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ABSTRACT 

This paper describes a computational implementation of the Fourie r 

Amplitude Sensitivity Test (FAST) and illustrates its use with a sampl e 

problem. The FAST procedure i s ideally su ited to t he ·i.:ask of determin-

ing the global sensitivity of nonl i near ma thematical models subjected to 

var i ations of arbitrary size in either the system parame ters or initial 

conditions . A FORTRAN computer program, capable of ped ormi ng sensitivity 

analyse s of either algebraic or differential equati on systems i s described. 
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SCOPE 

In virtually all branches of science and engineering, descriptions of 

phenomena lead to differential equations of substantial complexity. The com­

plexity of such models makes it difficult to determine the effect uncertain­

ties in physical parameters have on their solutions. Traditionally, the anal­

ysis of the sensitivity of models to small perturbati ons in parameters is 

called ZocaZ sensitivity ana lysis . When a measure of the sensitivity of the 

solution to variations of a parameter is combined in an appropriate manner 

with a measure of the actual degree of uncertainty in the parameter's value, 

it may then be determined which parameters, through both their sensitivity 

and uncertainty, have the most influence on the solution. Such a procedure 

can be called a global sensitivity analysis. 

Conventional global sensitivity analysis techniques have generall y been 

based on either a pattern search or Monte Carlo technique. Pattern search 

and Monte Carlo approaches can become extremely time consuming and expens ive 

as the number of parameters becomes large. 

The Fourier Amplitude Sensitivity Test (FAST) technique associates each 

uncertain parameter with a specific frequency in the Fourier transform space 

of the system. The system sensitivities are then determined by solving the 

system equations for discrete values of the Fourier transform variable and 

then computing the Fourier coefficients associated with each parameter fre­

quency. This approach allows nonlinear global sensitivities of systems sub­

jected to large parameter variations to be determined in a practical and effi­

cient manner. 
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CONCLUSIONS AND SIGNIFICANCE 

Because of the complex nature of many physical and chemical systems , an 

integral element of any modeling study should be a formal assessment of the 

effects of uncertainties in the parameterization of the physical processes. 

In this paper particular attention is given to the Fourier Amplitude Sensi-

tivity Test (FAST) for examining the global sensitivity of nonlinear mathe-

matical model s . The FAST technique allows arbitrarily large variations in 

either system parameters or initial conditions. 

The computer program presented here provides a general framework for 

implementation of the FAST method. When combined with a user supplied sub­

routine for the specific system of interest, the FAST program computes the 

sensi tivities of the system outputs to the parameter variations specified by 

the user. The method is illustrated ~ an example involving a simple auto-

catalytic reaction mechanism. 
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1. INTRODUCTION 

A variety of chemical engineering phenomena are described by lengthy and 

co~plex mathematical models. It is often desirable to detenmine the effect of 

uncertainties in system parameters on the system behavior and to determine 

which parameters are most influential. The complexity of many models makes it 

difficult to determine the effect uncertainties in physical and chemical param-

eters have on solutions. When a measure of the sensitivity of the solution to 

variations of a parameter is combined in an appropriate manner with a measure 

of the degree of uncertainty in the parameter's value, one many then determine 

which parameters, through both their sensitivity and uncertainty, have the 

most influence on predicted system behavior. Such a study can be termed a 

sensitivity/uncertainty analysis or a global sensitivity analysis. 

Consider a system that is described by a set of n coupled ordinary dif-

ferential equations contaihing m parameters, k1,k2 , ... , km, 

dx 
dt - f(x;k) (1) 

where x is the n-dimensional vector of the system state and k is the m-dimen-

sional parameter vector. A basic measure of the effect of uncertainties in k 

on x(t) is the deviat.ion in x caused by a variation in k, t.x(t;k) = x(t;k+t.k) 

x(t;k), where x(t;k) denotes the solution of {1) at time t with k = k. Taylor's 

t heorem can be invoked to express the deviation in state variable i as 

x.(t;k+llk) 
1 - -

m 
'"' ax . 2 = x. (t;k) + ~ ck~ llkJ. + O((max llk . } ) 

1 - j=l J J 
(2) 

The partial derivatives ax . (t)/ck . , i = 1,2, ... , n, j = 1,2, ... , mare the so-
l J 

called sensitivi ty coefficients. Much of the work on sensitivity analysis has 
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been concerned with calculation of these sensitivity coefficients. Sensitivity 

analysis techniques that rely on calculation of the sensitivity coefficients 

are strictly applicable only to small parameter variations since the higher 

oider terms in (2) are neglected . 

