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of the Basal Water Conduit System 
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Based on observations of the 1982-1983 surge of Variegated Glacier, Alaska, a model of the 
surge mechanism is developed in terms of a transition from the normal tunnel configuration of the 
basal water conduit system to a linked cavity configuration that tends to restrict the flow of water, 
resulting in increased basal water pressures that cause rapid basal sliding. The linked cavity system 
consists of basal cavities formed by ice-bedrock separation (cavitation), ~1 m high and ~10 m in 
horizontal dimensions, widely scattered over the glacier bed, and hydraulically linked by narrow 
connections where separation is minimal (separation gap •< 0.1 m). The narrow connections, called 
orifices, control the water flow through the conduit system; by throttling the flow through the large 
cavities, the orifices keep the water flux transmitted by the basal water system at normal levels 
even though the total cavity cross-sectional area (-200 m2) is much larger than that of a tunnel 
system (-10 m2). A physical model of the linked cavity system is formulated in terms of the 
dimensions of the "typical" cavity and orifice and the numbers of these across the glacier width. 
The model concentrates on the detailed configuration of the typical orifice and its response to basal 
water pressure and basal sliding, which determines the water flux carried by the system under 
given conditions. Configurations are worked out for two idealized orifice types, step orifices that 
form in the lee of downglacier-facing bedrock steps, and wave orifices that form on the lee slopes 
of quasisinusoidal bedrock waves and are similar to transverse "N channels." The orifice 
configurations are obtained from the results of solutions of the basal-sliding-with-separation 
problem for an ice mass constituting a near half-space of linear rheology, with nonlinearity 
introduced by making the viscosity stress-dependent on an intuitive basis. Modification of the 
orifice shapes by melting of the ice roof due to viscous heat dissipation in the flow of water 
through the orifices is treated in detail under the assumption of local heat transfer, which guaran- 
tees that the heating effects are not underestimated. This treatment brings to light a melting- 
stability parameter E that provides a measure of the influence of viscous heating on orifice 
cavitation, similar but distinct for step and wave orifices. Orifice shapes and the amounts of roof 
meltback are determined by E. When E •> 1, so that the system is "viscous-heating-dominated," the 
orifices are unstable against rapid growth in response to a modest increase in water pressure or in 
orifice size over their steady state values. This growth instability is somewhat similar to the 
j6kulhlaup-type instability of tunnels, which are likewise heating-dominated. When E <• 1, the 
orifices are stable against perturbations of modest to even large size. Stabilization is promoted by 
high sliding velocity v, expressed in terms of a v 4/2 and v-• dependence of E for step and wave 
cavities. The relationships between basal water pressure and water flux transmitted by linked 
cavity models of step and wave orifice type are calculated for an empirical relation between water 
pressure and sliding velocity and for a particular, reasonable choice of system parameters. In all 
cases the flux is an increasing function of the water pressure, in contrast to the inverse flux-versus- 
pressure relation for tunnels. In consequence, a linked cavity system can exist stably as a system of 
many interconnected conduits distributed across the glacier bed, in contrast to a tunnel system, 
which must condense to one or at most a few main tunnels. The linked cavity model gives basal 
water pressures much higher than the tunnel model at water fluxes •>1 m3/s if the bed roughness 
features that generate the orifices have step heights or wave amplitudes less than about 0.1 m. The 
calculated basal water pressure of the particular linked cavity models evaluated is about 2 to 5 bars 
below ice overburden pressure for water fluxes in the range from about 2 to 20 m3/s, which 
matches reasonably the observed conditions in Variegated Glacier in surge; in contrast, the 
calculated water pressure for a single-tunnel model is about 14 to 17 bars below overburden over 
the same flux range. The contrast in water pressures for the two types of basal conduit system 
furnishes the basis for a surge mechanism involving transition from a tunnel system at low pressure 
to a linked cavity system at high pressure. The parameter E is about 0.2 for the linked cavity 
models evaluated, meaning that they are stable but that a modest change in system parameters 
could produce instability. Unstable orifice growth results in the generation of tunnel segments, 
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which may connect up in a cooperative fashion, leading to conversion of the linked cavity system 
to a tunnel system, with large decrease in water pressure and sliding velocity. This is what 
probably happens in surge termination. Glaciers for which E •< 1 can go into surge, while those for 
which E •> 1 cannot. Because E varies as c•3/z (where c• is surface slope), low values of E are more 
probable for glaciers of low slope, and because slope correlates inversely with glacier length in 
general, the model predicts a direct correlation between glacier length and probability of surging; 
such a correlation is observed (Clarke et al., 1986). Because E varies inversely with the basal shear 
stress x, the increase of x that takes place in the reservoir area in the buildup between surges causes 
a decrease in E there, which, by reducing E below the critical value ~1, can allow surge initiation 
and the start of a new surge cycle. Transition to a linked cavity system without tunnels should 
occur spontaneously at low enough water flux, in agreement with observed surge initiation in 
winter. 

1. INTRODUCTION than in the nonsurging state [Brugman, 1986]. After surge 
termination the mean water transport speed along the length of the 

The fastest known glacier flow motions occur in glacier glacier (lower half) was 0.7 m/s, typical of basal water flow 
surges. There has been much theorizing as to the cause(s) of the speeds found in nonsurge-type glaciers; during surge, in contrast, 
fast flow (summarized by Paterson [1981, p. 288]), but few if any the mean water transport speed was only 0.025 m/s. 
firm conclusions have emerged because observations of the 5. In the dye-tracing experiment during surge the dye was 
processes in action, which could guide physical reasoning, have dispersed across the width of the glacier, appearing in all outflow 
been inadequate. Studies of the 1982-1983 surge of Variegated streams, whereas after surge termination the dye appeared in one 
Glacier, Alaska, provide a new, enlarged body of observations stream only. 
[Kamb et al., 1985]. I present here a physical model of the surge 6. The outflow stream water during the surge was extremely 
mechanism developed on the basis of these observations. A brief turbid (suspended sediment content at concentration ~100 kg/m3 
sketch of the model has been given by Kamb et al. [1985, p. 478]. for particle sizes _<10 [tm), much more turbid than after surge or in 
While the treatment is based on a "hard bed" model of the surge normal, nonsurging glaciers (sediment content ~1-10 kg/m3) 
mechanism, it seems likely, as explained in section 10, that a 
number of the important results are also applicable at least 
qualitatively to "soft bed" models, in which sliding is over 
deformable basal till. The discussion concentrates on the 

mechanism of surging in spring and summer when relatively large 
amounts of water are available to the basal water conduit system. 

[Brugman, 1986, p. 88]. 

3. FORMULATION OF A MODEL OF THE SURGE MECHANISM 

The foregoing observations throw a sharp focus on what 
needs to be explained by a physical model of the surge mecha- 

The surge mechanism in wintertime can be considered by nism. The high sliding speeds are explained by the high basal 
extending the concepts developed here to conditions of low water 
flow; this will be done in a subsequent paper. 

2. OBSERVATIONAL BASIS 

The following observations from the surge of Variegated 
Glacier [Kamb et al., 1985; Raymond, this issue] form the direct 
basis of the surge model: 

1. The fast flow motion during the surge is due to rapid basal 
sliding. 

2. During surge, the pressure of water in the basal conduit 
system is high, within 2-5 bars of the ice overburden pressure, and 
occasionally reaching overburden; in the nonsurging state it is 
distinctly lower, generally 4-16 bars below overburden, but with 
occasional peaks to higher levels. Peaks in pressure, particularly 
those in which the water pressure rises to near overburden, 
correspond to peaks in sliding motion, both in surge and out. 
These facts are taken as indication that the direct cause of the high 
sliding speed in surge is high basal water pressure. 

3. Major slowdowns in surge motion, and particularly surge 
termination, are accompanied by large flood peaks in the terminus 
outflow streams and by a drop of the glacier surface by 0.1-0.7 m. 
This, in conjunction with observations of uplift followed by drop 
of the glacier surface in minisurges [Kamb and Engelhardt, 
1987], is interpreted as an indication that the high sliding speeds 
and high basal water pressures in surge and in minisurges are 
coupled with extensive basal cavitation, as expected theoretically 
[Lliboutry, 1968; Kamb, 1970, p. 720; Iken, 1981; Fowler, 1987]. 

4. The flow of water through the basal water conduit system, 
as indicated by dye-tracing experiments, is much slower in surge 

water pressures. A detailed explanation requires a detailed model 
of the relation between basal water pressure and sliding speed. 
Such a model can be developed within the framework of the basal 
sliding mechanism discussed here (or see Fowler [1986]), but 
because, as will be argued, the detailed relationship between 
water pressure and sliding speed is not the essential element of the 
model needed to explain surging, I will here pass over these 
details and instead assume a simple empirical relation between 
water pressure and sliding. 

The essential ingredient of the surge model is what causes the 
high basal water pressures in surge. How is the high basal water 
pressure maintained and indeed enhanced in spring and early 
summer, when, according to the standard model of the basal water 
conduit system [Rtthlisberger, 1972], the pressure should drop as 
an increasing flux of water is carried by the system? Since high 
basal water pressure and high basal sliding promote basal 
cavitation, opening up holes (cavities) through which water could 
move at the base of the glacier, and thus increasing the hydraulic 
conductivity of the basal water conduit system, why does the 
water not drain out from under the glacier more rapidly than in 
nonsurge and thereby reduce the water pressure to subnormal 
values? Why, on the contrary, does the glacier in surge show an 
unusually high "retentivity" for water, as shown by the abnor- 
mally low water transport speed revealed by dye tracing? These 
questions go to the heart of what is in my view the essential 
physical difference between the surging and nonsurging states of 
the glacier. The surge model concentrates on explaining this 
difference and is therefore in the first instance a model of the 

basal water conduit system in surge. 
The conduit system that dominates the transport of water in 
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the nonsurging state is a basal tunnel system of the kind discussed 
in theoretical terms by R(Sthlisberger [1972], Weertman [1972], 
Nye [1976], Spring and Hutter [1981, 1982], and Lliboutry 
[1983]. It consists of one or two main tunnels, of order 1 or a few 
meters in diameter, running along the length of the glacier at the 
bed, usually near the center or deepest part, and probably fed by 
smaller side tunnels heading in glacier moulins. 

