. Two boundary conditions must be
imposed at the undulating front: (i) The surfactant con-
centration equals that in the drop, and (ii) the front ve-
locity equals the average fluid velocity given by Eq. (8).
By expanding the flow variables in a Taylor series about
the unperturbed front position, these conditions require
that I'(0) = — AT’ (0) and

w=—"(a/2n)[BRT+hT +h T +hT 1, =¢. 9)

h and B are found by solving the linearized form of Egs.
(4a) and (4b) in region 3. For the large-g limit (i.e., for
g>L ~") being considered here, we find that f=—g

—h/h+o0(1) and h/T=—h/T+h/T,. Substituting
these results into Eq. (9) yields
w=—"(a/2n)ghT \+hT/T+hT ] =0. (10)

Hence, for wavelengths which are short compared to the
length of region 3 (i.e., for large ), the first term in Eq.
(10) dominates and since (dTo/dx) =0 <0 (cf. Fig. 2),
® >0 and the flow is always unstable. We emphasize
that to leading order in the large-g limit the disturbance
concentration satisfies Laplace’s equation and the pertur-
bations in the height are negligible. Consequently, the
analogy to the Saffman-Taylor instability is complete in
this limit.

While the onset of the instability can be explained in
close mathematical analogy to Saffman-Taylor fingers,
the stabilizing mechanism and the nonlinear evolution of
the fingers are expected to be different. There is no sur-
face tension in this problem associated with curvature of
the front, d >%/dy 2, since the drop edge is not a boundary
between immiscible fluids. One stabilizing mechanism is
the surface tension associated with the curvature of the
air-liquid interface, d*h/dy 2 but inclusion of these
terms in the above analysis shows that they affect the
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growth rate only for wavelengths which are much small-
er than the size of region 4. On these short length scales
the above model breaks down since the disturbances do
not penetrate far enough into the drop to allow a
significant mobility difference to be operative. Simple
surface diffusion of surfactant is too slow to affect the
fingering, but transfer of soluble surfactant from the
liquid layer to the interface may be important. These
effects need to be considered in more detail.
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