. Although the sensitivity coefficients ax . /ak . provide direct information 
1 J 

on the effect of a small variation in each parameter about its nominal value 
-
k . on each state variable, they do not indicate the effect of simultaneous, 

J 
large variations in all parameters on the state variables. An analysis that 

accounts for simultaneous parameter variations of arbitrary magnitude can be 

termed a global sensitivity analysis . The sensitivity coefficients are local 

gradients in the multidimensional parameter space at the nominal value k. A 

technique that considers the effect of simultaneous parameter variations over 

their actual expected ranges of uncertainty produces an average measure of sen-

sitivity over the entire admissible region of variation and thus provides an 

essentially different measure of sensitivity than that of the sensitivity coef-

ficients. Therefore, both types of analysis are useful in studying the behavior 

of a system. 

Figure 1 shows schematically a hypothetical solution surface x.{t;k) over 
1 -

the domain of uncertainty of two parameters, k1 and k2. The nominal parameter 

values are k1 and k2 , and the assumed upper and lower limits of variation are 

indicated producing the domain of uncertainty in the k1-k2 plane. The result­

ing range of unce rtainty in x1 is also indicated. The surface shown in Figure 1 

is that at a certain timet . Generally the variations in the solutions xi(t), 

; = 1,2, ... , n must be considered as a function of time. The point Q on the 

solution surface represents the magnitude of the solution x1 at time t with 

both parame ters at their nominal, or best guess, values. Varying both 
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parameters over the full domain of uncertainty generates the two-dimensional 

solution surface that changes as t changes. The sensitivity coefficients, 
- -

a~1 /ok1 and ax1tak2, evaluated at k1 and k2 represent the slopes of the sur-

face in the two coordinate directions at point Q. A local sensitivity analysis 

would focus on calculation of these two derivatives and their time variation. 

For small displacements about the nominal values, the tangent plane at Q dif­

fers from the actual solution surface only by a small amount. In this regime 

the sensitivity coefficients indicate to which parameter the solution is most 

sensitive. The sensitivity coefficients at point Q do not contain information 

on the behavior of the surface away from Q nor do they indicate the full range 

of variation of x1 in the domain of uncertainty of the parameters. The 

global sensitivity analysis is concerned with assessing the behavior of the 

entire solution surface of x. over the domain of uncertainty of the two 
1 

parameters . 

If we have some knowledge of the probability distributions of the two 

parameters, p(k1) and p(k2), the probability distribution for x1 can in prin­

ciple be computed. From the probability distribution of x
1

, certain statisti­

cal properties such as the expected value, 

<x. (t)> 
1 

and the variance, 

2 o.(t) = 
1 

(3) 

( 4) 
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kmax kmax 

<x~(t)> = f2 I 1 •;(t;kl,k2)2 p(kl)p(k2) dkldk2 

kmin kmin 
2 1 

can be computed. 

{5) 

In Figure 2 given assumed probability distributions for each parameter, a 

hypothetical probability distribution for the solution is shown. Note that 

the best value of each ~arameter, the nominal value, may differ in general from 

either the most likely value or the mean value . Likewise, the mean value of the 

solution, <xi{t)> 'may not correspond to the value at the nominal parameter 

values, i.e. point Q. 

Whether or not the probability distributions for k1 and k2 are given, the 

solution surface for x1 can be determined by systematically selecting points 

in the domain of uncertainty of k1 and k2 and solving the system to determine 

x1(t;k1,k2). This approach is indicated in Figure 3. A sensitivity/uncertainty 

analysis necessitates some form of sampling over the domain of uncertainty of 

the parameters. 

Figure 3 is a schematic illustration of the Monte Carlo method of sensi-

tivity analysis. A random number generator is used to select values of the un­

certain parameters within the domain of uncertainty. The system is then solved 

for each of the parameter combinations randomly selected. The values of 

x. (t;k) thus computed are analyzed by standard statistical methods. The dis-
1 -

tribution of values obtained is shown in Figure 3 as a histogram with mean value 

< x.>. The randomly selected points in the domain of uncertainty of the param-
1 

eters can be chosen according to any prescribed probability density functions 

for the parameters. No special programming is required, only that needed to 

select the paramete r values and analyze the solutions statistically. 
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This paper is devoted to a pattern search procedure for global sensi­

t~vity analysis that is an alternative to the Monte Carlo method illustrated 

in Figure 3. The method is called the Fourier Amplitude Sensitivity Test 

(FAST) and was originally developed by Shuler, Cukier and coworkers [l-4 ]. 