The water conduit system in the surging state is very 
different. This is shown by the dye tracer experiments in terms of 
the slow transport speed of water through the system and the high 
dispersion of the injected dye pulse [Brugman, 1986]. The 
system cannot consist of the normal tunnels of the nonsurging 
state with addition of conduits formed by basal cavitation under 
the high basal water pressure and rapid basal sliding because in 
this case the water transport speed would remain high and the 
total water transport (flux) would be increased so that, as noted 

running transverse to the ice flow would develop a long, 
connected cavity, but the transverse direction of hydraulic 
communication in it would not aid longitudinal transport of 
water.) When the basal water pressure becomes high enough and 
the sliding velocity rapid enough, cavitation in the bed areas 
intervening between the large cavities develops sufficiently to 
provide hydraulic connections between the cavities, but the 
connections are small features, much smaller than the cavities 
they connect. It is this system of hydraulically linked cavities that 
I here consider in a model of the surge mechanism. From the 
evidence previously discussed, it appears that most of the pressure 
drop or potential drop in the water flow through the linked cavity 
system occurs in the narrow connections, or orifices, as I will call 
them, and as a consequence, these orifices throttle and control the 
flow. On the other hand, for a parcel of water traveling through 
the system, most of its time is spent moving slowly through the 

above, the high water pressure could not be maintained, at least large cavities, so that the overall transit time is tied to the 200 m2 
without an abnormally large throughput of water, which is not 
observed. It follows that the normal tunnel system must not be 
present. 

In order to transport about 5 m3/s of water at an average 
longitudinal speed of 0.025 m/s, the conduit system must have a 
total cross-sectional area of about 200 m2 in the transverse plane 
of the glacier. (An estimated 5 m¾s is the average flux at the time 
of the tracer experiment, taking into account the distributed input 
of meltwater from the tracer injection point to the terminus, where 
the discharge was 7 m3/s.) If the conduits are basal cavities, their 
average height, areally averaged across the 1-km width of the 
glacier including areas of ice-bed contact (where the height is 0), 
is 0.2 m. This is compatible with the average height 0.1 m 
inferred from the drop in elevation of the ice surface on surge 
termination and also with the excess amounts of water released 

from the glacier at surge termination and during the 4 days 
thereafter, which correspond to a drop in average cavity height of 
0.1 and 0.3 m, respectively. (These are upper limits because some 
of the surface drop may have been due to ice strain and some of 
the released water may have been stored in intraglacial porosity; 
see Kamb et al. [1985, p. 477].) Basal cavities of height ~1-2 m, 
distributed widely over the glacier bed and occupying ~ 10-20% of 
the bed area, would provide passageways for water flow of the 
dimensions needed and would involve the widespread contact 
between basal water and the ice-bed interface that could account 

for the extremely high turbidity of the Outflow water in surge 
(section 2, observation 6). The pattern of basal cavitation 
visualized seems reasonable in relation to cavities that have been 

actually observed under glaciers [Carol, 1947; Kamb and La 
Chapelle, 1964; Vivian and Bocquet, 1973] or that can be inferred 
from detailed observations of the abrasion markings on former 
glacier beds. 

If the water conduit system in surge consisted of an openly 
interconnected network of basal cavities of the dimensions 

suggested, the water transport speed through it would be ~ 1 m/s, 
as it is through normal tunnel systems, the lateral dimensions of 
tunnels being of the same order. This is in strong contradiction 
with the observed transport speed, 0.025 m/s. It follows that the 
water flow through the conduits of 200 m2._ cross-sectional area 
must be throttled in some way. There is a natural reason why this 
should happen. In the sliding of ice over an irregularly un- 
dulatory bed, the distribution of normal stress across the 
ice-bedrock interface, which controls ice-bed separation, is such 
that the large cavities that form tend to be isolated from one 
another, so that the water in them tends not to communicate 
hydraulically. (A long steplike or wavelike roughness feature 

total cross-sectional area of the cavities. The water flow through 
the orifices is probably fast and turbulent, as will be seen later, 
and the water from each orifice probably emerges as a jet into the 
cavity downstream, which helps to explain how the water is able 
to pick up and carry a large amount of fine sediment in 
suspension. 

Once the basic topology of the water conduit system in surge 
is ascertained, it becomes possible to formulate a physical model 
of it in sufficient detail to permit its hydraulic properties to be 
determined, analogously to what has been done for the normal 
tunnel system by Riithlisberger [1972]. The results provide a 
basis for deciding whether the underlying picture of the surge 
mechanism is satisfactory and for identifying the physical 
conditions that distinguish the surging and nonsurging states of 
glacier motion, from which one can reason about what causes a 
glacier to be in the nonsurging or surging state. 

4. THE LINKED CAVITY MODEL 

The pattern of basal cavitation visualized in the linked cavity 
model is shown schematically in Figures 1 and 2. Figure 2 shows 
schematically the longitudinal cross-sectional shapes of the 
leeside ice-bed separation cavities whose plan view shapes are 
shown in Figure 1. The hachured lines in Figure 1 represent 
upstream cavity boundaries where the ice separates from bedrock, 
often at the edge of a topographic step or sharp break in slope of 
the bedrock surface, as shown in Figure 2; the nonhachured lines 
in Figure 1 are where the ice recontacts the bed downstream. The 
cavitation pattern in Figure 1 is rather similar to natural examples 
of basal cavitation mapped by Walder and Hallet [ 1979, Figure 7] 
and by Hallet and Anderson [1980, p. 174], except for the 
presence of solution-etched flow channels in the limestone 
bedrock of these natural examples. Under high sliding velocity, 
the cavities probably elongate greatly downglacier, but the basic 
topology of the hydraulic linkage of cavities remains similar. 

In Figure 1, the larger areas of the ice-bedrock separation 
represent the cavities of the linked cavity model, and the narrow 
connections between these are the separation-gap orifices. In 
cross section these features appear as shown in Figure 2: 
Figure 2a is a section through two separation cavities in 
succession along the flow line, while Figure 2b is a section 
through two orifices, somewhat exaggerated in size for clarity. 

The pattern of water flow through the linked cavity system is 
shown by the small arrows in Figure 1. Because of the geometry 
of cavitation, the flow water tends to be in the lateral direction, 
particularly in the orifices. This lateral flow is reflected in the 
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Fig. 3. Local detail and dimensions in the linked cavity system as seen in 
map view, with conventions of Figure 1. (a) A schematic representation 
of a realistic linkage pattern between two cavities. (b) The idealized geo- 
metry of the linkage assumed in the linked cavity model. The length, 
breadth, and height parameters L, l, and g are discussed in the text. 

l is the average lateral dimension (breadth) of the orifice in 
the direction transverse to water flow. This is always in the 

/ .:i•• direction of basal sliding and represents the length of the " ' • 10 m separation gap between ice and bedrock, which forms the orifice. 
to is the average dimension (breadth) of the cavity in the 

Fig. 1. Conception of the linked cavity basal water conduit system, in direction transverse to water flow. In the cavitation pattern of 
map view, portraying schematically a small area of the glacier bed, of Figure 1 this dimension is generally parallel to basal sliding, but 
lateral dimensions ~20 m. Areas of ice contact with the bed are shaded, in downglacier-elongated cavities it tends to be transverse to 
areas of ice-bed separation (cavitation) are blank. Vertical cross sections sliding. along lines AA' and BB' are shown in Figure 2. The large arrow indicates 
the direction of basal sliding. Ice separates from the bed along the Lo is the length of the orifice in the direction parallel to water 
hachured lines and recontacts the bed along the plain lines. One large flow. Because of the curving, sinuous pattern of the ice-bedrock 
cavity and two small "orifices" in the linked cavity pattern are identified. separation lines and recontacting lines (Figure 1), the dimension 
Directions of water flow through the system are shown with small arrows. Lo is not sharply defined, as Figure 3a suggests, but in the model 
Approximate scale is indicated by the 10-m bar. 

wide lateral dispersion of dye in the tracer experiment during 
surge (section 2, observation 5). 

In developing a quantitative model of the linked cavity system 
I will consider the system in terms of a typical cavity and a typical 
linking orifice, illustrated in plan view in Figure 3. The dimen- 
sions associated with the cavity and orifice, marked in Figure 3, 
are as follows: 

:::::::::::::::::::::::: C ::::::::::::::::::::::::::::::::: ..... . ........ '"""/C ::::::::::::::::::::::::::: 

~ lorn 

Fig. 2. Vertical cross sections through the schematic linked cavity system 
of Figure 1, along lines AA' and BB'. Heavy shading indicates bedrock, 
light shading ice. The arrows show the direction of basal sliding. The 
blank areas are water-filled volumes formed by ice-bed separation 
(cavitation) in the sliding process. Section AA' shows two large 
separation cavities, while BB' shows two separation gap orifices, whose 
gap height is exaggerated for visibility in the drawing. Approximate scale 
is indicated by the 10-m bar. 

the distinction between cavity and orifice is sharpened by 
idealizing their geometry in the way shown in Figure 3b. 

Lo is the dimension of the cavity in the direction parallel to 
water flow, or, more precisely, the distance between successive 
orifices along the water-flow path. 

A = Lo/Lo is the "head gradient concentration factor" 
(section 5). 

go is the average height of the cavity. 
g is the local height (measured perpendicular to the bedrock 

surface) of the separation-gap orifice. It is a function of position 
across the orifice, from the point of ice-bedrock separation to the 
point of recontact. 

No is the number of independent orifices in a transverse 
section across the glacier. The average lateral spacing between 
independent orifices is W/No, where W is the glacier width. By 
independent orifices I mean orifices that are not in succession 
along water flow paths, so that their water fluxes add to make the 
total water flux carried by the system. 

An actual linked cavity system is an ensemble of cavities and 
orifices of different shapes and sizes, resulting from cavitation by 
basal sliding over the diverse and sundry roughness features of the 
bed, under a spatial distribution of basal shear stress, water 
pressure, and ice overburden pressure. The complexity of the 
actual system is suppressed in the model developed here by 
replacing the spectrum of cavity and orifice dimensions with a 
single set of "typical" dimensions as indicated above and by 
considering how these dimensions are controlled by a single set of 
values of basal shear stress '•, water pressure Pw, and ice 
overburden pressure PI, when basal sliding takes place over 
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roughness features of a single type, with prescribed dimensions. equivalent to the statement that all drop in hydraulic head is taken 
This idealization, which is as great a simplification of the system across the orifices; hence the head gradient in the orifices is the 
as can be made without losing what I regard as its essential average gradient multiplied by LdLo = A (section 4). The orifice 
physical characteristics, is chosen here as the first approximation gaps are assumed to be thin compared to their breadth (g << l), as 
to the behavior of the complicated natural system. It is made in seems appropriate for narrow ice-bedrock separation gaps that are 
the same spirit as the analysis of basal sliding over a bed with a only marginally open. For simplicity, the typical orifice is taken 
single type of roughness feature [e.g., Weertman, 1957]). to have a cross-sectional shape that is constant along its length Lo. 