In the next section the mathematical basis of the FAST method is out­

lined. Then in Section 3 its computational implementation is described. Sec­

tion 4 contains the description of the computer program and its operation. 

An example drawn from chemical kinetics is given in Section 5 to illustrate 

the use of the program. 
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2. MATHEMATICAL BASIS OF THE FAST METHOD 

The basic problem is to determine the sensitivity of each X; to simul­

t~neous variations in all the parameters {k.}. This is done by considering 
J 

that the {kj } have a distribution of values resulting from either imprecision 

or uncertainty in their definition . Under these conditions, the ensemble mean 

for x. is given by the generalization of (3), 
1 

where P is them-dimensional probability density for k. 

The central idea of the FAST method is to convert the m-dimensional inte­

gral (6) into a one dimensional fonn by using the transformation, 

i = 1,2, .. . , m (7) 

For an appropriate set of functions {Gi } , it can be shown that [ 5 ] 

This relationship wi ll hold only if the frequency set, {wi}, is incommensur-

ate, i .e . 

(9) 

For an integer set of {yi} if and only if yi = 0 for every i. The functions 

{Gi} need to be chosen so that the arc length, ds, is proportional to P(k1, 

k
2

, ... , km) dk£ for all £. The transformation then results in a search curve 

that samples the parameter space in a manner consistent with the statistics 

described by P(K1,k2, ... , km). 
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The parametric curve defined by (7) is termed a search curve. and s 

-is termed the search variable. As s is varied, (7) traces out a space fill­

ing curve in the parameter space. If it were pos sible to use an incommen­

surate frequency set, the curve would never close upon itself and would pass 

arbitrarily close to every point in the parameter space. This result is a 

consequence of Weyl 's theorem. When integer frequencies are used, it is 

not possible to obtai n a truly incommensurate frequency set and the search 

curves take on the appearance of multi-dimensional Lissajous curves. The 

use of higher frequencie s results in successively longer search curves. 

Two examrles are shown in Figures 4 and 5. 

The length of the search curve and the density of sample points is con­

siderably greater in the second case. 
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Practical considerations dict ate that an in~eger rather than an incom-

mensurate frequency set must be used. This introduces two types of error. 

First,thesearch curve is no longer space-filling, i.e., it does not pass 

arbitrarily close to any point in the k-space ; secondly, the fundamental fre­

quencies used to describe the set { k~ } will have harmonics that interfere with 

one another. However, the difference between x and <x> for a well chosen 

integer frequency set can be made arbitrarily small [ 2,3]. 

An integer frequency set results in a periodic search curve that becomes 

a closed path in the s-space. When s is varied between -71' and-+ n, the entire 

search curve is traversed . The periodicity of the {k~} then implies that the 

Fourier coefficients 

(10 ) 

p = 0,1,2, . .. 

(11) 

p = 1,2, ... 

are a measure of the sensitivity of the x1 output function to the kth unce r-

tain parameter. For instance, in the case where x . is totally insen­, 
sitive to a given parameter, the coefficients corresponding to that parameter 

would be zero. 

The ensemble average , 

71' 

<xi ) = 2; J X; [ k 1 ( s ) , .. . , km ( s)] ds (12 ) 

- 1T 
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can be expressed in terms of the Four ier coefficients as 

2 (x . ) 
1 

T~e variance of x. is then 
1 

(13) 

(14) 

Parseval 's theorem can then be used to determine the variance of x . , i.e. 
1 

The variance and harmonics due to wi are expressed by 

a 
I ·) 2 
~ 1 = 
wi 

The normalized sensitivity measure, the partial variance, 

fined by the ratio of the variance due to frequency wi to 

(a~:) r 
= -':--r-:-T......-=-(o (;))2 

(15) 

(16) 

( i ) 
S , is then de­

wi 

the total variance, 

(17) 

Thus the {S(i)} represent an ordered measure of the sensi tivity of the sys­
wi 

tern to each of the {ki} parameters. 

The FAST method requires that the system be solved to produce the out-

put state variable values, the Fourier coefficients and subsequently the 

partial variances . 
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3. COMPUTATIONAL IMPLEMENTATION OF THE FAST ALGORITHM 

Application of the FAST method requires the numerical evaluation of the 

Fourier coefficients, A(i) and B(i). This in turn requires the x
1
. be evalu-

pw£ pw.t 
ated ass ranges over [-n, n]. Restricting the frequency set to odd integers 

d h f TI TI) re uces t e range o s to [- 2 , 2 . In this case 

x(n-s) = x(s) 

x(-n+s) = x(-s) 

x(i + s) = x( i- s) 

x( - ¥ + s) = x( - i - s) 

and the Fourier coefficients can be expressed as: 

and 

B ~ i) = 
J 

[x . (s) + x.(-s)] cos jsds 
1 1 

- x.( -s )] sin jsds 
1 

j odd 

j even 

j even 

j odd 

The actual number of points at which the system must be evaluated can be 

derived from the Nyquist criterion 6 ], and is found to be 

r _:: Nwmax + 1 

Where r is the number of solution points and N an even integer. 