Because the flow of water through the linked cavity system is The flow of water through the orifice is then determined locally 
controlled by the orifices, as discussed in section 3, and because by the local gap height g(x), which depends on a spatial coordi- 
the orifices are the ice-bed separation gaps that are most sensitive nate x across the breadth l of the orifice. Since the flow is 
to the conditions controlling separation, the hydraulic behavior of turbulent (as will be shown), it can be obtained from the Manning 
the system is much more sensitive to the detailed geometry of the formula [RSthlisberger, 1972, equation (9)] by putting the 
orifices than it is to the cavities. The cavities doubtless vary hydraulic radius equal to g(x)/2: 
somewhat as physical conditions change, but the variation of the 

orifices has a much larger effect on the behavior of the system. (_•)z (__•) • Consequently, in analyzing the linked cavity model I will simply u-w (x)- M -1 • • (1) 
assign reasonable values to lG, L•, and g• and will concentrate the 
effort on how the orifice dimensions l and g are determined by the Here •w is the mean water flow velocity (averaged across the gap 
sliding process and by water pressure and flow. This is another height g), M is the Manning roughness, and etA/co is the local 
simplification that can reasonably be made in a first treatment of hydraulic gradient in the orifice as discussed above. The total 
the system. 

There are three distinct physical processes that, acting 
together, determine the hydraulic behavior of the linked cavity 
model: (1) for given roughness characteristics of the bed, given 
Pw and Pi and given sliding velocity v, there is a particular orifice 
geometry determined by the cavitation process in basal sliding; 
(2) for given orifice and cavity geometry and given hydraulic 
gradient, there will be a certain flow of water through the linked 
cavity system; and (3) the water flow will result in generation of 
heat by viscous dissipation, which will cause enlargement of the 

flux of water Qw carried by the linked cavity system is obtained 
by multiplying (1) by the local gap width g(x), integrating over 
the breadth l of the orifice, and summing the contributions from 
the No independent orifices (section 4): 

Qw 22/3 M (• 
5 

[g(x)] 5 d• (2) 

The local rate of heat generation by viscous heating is the 
orifices by melting of the ice roof, resulting in a modification of local water flux •wg times the potential gradient pwgrctA/co 
the results of process 1 and a consequent increase in the flow (where gr is gravity and Pw is the density of water). Expressed in 
given by process 2. Since the effect of heat dissipation is crucial 
in the functioning of a tunnel system and since for a given total 
water flux down a given hydraulic gradient the dissipation of heat 
will be the same in a tunnel system and a linked cavity system, it 
is essential to take it into account in the linked cavity model. 

Although there is a considerable parallelism between the 
treatment of the linked cavity model here and the treatment of the 
tunnel model by R6thlisberger [1972], the two models differ 

terms of an equivalent volume rate of melting of ice by dividing 
by piH, where H is the latent heat of melting and Pi is the ice 
density, the local heat generation rate, per unit area of the orifice 
roof, is thus 

(etA/co) 3/2 5/3 
th - 22/3 DM g (3) 

substantially because the water flow and ice flow geometries are where D = piH/pwg• is a constant with dimensions of length (D = 
very different and because the tunnel model lacks a component 31 km). 
process of type 1 above. The linked cavity conduits have an The rate of melting caused by the heat generation in (3) is 
essential feature of the "N channels" introduced by Nye [1973] governed by heat transfer from the water to the ice roofs of the 
and considered by Weertman [1972, p. 306], namely, that they are orifices and cavities. A fully detailed treatment based on the 
tied to specific topographic features of the bed. They differ in this principles of heat transfer, analogous to that carried out for tunnel 
respect fundamentally from tunnels ("R channels" of Weertman systems by Spring and Hutter [1981, 1982], is rather complicated 
[1972]), which, in the model concept of R•thlisberger [1972], are and will here be avoided by the simple assumption that the heat 
not tied to any topographic features of the bed. The "N channels" generated is transferred locally to the ice roof, as was assumed in 
were specifically assumed to follow bedrock channels incised by the original treatments of tunnel systems [R•thlisberger, 1972; 
erosion into the bed, whereas the linked cavity conduits consid- Nye, 1976]. This assumption guarantees that the effects of heat 
ered here are tied to bedrock roughness features of diverse kinds. generation on the linked cavity model will not be underestimated, 

because a heat transfer distributed over the cavity roofs as well as 
5. WATER FLOW AND VISCOUS HEATING the orifices would reduce the melting in the orifices and thus 

reduce its effect on the hydraulic behavior of the linked cavity 
Given the geometry of the linked cavity model as specified in system. Under this assumption and neglecting the effect of the 

section 4, the flow of water through the system can be calculated pressure dependence of the melting point [R6thlisberger, 1972, 
as follows. Call etw the overall longitudinal hydraulic gradient p. 179], which averages to zero if etw = et, equation (3) gives the 
(slope of the hydraulic grade line) along the length of the glacier. meltback rate of the orifice roof. 
In the evaluation here, etw is taken to be equal to et, the surface 
slope of the glacier, but this is not a necessary assumption. If the 6. BASAL CAVITATION 
linked cavity system has an average tortuosity co, the average 
hydraulic gradient along the water flow paths is then ct/co. The The sizes and shapes of basal cavities and separation gap 
model condition that the orifices control or throttle the flow is orifices of the linked cavity model (Figure 2) are determined by 
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Fig. 4. Idealized geometry (schematic) of ice-bed separation gaps formed 

separation characteristics and need to be distinguished in the 
linked cavity model. The first (Figure 4a) is a downglacier-facing 
step in the bedrock surface. The separation gap associated with it 
will be called a step cavity or step orifice. Natural examples are 
shown by Hallet and Anderson [1980, Figure 3] and by Karnb and 
La Chapelle [ 1964, Figure 7]. The second type of bedrock feature 
is a wave, idealized as a sinusoid, with crest running transverse to 
ice flow. The separation gap that forms on the lee slope of such a 
wave form (Figure 4b) will be called a wave cavity or wave 
orifice. A natural example is given by Karnb and La Chapelle 
[1964, Figure 2]. The main distinctions between step cavities and 
wave cavities (or the corresponding orifices) are the following: 
(1) in a step cavity the ice separates from the bed at a sharp break 
in slope of the bedrock surface, whereas a wave cavity has no 
such predetermined point of ice separation, and (2) a wave cavity 
is inhibited from extending into the stoss slope downstream, 
whereas no such inhibition is presented to a step cavity. Because 
of the stress concentration at a sharp slope break, a step cavity 
will remain open at lower basal water pressure and lower sliding 
velocity than a wave cavity. Actual wavelike topographic 
features of glacier beds (roches moutonn•es, more or less) often 
have a faceted lee slope that is a hybrid of the characteristics of a 
step and the rounded lee slope of a wave (Figure 4c); it will 
generate a leeside cavity that is rather like a step cavity at small 
amounts of separation and becomes like a wave cavity at large 
amounts of separation. Natural examples are shown by Carol 

by cavitation in basal sliding, seen in vertical cross section parallel to the [1947], Vivian and Bocquet [1973, Figures 2-4], and Vivian 
sliding direction (arrows). Ice is stippled, bedrock cross-hatched; [1980, Figure 4]. One can also picture a rounded step (Figure 4d) 
separation gaps are blank. The dashed lines show the configuration of the that is a different type of hybrid; the cavity that forms behind such 
cavity roofs at increased sliding velocity and/or basal water pressure. 
(a) A step cavity (or step orifice) formed in the lee of a downglacier- a rounded step will have the character of a wave cavity at small 
facing bedrock step. (b) A wave cavity on the lee slope of a bedrock amounts of separation but will assume more and more the 
wave. (c) Cavitation develops in the lee of a faceted wave such as is often character of a step cavity as the amount of separation becomes 
seen on glaciated bedrock surfaces; it has characteristics that are a hybrid large. For maximum clarity and distinctiveness, in the linked 
of Figures 4a and 4b. (d) A different type of hybrid cavity, developed in cavity model I will focus on the behavior of the pure or extreme 
the lee of a rounded bedrock step. (e) Cavitation in a transverse "N 
channel" of the kind visualized by Weertman [1972]. The scale of these types, the step cavity and the wave cavity. The transverse type of 
features is arbitrary, but for the separation gap orifices in the linked cavity "N channel" considered qualitatively by Weertman [1972, 
system associated with surging as considered here the step or wave Figure 10] and shown in Figure 4e is in fact very similar to a 
heights are ~0.1 m. wave cavity. 

The idealized step of the model (Figure 5) is a rectangular 
the mechanics of ice-bedrock separation. Before the effects of step of height h, running transverse to the sliding direction. The 
heat dissipation by water flow through the linked cavity system resulting ice flow and separation problem is two-dimensional. A 
are brought into consideration, separation can be treated as a 
purely mechanical consequence of the sliding of ice over bedrock 
topography under the action of basal water pressure [Lliboutry, 
1968; Kamb, 1970, section 19; Fowler, 1986]. If at any point on 
the ice-bedrock interface the normal pressure across the interface 
drops below the basal water pressure, then an ice-bed separation 
cavity will start to open at this point, provided that water under 
the given pressure can actually gain access to the cavity. The 
extent and shape of the cavity that develops is in principle 
determined by the solution of a mixed-boundary-value problem in 
ice flow mechanics, the boundary condition being a constraint on 
the stress over the separated parts of the ice sole and a constraint 
on the ice flow velocity over the nonseparated parts. The problem 
is tricky because the areas of basal separation, which are the areas 
where the stress boundary condition is to be applied, are not 
prescribed in advance but must be determined as part of the 
solution. From the solution one obtains the breadth dimension l 

for the orifices of the model, and the distribution of gap height 
g(x) over the breadth of the orifices. The dimensions lc and gc for 
the cavities are determined physically in the same way, but the 
model is not concerned in detail with them, as explained in 
section 4. 

Two types of bedrock topographic features, illustrated in 
idealized form in Figures 4a and 4b, have very different basal 

coordinate system x,z is chosen with origin directly below the lip 
of the step, with x running downstream parallel to the bed and z 
perpendicular to the bed and upward (Figure 5a). The height of 
the separation gap is g(x). The sliding-with-separation problem 
can be solved in closed form under the assumptions that the ice 
rheology is linear and that the slope of the sole, g'(x), is small so 
that the sliding ice constitutes a half-space, to an adequate 
approximation. (These are the same assumptions for which an 
exact solution of the basal sliding problem without separation is 
obtainable [Nye, 1969; Kamb, 1970, section 6].) Derivation of the 
solution is too lengthy to include here and will be given in a 
separate paper. The results needed for the linked cavity model are 
as follows. The gap height is 

1 1 1 2x - I 2(2x - l)•fx(l - x)) (4) g (x) = h • - • sin- l •i 2 

where 0 < x < l. The gap shape given by (4) is shown by the 
curve for _• = 0 in Figure 8. The gap length (orifice breadth) is 

l = 4• rlv (h + m) (5) 
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Fig. 5. Detailed geometry of ideal step cavity or step orifice (a) without 
and (b) with ice roof melting by heating of basal water through viscous 
dissipation. The cavity is shown in vertical cross section parallel to the 
basal sliding direction. Ice is stippled, bedrock cross-hatched, cavity 
blank. The step is of height h. An x,z coordinate system is taken with 
origin at the base of the step as shown. The gap height g(x) is a function 
of longitudinal coordinate x. The cavity is filled with water at pressure 

oR. These two quantities are in principle related by the ice flow 
law and the geometry of ice deformation in the sliding-with- 
cavitation problem; n = 3 will be assumed. The reasonableness of 
assumption (7) is shown by the fact that the formula giving the 
closure rate of a circular tunnel for linear rheology is converted by 
(7) to the exact result for nonlinear rheology [Nye, 1953] except 
for a numerical factor, which can be absorbed into TIR or oR. 

The shape of wave orifices will be considered in terms of 
separation in sliding over a "quasisinusoidal" bed with wave 
crests perpendicular to the sliding direction. It is based on a sine 
wave of wavelength )• and half amplitude a. The separation 
geometry is shown in Figure 6a. The length of the separation gap 
is l, and the gap height is g(x), the origin for x being at the head of 
the gap (point of ice-bedrock separation), the position of which is 
not prescribed in advance. The two-dimensional sliding-with- 
separation problem for linear rheology can be solved in closed 
form if a << •, as is appropriate for wave orifices which are narrow 
separation gaps. The normal stress across the ice-bedrock contact 
before onset of separation is assumed to vary as (x - Xo) 2, the 
amplitude of the variation being matched to that for the sinusoidal 
bedrock wave form in the vicinity of its inflection point, located 
at Xo. The actual bedrock wave form that gives this parabolic 
normal stress variation in the x interval over which separation 
later occurs is here called a "quasisinusoidal" waveform. For a 

Pw, and the ice overburden pressure is PI. In sliding in the x direction at strictly sinusoidal waveform a restriction l << X on the validity of 
velocity v, the ice separates from the bedrock at the lip of the step, x - 0, the sliding-with-cavitation solution would apply, but for a 
and recontacts the bed at x = l. Here w(x) is the z component of ice quasisinusoidal waveform as just defined, it does not. The motion at the cavity roof. In Figure 5b the roof is melted back a total z 
distance m as the ice traverses the length of the cavity. The path that an method of solution is fundamentally the same as for step cavities 
ice particle leaving the step lip would follow, moving with the ice mass, if but is more involved because of the complication caused by the 
it were not removed by melting is shown in Figure 5b as a dashed line initially unknown location of the separation point. The lengthy 
labeled "virtual particle trajectory"; it hits the "virtual bed," lowered by derivation will be given in a separate paper, where its relation to 
the distance m, at x = l. 

where rl is the ice viscosity, v is the ice sliding velocity, o = Pi- 
Pw is the excess of ice overburden pressure Pi over basal water 
pressure Pw (i.e., the effective confining pressure), and m = 0 if 
there is no melting of the gap roof. The rate at which ice How 
tends to close the gap is given in terms of the z component of flow 
velocity of the ice of the gap roof at each point and is 

w(x) = vg'(x) = -:r• •lx(• -- x) (6) 

This closure rate is balanced by the effect of sliding in tending to 
open the gap, so that the gap is in a steady state. 

According to (5), the gap length l tends to 0 as o --> o% but l 
remains nonzero for any finite confining pressure o, however 
large. Thus in the model, step orifices remain open to some 
extent even at very large Pi or very low Pw. Under these extreme 
conditions, when l s h, the approximation g'(x)<<1 breaks down, 
so that the relationships in (1)-(6) are not strictly valid, but it is 
assumed that they describe the model system to an adequate 
approximation up to the largest values of o that occur in practice. 

Because actual ice rheology is nonlinear, (4)-(6) are only an 
approximation even when g'(x) is small. To deal with this, we use 
the simplest possible approach, which is to_make TI shear-stress- 
dependent in (5) and (6). Since all stresses would be hydrostatic 
if o = 0, it is logical to take o as the measure of shear stress level 
in the sliding-with-separation problem and hence in conformity 
with the standard nonlinear flow law to take 

n =q• (7) 

(0) WITHOUT ROOF MELTING 

separation sliding velocity 
point 

'" ":':'"""'":":'::"!'•(:':i :.'::•ii:•:!3'?.!:5'...':.::':....i,.: :.. ...... 
2 a "'" '""-':'.:!"[":'!: ?.:.:: C.:.:..'.:. .... . .......... '.': i('.. 

II • X/2 -q po,nt 

(b) WITH ROOF MELTING 

::-'.: :::: i':.:5:..::.:• v.•.:. .. t 

':'?:•": :"":'?:.::W "?. :..':.-..'..:...-, ...... :.........................,•..•..1•!• • :.:. . .. . .... . . . . .:.••( i(•.•.•::•:•:•.•.•..F•:..!.....3::•:•.•i•i;•:3...•:!i3•:•.:.:..:• 
! 
.z '""'2'••--_ g(x) melt b•ck '•/,'• x • virtuo• porticle trojectory----.-",*--•"*•-...__•j,•'•' 

Fig. 6. Detailed geometry of ideal wave cavity or wave orifice (a) 
without and (b) with ice roof melting. Conventions and symbols are as in 
Figure 5. The bedrock wave has wavelength ), and half amplitude a. The 
origin of the x,z coordinate system is taken directly below the ice-bedrock 
separation point; the x axis parallels the mean bed slope of the wave. 
Positions of the separation point and recantact point are determined in the 
sliding-with-separation solution. Both points move to different positions 

where TIR is the effective viscosity at a reference shear stress level when there is roof melting (Figure 6b). 
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the different solutions by Lliboutry [1968] and Fowler [1986] for 
the same problem will be pointed out. The results needed here are 
as follows. The gap length is 

7. EFFECT OF HEAT DISSIPATION ON CAVITATION 

AND WATER FLUX 

where, as before, o = Pi- Pw and where 

12 = 8re 2 •lav/)• 2 

12 is called the wave cavitation parameterß 

When there is meltback of the cavity roof, amounting to a 
total meltback distance m as the ice of the roof traverses the 

(8) cavity from point of separation to point of recontact, it can be, 
taken into account in the solution of the sliding-with-separation 
problem discussed in section 6 by the simple artifice of requiring 
the ice to recontact the bed at a point lower by a distance rn than if 
there were no meltback. This is indicated in Figures 5b and 6b, 

(9) where the cavity roof with meltback is drawn with a solid line, 
while the dashed line shows the imaginary ("virtual") trajectory 

It is the limiting that an ice particle leaving the separation point would follow, 
effective confining pressure for cavitation: for o > 12 there is no moving with the ice mass, if the sole were not melted back and if 
separation. Thus, in contradistinction to step cavities, wave the bed downstream from the separation point were lowered a 
cavities form only for a sufficiently high water pressure Pw, such 
that.Pw > Pi- 12. The gap height is given by 

g(x) - 2rc-•4 a x 5/2 (l - x) 3/2 (10) 3 7 r 

for 0 < x < l. The separation point lies a distance (3/8)/upstream 
from the inflection point on the lee slope of the sine wave. The 
shape of the separation gap is shown by the curve for E' = 0 in 
Figure 10. 

Nonlinear rheology can be introduced in the way done by 
Kamb [1970, p. 693]. The strain rate dependence of •1 is written 

ß -1+ 1 
•1 =N• '• (11) 

moving with the ice mass, if the sole were not melted back and if 
the bed downstream from the separation point were lowered a 
distance m. For the step cavity, the height of the "virtual" step in 
this case is h + m, which explains the appearance of this quantity 
in (5), giving the gap length l for meltback m. 

To obtain the steady state gap profile g(x) for a step cavity 
with meltback, the meltback rate (3) is put in opposition to the 
gap closure rate (6) to give the progressive widening or narrowing 
of the gap as seen moving with the ice: 

vg'(x) = rh(x) + w(x) (14) 

When (3) and (6) are introduced into (14), after first eliminating o 
from (6) with the use of (5), and when the variables are non- 
dimensionalized by defining 

where N and n are constants and where • is the second strain rate 

invariantß We will take n = 3 and N = 0.94 bar yr 1/3. For sliding 
ß 

over a single sine wave of wavelength X, the value of • at a 
height Z/2rc above the sliding interface, which is assumed to 
govern the effective viscosity as discussed by Kamb [1970, 
p. 694], is 

• = 4re 2 e -1 av )•-2 

as can be obtained from equations (47) and (49) of Kamb [1970] 
with the assumption )• << )•o (the transition wavelength) so that 
regelation is negligible. Hence from (11), with n = 3, 

e),2 ) 32 - (12) , 

•1 = N 4 •2 av 

Introducing this into (9), we obtain 

I;- 2N ( 4rc2 e2 av.) 3I-- (13) •,2 

showing that the wave cavitation parameter increases with the 
sliding velocity as v m. The fact that the quantity o does not enter 
into what determines •1 in (12) indicates that the treatment is an 
approximation in which the effect of the additional stresses 
associated with the cavitation is neglectedß This can be done as a 
reasonable approximation here because o < 12, whereas for the 
step cavity, in (7), •1 must depend on o, as in tunnel closure, there 
being no ambient stress level analogous to 12. 

y=g/h • = x/l g = m/h (15) 

one obtains the dimensionless differential equation 

dy T5/3 8 •-• = 2ax/(1 + g) - •(1 + g) •/•(1 - •) (16) 

where 

' * 21/3 (ctA/cø)3/2 • h g (17) E = tc•-V2- DM 

The dimensionless quantity E will be called the orifice melting- 
stability parameter, for reasons that appear later (section 8). It 
provides a measure of the importance of roof melting by viscous 
dissipation in the linked cavity system. 