(18) 

(19) 

(20) 

(21) 
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For convenience in calculating the Fourier coefficients, the additional 

condition 

2r = 4q + 2 (22) 

where q is an integer is also imposed. The values of s are taken to be equally 
'TT 'TT spaced throughout the range [- 2' 2], and the discrete points at which xi is 

calculated in the Fourier space are given by 

= ~ [2j-r-1] 
s j 2 r j = 1,2, ... , r (23) 

The following difference expressions for Fourier coefficients can be 

derived by a simple numerical quadrature technique [ 4, 7], 

A~ 
J 

= 0 (j odd) 

B~ 
J 

= 0 (j even) 

q 
( njk )] A~ 1 [; + 2: (x~ + x~k) = cos 2q+1 J 2q+1 xo k=1 

B~ 1 [~ i . (Tijk )] =-- (xk - x~k) sin 2q+ 1 J 2q+l 

where xi replaces x. for notational purposes. 
1 

{j even) 

(j odd) 

(24) 

(25) 

(26) 

(27) 

Interference between the frequencies will occur as a result of thi s numeri-
cal evaluation when 

(28) 

which results in 

(29) 

since 



and 

sin '-N~w-+ 1] = + sin 
~ ma x 
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[ 
nqw. J [ npw£ J 

cos Nw +1 = ~ cos Nw +1 
max max 

This interference, called aliasing, is eliminated when 

(30) 

(31) 

(32) 

N is therefore the maximum number of Fourier coefficients that may be retained 

in calculating the partial variances without interferences between the assigned 

frequencies. The expression for S(i) then becomes 
w£ 

(33) 

Interference will also result from the use of an integer frequency set 

i f the number of Fourier coefficients N used in the summation (33) is greater 

than or equal to the smallest frequency. To illustrate this consider (33) 

for the frequencies w£ and w£ ', 

s ( i ) = A(i)2 + B(i)2 + ... + A(i)2 + 
Nw£ 

B ( i) 2 
Nw£ w£ w.£ w.£ 

s ( i ) = A(i)2 + B(i)2 + .. . + 
A (; )2 + 8(;)2 

Nw£' Nw~,' w£' w£' w£ ' 

If N ~ w1, terms in the series 

example, if N = w1, and if w£' 

for which 

for S(i) and S(i) become identical . For 
w£ w£ 

> w
0

, there will be a term in the S(i) series 
"' w£ ' 



-15-

In such a case, the effect of the variati on of parameter £ enters spurious ly 

jnto the partial variance for the variation of parameter£'. 

In general, the interference between the higher harmonics will be elimi ­

nated when 

N <w. -1. m1n ( 37 ) 

N is also related to the number of function evaluations required by (21), so it is 

desirable to use the minimum possible value, which is N= 2. Then a minimum fre ­

quency of at least three is sufficient to remove any harmonic interference 

effects from the partial variances . The final expression for the partial 

variances then becomes 

The choice of N=2 restricts the number of terms in the series to two. This 

is generally sufficient because the magnitude of the higher order terms in 

the Fourier series tend to decrease rapi dly. 

Implementation of the FAST technique also requires the selection of a 

frequency set , which can be done recursively usi ng 

(39) 

(40) 

as described in Cukie r et al. [ 4 ] . The nn and dn we have used are tabu­

lated in Table 1. 

The final step in the FAST implementation is the determination of the 

transformation fun ctions {G£} that determine the actual search curve traversed 

in s-space. If the probabilities of occurrence for the parameters {k£}are 



-16-

independent, the probability density describing their effects has the 

f..onn, 

(41) 

In this case it can be shown that the transformation functions must obey 

the relation [ 5 

(42) 

with the initial conditions G£(0) = 0. A tabulation of three different search 

curve formulations and their transformation functions is given in Table 2. 