The gap profile y(•) is obtained by integrating (16), starting at 
•0) = +1. For a given value of E, there will be a value of g such 
that when (16) is integrated from • = 0 to 1, one obtains T(1) = 0. 
This is the condition for the ice to recontact the bed at • = 1, as 
required; hence it gives the nondimensionalized meltback g that 
corresponds to the given value of E. The steady state gap profile 
•(•) corresponding to E is given by the integral of (16) for the 
value of g so determined. The results of numerical integration of 
(16) for a succession of values of E from 0 to 1.1 are shown in 
Figures 7 and 8. Figure 7 gives the meltback quantity g as a 
function of -Z, and Figure 8 gives the nondimensionalized gap 
profiles •(•) for several values of E. The amount of meltback m 
is directly seen from the curve of g = m/h in Figure 7. For E ~ 1, 
m becomes rather large, considerably larger than the step height h. 
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Fig. 7. Step orifice model: dependence of dimensionless parameters on 
the melting-stability parameter E, whose definition is given in (!7). Here 
• is the meltback parameter m/h, determined from (16) as described in the 
text, l / lo is the orifice gap elongation relative to the gap length lo for no 
roof melting (E = 0), and • is the flux factor defined in (19) and 
calculated from the results of integrating (16), given in Figure 8. Note 
that there is a scale change for the I.t(E) curve at • -- 4 and for the •(E) 
curve at (I) -- 2.5. 

is obtained from (13) in the same basic way, as suggested by 
Figure 6b, with the appropriate w(x), related to (10). The form of 
w(x) is complicated by the fact that the positions of both the 
separation point and the recontact point are affected by the 
meltback. I will pass over the somewhat involved details and 
simply give the results. If the nondimensionalization is done by 
• = x/l and T = g/go, where 

and if we define a "meltback parameter" 

and the dimensionless quantity 

B • 
(5 - 2v + v 2) 

(22) 

then the differential equation for the gap profile can be written 

dT q/3 _ B 2 •3/2 = - + - 5) (23) 

The melting-stability parameter E' that arises in (23) is 

•,, _ 27 
,., - 32/3 57/3 

(ctAto))3/2 « a •- 1 - 
DM 

(24) 

9.31 

Figure 8 shows how the shape of the gap profile responds to the meltback. The roof is raised, and the peak of the roof is shifted 

\ \ 

• t0 

Once the gap profile is deterned, the water flux ca•ied by 
•e system can be found from (3). •e result can be expressed as 

05 follows: 

24/3 Nø • • h 6 . (18) 

where 0 02 0.4 0.• 0.8 

downstream as melting increases. The biggest effect, however, is 
the lengthening of the gap, which is not shown in Figure 8 
because of the scaling of •. It can be seen in terms of the ratio 
l/lo, given in Figure 7; lo is the gap length for no meltback 
(E = 0, Ix = 0), given by (5) for m = 0; thus l / lo = •/1 + Ix. The 
lengtheni.ng of the gap when E -- 1 is by a factor of about 3. 

0=•/1 +g ;T5/3d• 
o 

(19) 

The "flux factor" •, obtained by numerical integration of the 
results in Figure 8, is given as a function of E in Figure 7. 

The steady state gap profile for a wave orifice with meltback 

Fig. 8. Steady state configuration of the step orifice roof for values of the 
melting-stability parameter E from 0 to 1.0. For each value of E, the gap 
height g(x) is shown in terms of g/h as a function of dimensionless 
longitudinal coordinate x/l, where l is the gap length. (The l varies with E 
as indicated by the l/lo curve in Figure 7.) The curves are obtained by 
integration of (16) with the appropriate • values as explained in the text. 
At E -- 1, integration of (16) for the two indicated values of • gives two 
widely diverging curves g(x) as shown by the dashed curves with arrows. 
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of which (8) is the special case for v = 0 (no meltback). Thus 

2 

m 7 = (5 - 2v + v2) 2 1 - (27) 

The meltback ratio m/a depends on E' via v and in addition on 
o/•; via the last factor in (27). Figure 9 gives a curve of the 
quantity (m/a)(1 -(•/E) -2 2 -2, which depends on o only via the 
dependence of E' on o and is equal to m/a for o/•; = 1/2. The 
large indicated amount of meltback for E '~ 1 is striking, as it is 
also for step orifices. 

Figure 10 shows wave-orifice gap profiles •) for a 
succession of E' values. The gap height, plotted as the dimen- 
sionless ratio g/go in Figure 10, is scaled by the dimension go 

0.8 0.8 

0.6 0.6 

- 1/ 

0.4 - 0.4 

0.2 - 0.2 

0 •/ • • • • • • - 0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

•,•/ 

given in (20), which is the midpoint height that the gap would 
have if there were no melting (value of g in (10) at x = l/2). The 
gap height in Figure 10 is of course greatly exaggerated in 
relation to the gap length because of the way the plot is made. 
The gap length is obtained from l/lo = •/•, based on (26). As 
the curve of l/lo versus E' in Figure 9 indicates, the gap length 
changes little with increasing meltback, contrary to the large 
effect for step orifices shown by the l / lo curve in Figure 7. 

A surprising feature of the gap profiles is the effect of 
meltback in causing a sagging of the roof in the upstream part of 
the slope cavity, seen by comparing the E'= 0 and E'= 1 curves 
in Figure 10, for x/l < 0.5. The sagging appears to be linked to 
the fact that the point of separation shifts downstream as meltback 
increases. The shift, which is not depicted in Figure 10 because 
the origin is at the separation point, is indicated by the following 
relation between meltback parameter v and the distance Xo from 
the separation point to the inflection point: 

3-V 
(28) 

in which, notably, the effective viscosity rl does not appear. 
The integration of (23) is done in the same basic way as (16): 

for a given w' _, a value of the parameter v is sought such that when 

(23) is integrated from • = 0 to 1, starting at •0) = 0, one arrives 02 0.4 0.s 0.8 t0 
at •1) = 0. Results of this procedure are given in Figures 9 
and 10. 

Figure 9 shows [he meltback parameter v as a function of E'. Fig. 10. Steady state configuration of the wave orifice gap for values of 
the melting-stability parameter E' from 0 to 1.4. For each value of E', the The actual meltback amount m is obtained by solving (21) for m 

and introducing v from Figure 9 and the cavity length l from gap height g(x) is shown in terms of the ratio g/go, where go is the height 
midway along the length of the gap (x -- l/2) in the absence of roof melting 

( •) (E' = 0), given by (20). The longitudinal coordinate x is scaled by the gap l_4.(•ff_)« 1- « (26) lengthl, given by (26). The curves are obtained by integration of (23) J[ - • with the appropriate values of v as explained in the text. 

Xo- 8 

2w c• L½ 

] I ' I ' '1 ' I ' 

.1.4--X•4 
ß , 

1.o .2 ,• _ 

05 775 / 
211/2 (otA/fo)3/2•.a2/3( •_)11 w'= 1 - T 

- 32/3 57/3 • DM v 

As given in (24), it has a form similar to E in (17), differing 
mainly in the way (5 and Z enter. However, Z/rl in (24) can be 
eliminated by substitution from (9), and the parameter E' then 
assumes a less similar form: 

Fig. 9. Wave orifice model: dependence of dimensionless parameters on 
the melting-stability parameter E', defined in (24) or (25). Here v is the The water discharge Qw carried by the linked cavity model 
meltback parameter defined in terms of m/a in (21) and calculated from 
(23) as explained in the text, and l/lo is the relative orifice gap 
elongation, from l/lo -- B 1/2, where B is defined in (22). The quantity 
(m/a)/4(1 - (5/E)2 gives a measure of the roof meltback from (27). •F is the 
flux factor defined in (30) and calculated from the results of integrating 
(23), given in Figure 10. 
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with wave cavity type orifices, from (2), (20), and (26), can be 
written 

5 23 

Qw = 755/3 rc M 
where 

(30) 

instant of the pressure perturbation, the orifice gap immediately 
begins to lengthen at a rate [(0)= v(1-O/Oo), and (2) the 
maximum rate of gap lengthening at any time is v, that is, • < v. 
Because we are concerned with the possibility of an unstable 
orifice enlargement consequent upon increase in water pressure 
and because maximum stabilization of the orifice against 
enlargement is provided by maximum closure rate and therefore 
maximum length l, as indicated by (6), conclusion 2 makes the 
following simple procedure valid as a test for the existence of an 
instability. We make the approximation that • is constant, • = fv, 
so that 

is a "flux factor" analogous to (I) in (19). A curve of •P versus E', 
obtained from the results in Figure 10, is given in Figure 9. 

8. ORIFICE STABILITY 

In the integrations leading to the curves in Figure 8, it is 
found that as E increases to near 1, the curves become very 
sensitive to the value of g. This is illustrated by the two dashed 
curves (with arrows) for E = 1 in Figure 8, obtained by integrating 
with g = 9.31 and g = 9.32, respectively. Under these circum- 
stances it becomes difficult to find the value g that permits the 
condition T(1)= 0 to be satisfied, and for this reason the E = 1 
curve in Figure 8 is shown dashed beyond where the calculated 
curves diverge. A similar thing happens in the integrations 
leading to the curves in Figure 10 when E' increases to about 1.5. 
Thus, for E'= 1.5 the curve T(•) calculated by integrating with 
v = 0.679 diverges to T> 5.4 for • > 0.8, while the curve with 
v = 0.680 drops to T = -0.25 at • = 1.0. This behavior appears to 
be the manifestation of an orifice instability that commences at 
critical parameter values E ~ 1 or E' ~ 1.5. 

To shed light on this instability, it is helpful to analyze the 
transient behavior of a step orifice subjected to a perturbation in 
water pressure. We start with a step orifice in steady state, under 
effective confining pressure Oo, with meltback parameters Eo and 
go and initial gap length lo. The effective confining pressure is 
then abruptly decreased to o < Oo, so that the orifice begins to 

¾(•) = 1 +f• (32) 

For any particular value of Eo, we try to choose the proportional- 
ity constant f such that when (31) is integrated forward from 
• = 0, T(0) = 1, the reference point hits the bed (that is, T(•) goes 
to zero) at a "touchdown" point •, compatible with the i value 
chosen, which requires T(•T) = •T, or, from (32), 

f= 1- •T -1 (33) 

If a value f < 1 can be found such that these conditions are met, 
then a stable transient response of the orifice is possible. If, on 
the other hand, with the choice f= 1 in (32) the integration of (31) 
leads to T(•) increasing without bound, then it is impossible for 
the orifice to have a stable transient response because f = 1 gives 
the maximum possible closure rate for the orifice at all stages 
(conclusion 2 above). 

Results of the above procedure are shown in Figure 11 in 
terms of trajectories T(•) of reference points for an assortment of 
perturbations at several values of Eo. The magnitude of the 
perturbation for each curve is measured by the value of 1- O/Oo 
and is indicated by the O/Oo values in Figure 11; the f value used 
in calculating each curve is also given. Figure 11 shows that for 
perturbations as large as 1- O/Oo = 0.2, the transient response of 
the orifice can be stable for Eo as large as 0.7, but for Eo = 0.8, the 

enlarge. We follow the transient response in terms of what perturbation 1- O/Oo = 0.2 leads to an unstable response, the 
happens to a reference point that starts at the lip of the step at the orifice enlarging without bound. For Eo = 0.9, a perturbation of 
moment the perturbation is applied. The gap length l will now be only 10% (O/Oo = 0.9) is sufficient to cause an unstable response. 
a function of time or, equivalently, a function of the position These results indicate that step orifices have a runaway instability 
• = x / lo of the reference point as it moves forward with the ice. for Eo -> 1. This stability limit is probably somewhat over- 
From the way equation (16) was constructed, one can see that estimated because near the limit, as f--> 1, (32) overestimates ¾, 
with two modifications it can be used to determine the gap height at least near • = 0, where the assumed motion • --> is larger than 
T(•) = g(•)/h that develops at the position • of the reference point allowed by conclusion 1 stated in the previous paragraph. 
as it moves along: It seems very likely that the same type of instability arises for 

d• - 2Eo q 1 + •o - • •oo (31) 

The ratio O/Oo appears in the right-hand term of (31) because the 
gap closure rates are proportional to o, as (6) indicates. The 

wave orifices for E' >• 1.5, as suggested by the parallelism in the 
behavior of the integration for determining the steady state 
profiles of wave orifices and step orifices, discussed earlier. 

The cause of the instability can be linked to the increase in 
melting rate that occurs when the gap height increases. The 
instability is demonstrated in Figure 11 under perturbations of o, 

appearance of ¾(•)= l/lo in the same term derives from the l in but there is little doubt that it would appear equally under 
(6), which now varies with • as just explained. To find out how ? perturbations in T(•) itself. A closely related type of instability is 
at the reference point varies with position • as it moves along, we a feature of ice tunnels, as discussed in section 11. 
want to integrate (31), starting at T(0) = 1, ¾(0)= 1. To do this, 
we need to know the function T(•), describing the motion of the 
recontact point with time t (or equivalent • -- vt/lo). 

The rigorous determination of T(•) is a complicated problem, 
beyond the scope of this paper. A detailed treatment, to be given 
elsewhere, yields two conclusions of importance here: (1) at the 

The foregoing calculation, in combination with conclusion 1 
stated above, indicates that the response of the step orifice system 
to pressure perturbations is definitely stable if E and the pressure 
perturbation are small enough. If the gap lengthening rate i = fv 
used in the calculation of a given transient response curve in 
Figure 11 (as formulated in (32)) is less than the initial lengthen- 
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Figure 12 in terms of water level depth in an ice mass 400 m 
thick. Separate curves are given for a linked cavity system with 
step orifices and for one with wave orifices. 

The Qw versus o curve for the step orifice linked cavity 
model in Figure 12 is calculated from (18) with the following 
parameter values and with nonlinear ice rheology taken into 
account by (7): 

D = 31 km piH/Pwgr 
ct = 0.1 longitudinal hydraulic gradient 
A = 10 head gradient concentration factor (LG / Lo) 
(o = 4 conduit system tortuosity 
No = 50 orifice number 

M = 0.1 m-ms Manning roughness 
fir- 0.1 bar yr reference ice viscosity 
oR = 6 bars reference effective pressure 
h = 5 cm step height 

Fig. 11. Transient trajectories of a "reference point" that follows the step 
orifice roof upon perturbation of the system from the steady state by a 
sudden increase in basal water pressure for various initial and perturbed 
conditions. The curves are calculated from (31)-(33) as explained in the expect in a linked cavity system at the bed of Variegated Glacier 
text; the parameters used in calculating each curve are given alongside. in surge, with surface slope ct--0.1. No = 50 means one orifice 
Here (50 is the initial effective confining pressure PI - Pw prior to the every 20 m, on average, across the 1-km width of the glacier. 
perturbation, (5 the perturbed value ((5 < (50); Eo is the initial value, prior to A = 10 means that most of the length of the water flow paths is in 
perturbation, of the melting-stability parameter E in (17); and f is the 
constant in (32) and (33), which is required to be < 1 (see text). The 
coordinate x is the longitudinal position of the reference point, which 
starts at the step lip (x -- 0, where g -- h) at the moment of perturbation and 50 
increases with time at the sliding speed v; it is scaled by lo, the initial E 
steady state cavity length. For stable trajectories, in which the reference o 
point ultimately makes contact with the bed (g = 0), the dimensionless •r 
coordinate x/lo of the recontact point is •T in (33). Trajectories that • 
diverge upward with f = 1 represent unstable responses to the imposed • 
pressure perturbation. -'= '- lOO 

o 

ing rate i(0) = v(1 - o/(50) required by conclusion 1, then it is • 
quite likely that in the response of the actual physical system T(•) ,,, 
will always be larger than the T(•) used in the calculation, which • 

The system parameters A, (o, No, and h are chosen arbitrarily 
but with the intent that they be representative of what one might 

Fig. 12. 
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Results of the linked cavity model and comparison with the 
transfer of some of the heat of viscous dissipation to the roofs of tunnel model for parameter values given in section 9. The effective 
the large cavities, with release of the assumption of local heat confining pressure (5 = PI - Pw (ice overburden pressure minus basal 
transfer (section 5). water pressure) is plotted against discharge Qw carried by the basal water 

conduit system for two types of linked cavity model (with step orifices 
and wave orifices) and for the tunnel model. On the left, Pw is 

9. QUANTITATIVE EVALUATION OF MODEL 
represented in terms of borehole water level in ice 400 m thick, for ready 

The hydraulic performance of the linked cavity model is comparison with data from Variegated Glacier in and out of surge. The 
shown in Figure 12 in terms of curves of water discharge Qw step orifice curve is from (38b), the wave orifice curve from (42b), and 

the tunnel curve from (43). The melting-stability parameter for the step 
versus basal water pressure Pw or effective confining pressure orifice curve is E = 0.18, from (37), and for the wave orifice curve, 
C• = PI - Pw. For ready comparison with the borehole water level E' < 0.20, from (4lb). Dimensional features associated with these curves 
observations from Variegated Glacier, Pw is represented in are discussed in section 9. 

150- 
_ 

_ 
_ 

200 

_ 

is based on the assumption of constant •. The larger ¾ corre- 
sponds to a faster roof collapse rate (from (6)) and therefore a 
stronger assurance that the gap does not go into runaway 
enlargement. Thus a stable response is definitely indicated if 
f < 1 - c•/Oo. This condition is satisfied by the curves for Eo = 0.1 
and 0.3 in Figure 11. Clearly a stable response will also be 
obtained for any perturbation smaller than the one (1 - o/C•o = 0.5) 
used in calculating these curves. The curve for Eo = 0.7 appears 
also to indicate a stable response, but this is not firmly established 
because the above condition is not satisfied in this case. The 

behavior of the steady-state-profile integrations gives the 
impression that both the step-orifice and wave-orifice systems 
have an appreciable degree of stability for E or E' up to about 0.8. 
Stability will be increased in an actual linked cavity system by 
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cavities, only a tenth of the length being through orifices. The with VR = 1 rn/d and oR = 6 bars (corresponding to a water level of 
ratio 10 is thought reasonable, perhaps minimal, for a linked 100 m depth in ice 400 m thick). The evaluation of the linked 
cavity system when there is very extensive cavitation over the cavity model in this section is based on (36), with x taken equal to 
bed, with small orifices throttling the flow, as visualized in xR because we consider here the hydraulic behavior in the surging 
Figure 1. The Manning roughness value is one that has been state and choose the reference value xR to be the basal shear stress 
thought appropriate in application to glacier tunnels [R6thlis- in the surging state; this restriction is relaxed in section 12. An 
berger, 1972, p. 181; Clarke et al., 1984, pp. 292 and 295]. The evaluation based on (35) gives overall results not greatly different 
tortuosity is chosen somewhat larger than the value o• = 3 thought from those given here on the basis of (36), although there are 
appropriate for glacier tunnels by Brugman [1986, p. 219]. The some interesting and illuminating differences in detail; these will 
*IR value is what is calculated from the flow law (11) if we be discussed in a subsequent paper. 
assume that the second stress invariant is equal to C•R = 6 bars. 

In order to calculate the Qw-versus-o curve it is necessary to 
specify the sliding velocity v as a function of o, since it enters 
(18) both directly and through the flux factor • via its depend- 
ence on E, which varies with v as shown in (17). Although the 
relation between v and • (dependence of sliding velocity on basal 
water pressure) can in principle be obtained from the mechanical and 
theory of sliding with cavitation on which the foregoing treatment 
is based (or by the method of Fowler [1986]), for the evaluation 
here of the linked cavity model I use a simple empirical relation 
of the type 

v = VR =p •PlJ--q (34) 

where x is the basal shear stress and vR is the sliding velocity 
under reference conditions of shear stress xR and effective 
pressure c•R; the independent constants in (34) are p, q, and the 
product pkq = VRXR -p O:Rq. The inclusion of a basal shear stress 

When (36) and (7) and the parameter values stated above are 
introduced into (17) and (18), there results 

T1R 3 ,-, 21/3 (c•A/•o) 3/2 (VROR)«h• (•_•R)2 =0.18 (37) • = rc 1-•77 DM 

24/3 No 13 'r 

(38a) 

Qw = 0.63 m 3/s (38b) 

where • is in bars; ß in (38) is 0.47, from Figure 7, for the value 
of-Z found in (37). The dependences on • assumed for '1 and v in 
(7) and (36) lead to the result, in (37), that E does not vary with • 
and has the constant value 0.18. 

dependence in (34) is not needed for the immediate purpose at The Qw-versus-o curve for the step-orifice system in 
hand, for which we will take x = xR, but is needed later Figure 12 is a plot of (38b). The orifice breadth lR at the reference 
(section 12). On the basis of laboratory experiments on the 
sliding of ice over rock surfaces, Budd et al. [1979, p. 164] 
proposed (34) with p = 3 and q = 1' 

v=vR •- =3kl •- (35) 

Bindschadler [1983] got an approximate fit to flow data for 
Variegated Glacier in the nonsurging state by taking (35) with 
3 kl = 0.2 m d 4 bar-2; the fit was not improved by taking q • 1. 
The laboratory data for sliding over rough granite [Budd et al., 
1979, Figure 7] give 3k• in the range 0.4-1.1 m d -• bar-2; the 
nonconstancy of 3 k• can be corrected by taking q = 1.5, with 
3 kl.5 = 2.5 m d -1 bar 4'5. From fitting (34) to ice sheet data, 
Budd et al. [1984] chose p = 1, q = 2, whereas Lingle and Brown 
[1986] chose (35) but took 3 k• to vary over a wide range (a factor 
of ~ 100), so that the choice p = 3, q = 1 is moot in this case. The 
sliding conditions at the base of Variegated Glacier in surge are 
probably rather different from those present in the laboratory 
experiments and the field situations cited; hence one does not 
necessarily expect a sliding relation in agreement with these other 
studies, which are moreover not fully consistent among them- 
selves, as just noted. To represent by means of (34) the observed 
range of surge velocities ~1-10 rn/d for water level depths in the 
range 100-70 m (exclusive of transitory peaks to higher levels) 
[Kamb et al., 1985, Figures 5 and 9] one finds that q = 3 is 
appropriate. Hence I will use 

v = VR • ß (36) 

condition o = OR is lR = 1.4 m, from (5). If we introduce (7) and 
(36) into (5) and recognize that rn is constant because E is 

constant, we obtain l/lR = (C•R/C•)3, SO that the gap length l 
increases rapidly with the water pressure. At o = 3 bars it has 
lengthened to l = 10.8 m. It is this lengthening that mainly causes 
the increase in Qw with Pw given by (38) and shown by the step 
orifice curve in Figure 12. 