The parameter probability distributions used to derive these curves 

are described in Cukier et a1.[3]. The first search curve is suitable for cases 

with small variations in the uncertain parameters while the second and third 

are applicable to cases with large variations. 
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4 . PROGRAM DESCRIPTION AND OPERATION 

A flowchart of the FAST program is shown in Figure 6. There are two 
-user interfaces with the program. One is the input data set which contains 

the following information; program description cards, control cards, analys is 

times (optional), and parameter cards . The second interface is a user sup-

plied subroutine, called F, that calculates the state variable values for a 

given parameter combination. When the state variables must be calculated 

numerically, the user must also provide a subroutine to perform this function. 

For chemical kinetic applications several existing differential equation 

solvers can be easily adopted . 

The input information is stored in an array called P. Subroutines F must 

access P in the same sequence that the parameters were specified on the input 

cards. The state variables calculated in the F subroutine are returned in an 

array named C. The structure of this array is shown in Figure 7. An example 

of subroutine F for the sample problem in Section 5 is given in Figure 8. 

The detailed fields and formats for the input file are shown in Table 3. 

The default value for the number of analysis times is one, and the default 

for the number of terms in the partial variance series is two. If this latter 

default is to be changed, care must be exercised to be sure that the number 

of points at which x and the Fourier coefficients are evaluated is also modi-

fied so that interferences between the parameters will not occur. 

Five files can be accessed during execution of the program. These are 

described in Table 4. Whenever the option to save the results is used, both 

file IDOUT and file !DISC must be allocated. IDOUT must be allocated when 

the reanalysis option is specified, and IDPLT must be allocated when the 
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option to plot the partial variances is used. ICARD and IPRIN must be allo­

GQted at all times. 

Several of the arrays used in the FAST program can become quite large 

for problems involving several parameters, output state variables and/or 

analysis times. The default sizes for the program arrays are given in Table 5. 

The program tests the input requests to determine if the default storage is 

sufficient, if not, the program will terminate and write an error message 

describing which arrays require enlargement. 
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5. SAMPLE PROBLEM 

To illustrate the use of the FAST program, a simple example consisting 

of a single, autocatalytic reaction, 

kf 
A + X f 2X 

r 

is considered. The concentration of X is governed by 

[X(O)] = [X] 
0 

If we assume that [A] is constant, the dimensionless concentration 

[X] = 

can be defined, and the differential equation solved to yield 

[ 

A -k [A]~- 1 

[X] = 1 - (1 - [X]~ 1 )e f J 

For the purposes of sensitivity analysis, we express kf in the Arrhenius 

form, 

A 

We wish to examine the sensitivity of [X] to [XJ
0

, [A], Bf. Cf' and T 

from t = 0 to t = 2. The nominal values and ranges of variation of these 

five parameters are given in Table 6 . 
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Figure 9 shows the first-order normalized sensitivity coefficients as 

a function of time evaluated at the nominal values of Table 4. These are 

defined by 

Pi (t) = 

m I ax I L ak . .6.kj 
j=1 J 

Figure 10 presents the partial variances for the five parameters as determined 

by the FAST method with the +5 percent variations of Table 6 using search 

curve 1 of Table 2. We note first that the first-order sensitivities of [X] 

to variations in [A] and Bf are identical because these two parameters appear 

as a product in [X]. The same behavior is noted for Cf and T. As long as the 

uncertainty ranges chosen for these two sets of parameters are the same, the 

partial variances of [A] and Bf and Cf and Tare identical, as seen in Figure 10. 

The qualitative results of both the first-order sensitivity coefficients and 

the FAST partial variances are the same, although the relative magnitudes dif-

fer somewhat. A difference in relative magnitudes is expected since the first-

order sensitivity coefficients are computed at the nominal values, whereas the 

FAST partial variances involve simultaneous vari ation of all five parameters 

over their range of uncertainty, in this case~ 5 percent. Both sets of calcu­

lations show that [X) is nnst sensitive to [XJ
0 

for 0 < t < 1.1. For t > 1.1, 

[X] is most sensitive to [A) and Bf. Note that the FAST method shows that the 

sensitivity of [X] to [X)
0 

close to t = 0 is larger than indicated by the first­

order sensitivity coefficient. 
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NOMENCLATURE 

constant chemical species 

jth Fourier cosine coefficient for the ith state variable 

pre-Arrhenius rate term 

jth Fourier sine coefficient for the ith state variable 

activation energy germ 

frequency set generation parameter 

general system function 

transformation function 

forward rate constant 

ith uncertain parameter 

lower limit of ith uncertain parameter 

upper limit of ith uncertain parameter 

reverse rate constant 

number of uncertain paraMeters 

number of state variables 

number of Fourier 

probability distribution of the uncertain parameters K 

quadrature index 

numbe r of numerica1 solution points 

ratio of parameter lower limit and mean value 

ratio of parameter upper limit and mean value 

Fourier space variable 

discrete Fourier space variable 



s ~ i) 
J 

T 

X 

X 

" X 

a . 
J 

B. 
J 
2 a . 
1 

p . 
1 

w. 
J 

-
\). 