Quantitative evaluation of the wave orifice linked cavity 
model, giving the corresponding curve of Qw versus o in 
Figure 12, is carried out in a similar way. It is done with the 
parameters 

3• = 2 m bedrock surface wavelength 
a = 7.8 cm sine wave amplitude 
I5o = 12 bars wave orifice cavitation limit (see below) 

and with other parameters as listed above. The viscosity '1 is 
given by (12); it does not appear explicitly, but it affects the value 
of the wave cavitation parameter 15 given by (13). For the 
parameters stated, orifice cavitation starts at • = 15o = 12 bars. 
This is calculated by substituting v from (36) into (13), putting 
• = 15 = 15o, and solving for 15o, with the result 

15o = (2N(:SR) « (-•) 31- (aVR) • (• •« (39) 

15o is therefore not an independent parameter, being given in rexres 
of the other parameters by (39). I call 15o the wave cavitation 
limit, as distinct from the wave cavitation parameter Z. From (13) 
and (36) it also follows that for any o, 
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Z = Zo 2/o (40a) 

and hence the ratio (5/2; that appears in (24)-(29) is 

(5/2; = ((5/2; 0 )2 (40b) 

When (36) and (40b) are introduced into (25) and (29) and 
evaluated with the parameters given, we obtain 

with the same values of el, M, and N used above and with co = 3, 
which is compatible with the results of dye tracing after surge 
termination (Qw = 40 m3/s, •w/co = 0.7 m/s). Equation (43) is 
closely related to equation (11) of R6thlisberger [1972], differing 
only in that it is derived for the condition tXw = tx (hydraulic grade 
line parallel to the glacier surface), rather than for a horizontal 
conduit. These equations are for an assumed circular cylindrical 
tunnel shape. 

•,=0.162 ({xA/CO)3/2 Xa 2/3 (_• (5) DM VR • 
3 (52 -6 

1 - (41a) 

E' = 0.21 1- 12-- • 

where (5 is in bars, and 

(41b) 

Qw = 1.38 • • 
(52 6 

1 - • q• (42a) 

10. INTERPRETATION: THE WATER FLUX/PRESSURE 
RELATIO•OMPARISON OF LINKED CAVITY 

AND TUNNEL MODELS 

Whereas in a tunnel system the water flux at steady state is a 
decreasing (inverse) function of water pressure, in a linked cavity 
system it is an increasing (direct) function, as Figure 12 shows. 
This holds for linking orifices of either step cavity or wave cavity 
type, although the form of the function is rather different for the 
two. A linked cavity system containing orifices of both types has 
a flux-versus-pressure relation that is a combination of the two 
curves and again has Qw increasing with Pw. Qualitatively this 
result is independent of the details of the sliding-versus-pressure 
relation (36), as long as v is an increasing function of Pw. 

(52 23 An important consequence of the direct dependence of Qw on 
( )6tI• m3/s (42b) Pw is that a linked cavity system, unlike a tunnel system, can exist Qw = 9.8 1 -•/: stably as a system of many interconnected conduits. In a system 

of interconnecting tunnels, the smaller tunnels are unstable with 
with (5 again in bars. The wave orifice curve in Figure 12 is a plot respect to the larger ones, which enlarge, capturing the drainage, 
of (42b). The flux factor tp is from Figure 9 on the basis of E' while the smaller tunnels close up [R6thlisberger, 1972, p. 180; 
values calculated from (4lb). For the wave curve, unlike for the Shreve, 1972, p. 209]. The system tends to evolve to a single 
step, the melting-stability parameter E' varies with (5, as (41) trunk tunnel. If the linked cavity system were subject to the same 
indicates, from 0 to a maximum of E' = 0.17, at (5 = 8 bars. type of instability, the widespread network of interconnected 

The wave orifice gap length at (5 = 6 bars, as calculated from cavities visualized in Figure 1 could not persist. By the same 
(26) with the parameters stated, is l = 1.43 m. Two thirds of the reasoning that shows that this type of instability is a feature of 
gap lengthening takes place between (5 = 12 bars and 9 bars. At conduit systems in which the steady state flux-versus-pressure 
(5 = 6 bars the height of the gap at its widest point is 9.2 cm, from relation is inverse, it can be shown that the instability does not 
(20) and Figure 10. arise if the flux-versus-pressure relation is direct. This shows that 

From (1) it is readily calculated that the Reynolds number for a multiple conduit system of linked cavities, widely dispersed 
water flow in orifices of the linked cavity model evaluated above across the glacier bed and carrying the glacial water flux, can 
is greater than the turbulent flow threshold value of about 2 x 103 really exist and persist, contrary to what would be expected from 
provided that the gap height is greater than 3 mm. The step the previously known properties of tunnel conduits. 
orifice and wave orifice gaps discussed above are mostly higher A second important feature of the flux-versus-pressure 
than this, so that it is appropriate to use (1) as the basis for relations in Figure 12 is that for a water flux greater than ~1 m3/s 
calculating the water flowthrough them. the linked cavity model requires much higher basal water 

At a gap height of 5 cm, typical of the orifices considered, the pressures than the tunnel model does. This provides an explana- 
mean water flow velocity from (1) is 0.4 m/s. This is much larger tion for why the basal water pressure is high in the surging state 
than the observed mean water transport velocity in surge, 
0.025 m/s, which reflects the fact, discussed in section 3, that the 
conduit system must consist of large cavities linked by narrow 
orifices. As long as the cavity dimensions lc (breadth) and gc 
(height) and the number of cavities N, in any cross section of the 
glacier are large enough to provide the needed cross-sectional 

of glacier motion: a tunnel system is absent, and the linked cavity 
system that is present requires high water pressures in order to 
open up the orifice cavitation sufficiently to carry the basal water 
flux furnished by water input upstream. The distinction in Figure 
12 between water level depths of ~60-90 m in the linked cavity 
model and >180 m in the tunnel model, for water fluxes in the 

area of 200 m2 (section 3), that is, as long as N,l•g, = 200 m2, the range 2-20 m3/s, parallels the distinction between observed water 
cavity geometry is not further constrained. The constraint seems levels in the surging and nonsurging states [Kamb et al., 1985, 
readily satisfied: if N, = No = 50, the cavities could be 0.5-1 m Figure 9]. (In fact, the water levels calculated for the tunnel 
high and 4-8 m broad, which seems reasonable for heavy system are somewhat lower than the average of those actually 
cavitation over a rough bed at high water pressure and high observed after surge termination, corresponding better with the 
sliding velocity. lowest levels observed. A somewhat similar situation was noted 

For comparison with the linked cavity model, the hydraulic by Iken and Bindschadler [1986, pp. 113-114] in calculated water 
performance of an ice tunnel is shown in Figure 12 in terms of the levels for basal tunnels in Findelen Glacier, Switzerland. A lower 
steady state flux-versus-water-pressure curve, calculated from value of N in (43), such as the value 0.50 bar yrm chosen by 

R6thlisberger [ 1972, p. 194] or the value 0.81 bar yrm advocated 

rCD4M3 (•)½ (3_•) 12 byLliboutry[1983, p. 220],•iveswaterlevelsnearertothemean Qw = •-g (43) level (depth 110-130 m) in Variegated Glacier after surge.) 
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The conclusion that basal water pressures are much higher in steady state under fixed hydraulic gradient is unstable against 
a linked cavity system than in a tunnel system at water flux perturbations in size or water pressure: if the size, or the water 
levels .>1 m•/s holds for step heights h and wave amplitudes a of pressure, is increased, the tunnel will grow, at an ever accelerating 
order 10 cm or less, such as those used in the model evaluations rate, because the wall melting rate increases faster than the tunnel 
in section 9. Because Qw is an increasing function of h, or of a closure rate as the size increases; conversely, if the size or the 
and •., as shown by (18) and (29) or by (38) and (42), with large pressure is reduced, the tunnel will contract and will close up 
enough values of these dimensions it is possible to increase Qw at completely, for the same reason with change of sign. (The growth 
fixed o by arbitrarily large amounts and therefore to decrease instability manifests itself in the j6kulhlaup phenomenon [Nye, 

1976; Spring and Hutter, 1981; Clarke et al., 1984].) In contrast, 
correspondingly the water pressure at a given flux to values as 

the orifices of a linked cavity system in steady state under fixed low as or lower than for a tunnel with the same flux. For 
hydraulic gradient are stable against infinitesimal perturbations of 

example, by increasing h in the step model from 5 to 22 cm, the this type according to the model developed here: if the size is 
water level at Qw = 10 m•/s is lowered from 64 to 190 m. perturbed, the response is a return toward the original steady state 
Changing other parameters in (38) and (42) could also contribute size, and if the pressure is perturbed, the response is a measured 
to lowering the water pressure. It follows that the surging state of adjustment toward a new steady state size dependent on the new 
glacier motion, made possible by the presence of a linked cavity pressure. 
basal water conduit system at high water pressure, is achievable The feature that provides the basis for the primary stability of 
only on beds of certain roughness characteristics, that is, certain the linked cavity system is the flow capacity of the system in the 
dimensions and spatial arrangements of roughness features, absence of melting by viscous dissipation, when the conduits are 
equivalent statistically to what is achieved in the step orifice formed entirely by cavitation under the available water pressure. 
model in idealized form by arranging steps of height ~5 cm No corresponding feature is present in the model concept of a 
among larger roughness forms in such a way as to provide orifices tunnel system [R•thlisberger, 1972]. One of the reasons for 
linking the leeside cavities behind the larger features. developing the model of the linked cavity system in sections 4-8 

The presence of the large cavities in the basal water conduit is to find out whether or not the stabilizing feature provided by 
system is not a feature necessary for the foregoing conclusion: cavitation persists when viscous heat dissipation is introduced into 
putting A equal to 1 in (38a) and (42a), which would mean no the linked cavity system. The results in section 8 show that it 
large cavities, decreases Qw only by a factor of about 3, which does, within limits. 
could be compensated by a change in the dimensional parameters The limits are set by the melting-stability parameter E (for 
or No. The necessity of the cavities in the linked cavity system step orifices) or E' (for wave orifices), as discussed in section 8. 
comes not from their effect on the Qw-versus-Pw curves but These parameters provide a measure of the magnitude of the 
rather from the observational evidence on dye transport through viscous dissipation, as shown by the direct connection between 
the system and also from the logical expectation that the them and the amount of orifice roof meltback m, tied to parame- 
cavitation gap heights and breadths over an actual bed surface will ters g and v in Figures 7 and 9. The stabilizing effect of the basal 
be highly variable from place to place, creating naturally a system cavitation phenomenon predominates as long as the magnitude of 