J 

rln 

< > 
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partial sensitivity of the ith state variable to the jth 
uncertain parameter 

temperature 

state variable 

the value of the ith state variable at the kth numerical 
solution point 

chemical species 

normalized chemi cal species 

search curve parameter 

search curve parameter 

partial variance of the ith state variable 

normalized linear sensitivi ty coefficient for the ith state 
variable 

Fourier frequency assigned to the jth parameter 

nominal value of the jth uncertain parameter 

frequency set generation parameter 

ensemble average quantity 

time average quantity 



-24-

REFERENCES 

-
-1. R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek and J. H. 

Schaibly, J. Chern. P~. 59 (8), 3873 (1973 ). 

2. J. H. Schaibly and K. E. Shuler, J. Chern. Phys. ~ (8), 3879 (1973). 

3. R. I. Cukier, J. H. Schaibly and K. E. Shuler , J. Chern. Phys. £1(3) , 
1140 (1975). 

4. R. I. Cukier, H. B. Levine and K. E. Shuler, J. Comp. Phys. £2_(1) 1 
(1978). 

5. H. Weyl, Arner. J. Math. §.Q_, 889 (1938). 

6. K. G. Beauchamp and C. K. Yuen, Digital Methods for Signal Analysis, 
George Allen and Unwin, London (1979). 

7. M. Koda, G. J. McRae and J. H. Seinfeld, Int. J. Chern. Kinetics 11 
427 (1979). 

8. R. J. Gelinas and J. P. Vajk, Systematic Sensitivity Analysis of Air 
Quality Simulation Models, Final Report to U.S. Environmental Pro­
tection Agency under Contract No. 68-02-2942, Science Applications, 
Inc., Pleasanton, CA ( 19780. 



N 
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4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
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Table 1. Parameters Used in Calculating Frequency Sets Free 
of Interferences to Fourth Order 

P. 
n 

0 
3 
1 
5 

11 
1 

17 
23 
19 
25 
41 
31 
23 
87 
67 
73 
85 

143 
149 

99 
119 
237 
267 
283 
151 

d 
n 

4 
8 
6 

10 
20 
22 
32 
40 
38 
26 
56 
62 
46 
76 
96 
60 
86 

126 
134 
112 

92 
128 
154 
196 

34 

N 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

P. 
n 

385 
157 
215 
449 
163 
337 
253 
375 
441 
673 
773 
875 
873 
587 
849 
623 
637 
891 
943 

1171 
1225 
1335 
1725 
1663 
2019 

d 
n 

416 
106 
208 
328 
198 
382 

88 
348 
186 
140 
170 
284 
56B 
302 
438 
410 
248 
448 
388 
596 
216 
100 
488 
166 

0 
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Table 2. Search Curves for Fourier Amplitude Sensitivity Test 
Computer Program 

APPLICATION !(. ( s) 
J 

o_ 
MEAN VALUE k. 

J 
NOMINAL VALUE .. . 

ADDI TIVE VARIATION 

EXPONENTIAL VARIATION 

PROPORTIONAL VARIATION 

ku=ok k · = ..:.:.L. 1 (k) 
J ) • ) 0 

SKEWE D VARIATION 

(k~ + <) k · > 
J 2 

Us) = k [1 + ; . sin ... . s] 
J J J J 

u } 
k · + k J J 

2 

~ 
J ) 

k · 
J 

1>'-(~1) J Q . 

J 

0 ku- upper limit for po;ometer ; kJ- IO'fller limit for porometer 
l I 

b ru = ku /'k . r1 = k~ /k" 
l J I l 

J 
lc - -lc . 

I I 
J 

k · + k · 
J J 

Jn (o) 

J 
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Table 3. Input Fields and Formats 

Problem Description Cards 

72A1 

1 72 

Col 1-72. Descriptive text . Number of cards is optional. The end 
of the text is indicated by a * in col 1 of the last description card. 

Control Card 

I I I I I I I I I I I I I I 
1 

Col. 

1-5 
6-10 
11-15 
16-20 
21-25 
26-30 
31-35 
36-40 
41-45 
46-50 
51-55 
56-60 
61-65 
66-70 
71-75 

Description 

number of analysis times 
number of input parameters 
number of output state variables 

75 

number of terms in the partial variance sum (default 2) 
option to print amplitudes 
option to print parameter combinations 
option to print state variable outputs 
multiplier N in N=Nwm x+l (default 2) 
option to print unsor~ed partial variances 
option to save state variable outputs on disc file 
option to reanalyze state variable outputs 
option to plot partial variances 
option to renormalize partial variances for plotting 
option to print partial variances during reanalysi s 
option to print sorted partial variances during plotting 
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Table 3. Input Fields and Formats (Continued) 

Analysis Times (Optional) 

a 
1 10 

Col Description 

1-10 Analysis time. Number if cards required is determined by 
the number of analysis times entered in the control card. 
(These cards may be omitted if the number of analysis 
times entered on the control card is zero.) 

Parameter Card 

I FlO.O F10.0 50A1 

1 6 11 80 

Col Description 

1-5 Parameter number. This number is the array index used for 
the P array in Subroutine F. The frequency assignment is 
done in the order in which the parameter cards are input. 

6-10 

11-20 
21-30 
31-80 

If an alternative frequency assignment is desired, the order 
in which the parameter cards are input should be changed, 
but not the parameter number. 

Search curve type 
0 = Fixed Parameter 
1 = Small Parameter Variation 
2 = Large Parameter Variation 
3 = Parameter Variation Expressed as Fractional Change 

Lower parameter limit or fixed parameter value 
Upper parameter limit (type 1) or scale factor (types 2 and 3). 
Parameter Description. 



' . 

Name 

IDOUT 

I DISC 

IDPLT 

ICARD 

IPRIN 

-29-

Table 4. Files Used by FAST Program 

Unit Number 

1 

2 

3 

5 

6 

Description 

Reanalysis file. When the option to save 
the results is used, the output values are 
stored on this file. When the reanalysis 
option is used, the state values from this 
file are read as input. 

Save file. When the save option is on, all 
other program information including the par­
tial variances is written to this file for 
later use. 

Plot file. All information required for 
plotting is stored on this file during pro­
gram execution and read back during the 
execution of the plot routine. 

User's input file. 

Output print file. 
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Table 5. FAST Program Array Default Sizes 

Default Size 
Array Description Size Variable 

IV ARB Variable Numbers 100 NV MAX 

ITYPE Variable Types 100 NV MAX 

UBAR Nominal Values 100 NV MAX 

PBAR Mean Values 100 NV MAX 

PV Variances 100 NV MAX 

INDEX Sort Array 100 NV MAX 

PARM Parameter Combinations 100 NV MAX 

DESC Parameter Descriptions (48,100) NV MAX 

IW Frequency Set 50 NPMAX 

TIME Analysis Times 50 NT MAX 

OUTPT Parameter Output 200 NOMA X 

FI Output for A 11 2000 NSMAX 

Parameter Combinations 

NV MAX Max Number of Input Parameters 100 

NPMAX Ma x Number of Variable Parameters 50 

NT MAX Max Number of Analysis Times 50 

NOMA X Max Storage for Each Parameter Combination 200 

NSMAX Max Storage for All Parameter Combinations 2000 

NEQN Number of Solutions for Each Combination no 1 imit 

NSTAT Number of State Variable Outputs no 1 imi t 
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Table 6. Parameter Variations for Autocatalytic System 

Parameter Nominal Value Range of Uncertainty 
(2:_5%) 

[X]o 0.15 0.1425- 0.1575 

[A] 1. 73 1. 644 - 1.817 

Bf 1.0 0.95 - 0.105 

cf 165.0 156 .8 - 173.3 

T 300 .0 285.0 - 315.0 



- Figure 1. 

- Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8. 

Figure 9 . 

Figure 10. 
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FIGURE CAPTIONS 

Hypothetical Solution Surface Over the Domain of Uncertainty 
of Two Parameters (after Gelinas and Vajk, 18].) 

Hypothetical Probability Distribution of Solution Surface 
Corresponding to the Probability Distributions of the 
Two Parameters (after Gelinas and Vajk, [8].' 

l-1onte Carlo Approach to Generating the Solution Surface 
(after Gelinas and Vajk, [8].) 

Space Filling Search Curve with Frequencies w1 = 3, 
w2 = 5. 

Space Filling Search Curve with Frequencies w1 = 11, 
w

2 
= 13. 