ß •' is small enough, that is, of large cavities interspersed with narrow orifices (section 3) the viscous heating, measured by E or _, 
A linked cavity conduit system can form over a "soft" bed as long as E •< 1 and E' .< 1.5. The instability that develops in a 

consisting largely of unconsolidated rock debris provided the bed step orifice for E • 1 or in a wave orifice for E' >. 1.5 manifests 
has a sufficient number of roughness features that do not move itself when viscous heating results in an accelerating, uncontrolled 
with the ice, such as bedrock protuberances or large protruding orifice growth that is essentially the same (and with the same 
boulders that are stuck at deeper levels so that they do not move cause) as the accelerating growth of a tunnel, described above. 
with deformation of the "soft" parts of the bed. The local However, this growth instability of orifices differs from that of 
conditions for cavitation, and the shape of the cavities and orifices tunnels in that orifices are unstable only under finite perturbations 
that form, are not fundamentally different from those over a from the steady state. The required size of the destabilizing 
"hard" (bedrock) bed. Consequently, one can expect that a linked perturbation decreases with increase of E or _, •' and becomes 
cavity system on a soft bed at high speeds of ice motion will have 

small for E = 1 and E'--1,5, as seen for the step orifice in 
a flux-versus-pressure relation that is similar, at least qualita- 
tively, to the curves for the hard beds modeled above and also that Figure 11. For tunnels there is no stability parameter analogous 
it will be subject to a melting-instability parameter similar to 
E' in section 8. Such a conduit system must be present whether or perturbations under all conditions of fixed hydraulic gradient. 

This is because them exists no steady state for tunnels of finite not soft bed deformation is involved in the surge motion because 
the water flux in spring or summer is much too large to be 
transmitted by a layer of subglacial till or any granular medium 
except very coarse gravel [Iken and Bindschadler, 1986, p. 104; 
Shoemaker, J986]. It follows that the surge mechanism modeled 
here on the basis of hard beds is also applicable in a general way 
to surging when soft bed deformation contributes to the high 
speeds of ice motion. 

11. STABILITY/INSTABILITY FEATURES OF 

LINKED CAVITY AND TUNNEL SYSTEMS 

diameter in the absence of viscous heating. Finally, whereas the 
tunnel instability is bilateral (i.e., it applies for either positive or 
negative perturbations), the orifice instability occurs only for an 
increase in size or water pressure from the steady state condition. 
We see here a fundamental distinction between the hydraulic 
behavior of the orifices of a linked cavity system and the tunnels 
of a normal tunnel system. 

Figure 13 shows a visualization of what happens when a step 
orifice goes into unstable growth. It evolves into a tunnel, which 
is carried downstream with the movement of the ice. The 

upstream part of the enlarging tunnel begins to collapse and closes 
The stability or instability of a multiple conduit system and its off, leaving a step orifice behind, while the tunnel is carried away. 

relation to direct or inverse flux-versus-pressure functions, What happens to it thereafter is a complicated matter, dependent 
discussed in section 10, is a secondary manifestation of what I on the three-dimensional complexities of the bed geometry. 
will call primary stability/instability of conduits. A tunnel at Without entering into the numerous possibilities and complica- 
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Fig. 13. Schematic picture of what happens when a step orifice goes 
unstable for E ). 1, shown in a time sequence of diagrams with time 

surge termination, by which the basal water conduit system 
converts from a linked cavity system to a tunnel system, with 
consequent drop in basal water pressure and slowdown of the 
sliding speed. It is noteworthy that the observed surge termina- 
tion was immediately preceded by a high peak in water pressure 
[Kamb et al., 1985, Figure 9], which could have provided the 
initiating perturbation that put the orifices into unstable growth. 

The values of the melting-instability parameters derived for 
the linked cavity models in section 9, E = 0.18 for the step orifice 
model and E'<_ 0.17 for the wave orifice model, from (37) and 
(41), are enough smaller than 1 to assure that these model linked 
cavity systems could exist stably at the glacier bed. At the same 
time E and E' are within "shooting distance" of 1, so that for 
reasonable changes in the model input parameters in section 9 it is 
possible to reach a condition where E > 1 or E' > 1.5, for which 
the linked cavity systems would be unstable and would convert to 
tunnel systems, as discussed above. 

12. SURGE MECHANISM 

The above considerations imply that it is possible for some 
glaciers to be in a state of rapid sliding motion with a linked 
cavity basal water conduit system at high basal water pressure, 
while for others the development of a tunnel system with low 
water pressure precludes such a state. Moreover, it is possible for 
a glacier to make a transition to this state and back again. This is 
the essence of a surge mechanism. 

The possibility of a surging state of glacier motion is increasing from top to bottom. The bed is marked with cross hatching and 
the ice is shown stippled, in the style of Figures 4 and 5. At the top the predicated upon two features of the linked cavity system: (1) the 
step orifice is shown in steady state under some effective confining high basal water pressure (and consequent high basal sliding 
pressure c• o, and with E approximately 0.5; the recontact point is not velocity) that the linked cavity configuration can force upon the 
moving, that is, ! = 0, where l is the orifice gap length. Upon increase of basal water system at typical water transport fluxes of order 
E to a value greater than about 1, and upon decrease in effective pressure 1-10 m3/s or larger, as discussed in section 10, and (2) the 
to c• < (•o as in Figure 11, the orifice starts to expand as shown by the possible stability of the multiple conduit linked cavity configura- 
arrows in the second diagram; initially the gap length increases at a rate tion against conversion to a single-conduit tunnel system through 
/(0) -- (1 - c5•/C5o)V, where v is the sliding velocity (see section 8). As the the action of viscous heat dissipation, discussed in sections 10 
expansion continues, the gap lengthening rate approaches the maximum and 11. For this type of surging state to be possible for a given 
possible value ! --> v as noted in the third diagram. When the gap length glacier, it is necessary that the water-flux-versus-water-pressure 
passes the steady state length l• that corresponds to c5• in accordance with curve for its basal cavitation system be such as to require 
Figure 7 for the perturbed parameter E•, the head of the cavity begins to appropriately high basal water pressures (~2-5 bars below ice 
collapse, as indicated in the fourth snapshot, but the enlarged orifice overburden pressure in the case of Variegated Glacier) at the 
downstream continues to grow rapidly by melting under greatly increased 

current water flux levels imposed by input of water to the basal water flow and becomes effectively a tunnel segment connecting the two 
cavities that were initially connected by the step orifice. Ultimately the water system from all sources, and it is necessary that the 
head of the cavity closes off, as shown in the last snapshot, and the tunnel melting-stability parameter (E or E' in sections 7 and 8) for its 
segment is advected downstream at speed v. If it does not encounter a linked cavity system under these current conditions be less than a 
large stoss slope downstream and get pinched off and if it can swing certain critical value that separates stability (low E) from 
around into a longitudinal orientation, it can become a more or less 
permanently established tunnel segment in the basal water conduit system, instability (high E) against conversion to a tunnel system. These 
provided that the local water flux and local water pressure adjust to the conditions can be satisfied only if the system parameters lie 
levels needed for its stable maintenance as a tunnel in accordance with within certain ranges, and this is what, in principle, distinguishes 
(43). glaciers that can surge from ones that cannot surge. The linked 

cavity model in sections 7-11 provides a means of identifying in 
tions, I surmise that if viscous heating in the system is large simplified form what the relevant system parameters are, and of 
enough (E or E' large enough) and if the initiating perturbation is showing that for reasonable values of these parameters (such as 
big enough that a large enough number of orifices go into those listed in section 9) the conditions for the surging state can 
unstable growth simultaneously, a network of interconnected be realized, while for other reasonable values the conditions are 
tunnels may start to develop out of cavities linked by unstably not satisfied (sections 10 and 11). Since the "orifices" (section 3) 
growing orifices or by the tunnel segments shed downstream by of the linked cavity system control the water flow, their dimen- 
them. If this development is able to continue, which probably sional parameters are particularly important; in general, the 
requires that a large enough part of the bed be affected to allow roughness features that generate the orifices by basal cavitation 
the process to develop collectively and cooperatively, the linked must have small amplitude (.<0.1 m) in order that the conditions 
cavity system can thereby convert to a multiple-tunnel system, for surging can be satisfied. Also important is the sliding 
which then proceeds to degenerate into a single-tunnel system by velocity, because rapid sliding stabilizes the orifices, by 
multiple-conduit instability. In my view, this is the process of decreasing E in (17) and E' in (25). Sliding of ~1 rn/d under a 
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basal water pressure about 6 bars below overburden is about offset by an increase of o• in (37) and (41a), but in fact ct did not 
sufficient to confer stability upon orifices generated by roughness increase in the area where the surge actually started (C. F. 
features of amplitude ~0.1 m, but if the sliding velocity were a Raymond, personal communication, 1986; C. F. Raymond et al., 
fifth this great, the orifices would be unstable, according to the Variegated Glacier studiesm1979, unpublished manuscript, 
model results in section 9. Since the sliding velocity at any given Figure 3). 
basal shear stress and water pressure will increase as the bed The proposed surge mechanism, as described above, involves 
roughness is decreased, low roughness again favors surging, but entry into the surging state in winter. This is in agreement with 
the roughness that is relevant here is probably not that associated the fact that the surge of Variegated Glacier did start in winter- 
with the orifices but rather the larger-amplitude roughness time. However, the attainment of a surge speed of 2 m/d or more 
associated with wave cavities of the linked cavity system. in midwinter, when the availability of water for the basal water 

Although the distinction between "surgeable" and "non- system is minimal, indicates that them is more to the surge 
surgeable" glaciers thus seems in principle clear, there is a large initiation mechanism than the foregoing discussion suggests. The 
gap between these principles and their practical application to the concepts of the linked cavity model prove useful in considering in 
problem of explaining why certain glaciers surge and others do greater detail the cause of wintertime surge initiation, which will 
not. For one thing, the relationship between the simple model be taken up in a subsequent paper. 
parameters and the complex actual features of real glacier beds is 
problematical, and also there is in general no way to measure such Acknowledgments. This work was supported by grants 
parameters at the bottom of actual glaciers. For another thing, the DPP-8209824 and DPP-8519083 from the U.S. National Science 
connection between the system parameters and the basal sliding Foundation. I thank Paul Hawley for the text processing. Caltech 
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