Fourier Amplitude Sensitivity Test Program 

Structure of the Output Array C 

Description of Subroutine F 

First-Order Sensitivity Coefficients for the Reaction 
A + X -+ 2X 

+ 

Partial Variances from the FAST Method for the Reaction 
A + X -+ 2X 

+ 
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Figure 1. Hypothetical Solution Surface Over the Domain of Uncertainty of Two Parameters 
(after Gelinas and Vajk, 1978) 
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Figure 2. Hypothetical Probability Distribution of Solution 
Surface Corresponding to the Probability Distribu­
tions of the Two Parameters (after Gelinas and 
Vajk, 1978) 
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Figure 3. Monte Carlo Approac~ to Generating the Solution 
Surface (after Gelinas and Vajk, 1978) 
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k, 

k1 = k1 exp [ v1 sin(w 1 s)] 

k2 = k2 [ 1 + v2 sin(w2 s)) 

{w} = (3,5] N = 21 

10 

Figure 4. Space Filling Search Curve with Frequencies w1 = 3, 
w = 5 2 



k = I 

k = 2 
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k 1 exp(v1 sin(w 1 s)] 

k2 [ 1 + v
2 

sin ( w2 s)] 

w =(11,13) N=53 

10 

Figure 5. Space Filling Search Curve with Frequencies w1 = 11, 
w2 = 13. 



FOJRIER AMPLITUDE SENSITIVITY TEST PROGRAM 

USER INPUTS 

1-4-----------4-~ • ~TERS TO BE VARIED FREQUENCY ASSIGN~ENT 

TO PARA~ETERS • SELECTION Of SEARCH CURVE 

SET SEARCH VARIABLE 
TT TT 
2~SJ2::2 

USER SUPPLIED SUeROUTINE F 

CALCULATE PARA~ETER 

CO~BINATION k_,• Gisinw.(si) 

GIVEN PARAt.£TER COMBNATION 

...._----------.;~ !_ •(~; j •1,2, .. . ,m) SOLVE FOR 
STATE \ARIABLES ~ •(u1; i•l,2, .. .,n) 

PARA~ETER 
CO~BINATION 

STORE THE RESULTS 

STATE 
VARIABLE OUTPVT 

• CALCULATE Tt£ ~EAN, STANDARD 
DEVIATION, VARIANCE AND COEFFICIENT 
OF VARIATION 

• CALCULATE AND RANK PARTIAL 
VARIANCES 

END 
PROGRAM 

Figure 6. Fourier Amplitude Sensitivity Test Program 
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Output Array 

ul 

lst analysis time uz 

. 

un 

ul 

uz 

. 

. 

. 
u n 

ul 

uz 

ith analysis time . 
. 
. 
un 

lJ 1 

u2 

mth analysis time . 
. 
. 
un 

Array Index 

1 

2 

N 

N+l 

N+2 

N +N 

i N+l 

iN+2 

. 
iN+N 

Figure 7. Structure of the Output Array C 

J( 
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SUBROUTINE F(NT,TIME,NPC,NPARM,NSTAT,C) 

INPUT VARIABLE 

NT 
TIME 
NPC 

NPARM 
p 

OUTPUT VARIABLE 

NSTAT 
c 

DESCRIPTION 

Number of analysis times 
Array of analysis times 
Current parameter 
Combination number 
Number of parameters 
Array of Parameter Values 

DESCRIPTION 

Number of output variables 
Array of state variable values 
Values for each analysis time 

DIMENSION TIME {NT), P(NPC), C(1) 

C F for test problem A + X = 2X 
c 

DIMENSION P(NPARM),C(1), TIME(NT), S(2) 
c 
C Unload the parameters 
c 

c 

XO=P (1) 
AO=P(2) 
A =P(3) 
B =P(4) 
TA=P(S) 

C Solve the system 
'C 

c 

c 

c 

c 

NSTAT=1 
DO 10 J=1,NT 

T=Tlt~E(J) 

RATE = A*EXP( -B/TA ) 

S(l) = 1.0 I 
( 1 + (1 - XO )*EXP( -RATE * AO *T )/XO ) 

C Store the solution in the proper array 
c 

·c 

IND=(J-1)*NSTAT 
C (I ND+ 1 )=S (1) 

10 CONTINUE 

RETURN 
END 

Figure 8. Description of Subroutine F 

VARIABLE TYPE 

Integer 
Real array 
Integer 

Integer 
Real Array 

VARIABLE TYPE 

Integer 
Real array 
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Figure 9. First-Order Sensitivity Coefficients for the Reaction A+ X-+- 2X 
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Figure 10. Partial Variances from the FAST Method for the Reaction A+ Xt 2X 


