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Abstract we report on laboratory experiments examining the interaction of a jet from an
overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the
1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet
models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the
free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width
of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The
distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted
with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In
the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a
distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and
the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion,
and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the
calculated shock location from free jet theory. These experiments, combined with scaling arguments,
suggest that the imprint of the Mach disk shock on the ground should be within the range of 4-9 km at
Mount St. Helens depending on assumed reservoir pressure and vent dimensions.

1. Introduction: Geologic and Fluid Dynamic Background

Laterally directed gas and debris flows can be produced either by collapse of a sector of a volcano or by
collapse of a column that was initially vertically directed. Such flows travel nearly parallel to, and interact
with, ground surfaces. These damaging flows can reach velocities of greater than 100 m/s [Moore and Rice,
1984; Hoblitt, 2000] and can be internally supersonic for distances of kilometers, depending on the vent
geometry and pressure of the magma chamber [Kieffer, 1981, 1982]. The lateral blast at Mount St. Helens on
18 May 1980 discharged across downward sloping flanks of the volcano for about 7 km, crossed the North
Fork Toutle River, and then climbed up into high country. The velocity of the front was nearly constant at
100 m/s for much of this distance [Moore and Rice, 1984], an observation that suggests that accelerations
and decelerations of gravity had no net effect over roughly the first 10 km of travel.

Based on this observation and estimates that the pressure ratio between the magma chamber and ambient
atmosphere was roughly 150:1, Kieffer [1981, 1982] proposed that the lateral blast resembled the discharge
of a large supersonic rocket nozzle pointed laterally toward the north and estimated the nature of internal
shock structures from experiments on free jets discharging into an atmosphere. She proposed that a Mach
disk shock existed in the flow at a distance of 11 km from the vent, later revising this to about 5.7-9 km
using an updated model for vent dimensions and a wider range of pressure ratios [Orescanin et al., 2010].
Subsequently, the existence of the supersonic shock structures and the distance from the vent at which
they might occur have been challenged based on multiphase computational simulations [Esposti Ongaro
etal, 2011, 2012]. In this paper, we report the results of 3-D laboratory experiments designed to investi-
gate the interaction of free supersonic jets with a ground layer and apply the results to the controversy
described above.

Theories of free jets have been applied to vertically directed eruptions, for example, Plinian eruptions
[Ogden et al., 2008a, 2008b; Ogden, 2011], and to lateral blasts [Kieffer, 1981, 1982; Orescanin et al., 2010]
to model the global flow field. The effect of topography on the structure of a jet has been investigated
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computationally at a coarse scale starting with studies in the 1980s and 1990s such as Valentine et al. [1992],
and more recently with higher resolution, but still relatively coarse grids by Esposti Ongaro et al. [2008,
2011, 2012].

To include three dimensions, to apply to geographical areas that may be hundreds of square kilometers, to
incorporate multiple particle sizes, and to make the codes computationally feasible, spatial resolution must
be sacrificed. This creates two potential problems. First, shock waves which can occur in supersonic flow
can be smeared due to numerical dissipation unless special techniques are used. Second, boundary layers
can be difficult to resolve adequately. Field relations at Mount St. Helens suggest that at a distance of about
8 km, the boundary layer was 14 m thick [Kieffer and Sturtevant, 1984], a result that is reasonable agreement
with boundary layer thicknesses from two independent models. The first is the “law of the wake” combined
with the “momentum integral relation” for the growth of turbulent boundary layers based on experiments
over flat plates. The second is the Blasius equation from experiments on turbulent pipe flow. These two rela-
tions yield distances for a 14 m thick boundary layer of 4.2 and 10.3 km, respectively. In contrast, boundary
layers in the numerical codes are predicted to be hundreds of meters thick [e.g., see Esposti Ongaro et al.,
2007, 2012]. Esposti Ongaro et al. [2007] had stated that at least five cells are required to describe accurately
a boundary layer in multiphase flow. In the best codes, cell sizes are 10 m or more in vertical dimension
leading to boundary layers predicted to be hundreds of meters thick [e.g., Esposti Ongaro et al., 2007, 2012].
Therefore, in addition to the smearing out of shock waves due to numerical dissipation, grid sizes required
for computational feasibility may be overestimating the size of boundary layers.

Given the difficulty of benchmarking codes against field evidence, we argue that all codes using pure gases
or gas mixtures should be compared with laboratory experiments also in gases without particles because
particles will smear out the effects and cannot easily be scaled to the laboratory. The behavior of particles
can then be included in computer codes with appropriate forces acting on them, but only if the funda-
mental gas behavior is modeled correctly. Noting the good agreement between 3-D free jet experiments
and 1-D models, Ogden et al. [2008a] were able to benchmark their simulations based on Mach disk shock
standoff distance. A discrepancy in the vertical velocity and plume radius due to limitations of 1-D models
was noted. Recently, Carcano et al. [2013] extended the existing code used by Esposti Ongaro et al. [2012]
to achieve higher accuracy and robustness in the resolution of compressible regimes, while reducing the
numerical diffusion. Simulations using the higher-order numerics were compared with free jet data and
simulations. To date, there have been few three-dimensional laboratory simulations appropriate for bench-
marking the numerical codes. In this study, we provide a simple data set that can be used for this purpose:
a supersonic jet flowing over a plate parallel to its flow direction, simulating the flow of a volcanic jet over
a flat smooth terrain. Jet impingement onto a surface has been studied extensively in normal [Donaldson
and Snedeker, 1971; Carling and Hunt, 1974; Lamont and Hunt, 1980; Lengrand et al., 1982] and oblique ori-
entations [Lamont and Hunt, 1980; Wu et al., 2002; Nakai et al., 2006; Crafton et al., 2006]. To the authors’
knowledge, previous investigations of jet impingement on parallel plates are limited to acoustic studies
[Wlezien, 1989] or high-vacuum systems [lvanov and Nazarov, 1974].

2. Jet Structures

An unconfined overpressured jet contains a supersonic core bounded by barrel shocks, a normal shock
referred to as a Mach disk shock, and oblique shocks (Figure 1a). High-speed flow decelerates through all
shocks. For an unconfined, underexpanded jet, the normalized location of the Mach disk shock is primarily
a function of the reservoir-to-ambient pressure ratio and secondarily of the ratio of specific heats [Ashkenas
and Sherman, 1966; Crist et al., 1966)].

Impingement on a plate normal to the flow (Figure 1b) increases the stagnation pressure downstream of the
Mach disk shock [Donaldson and Snedeker, 1971; Carling and Hunt, 1974; Lamont and Hunt, 1980; Lengrand et
al., 1982]. Because of this effect, the Mach disk shock standoff distance decreases with decreasing separation
distance between the plate and jet exit [Khalil and Miller, 2004]. In normal impingement, an outflow parallel
to the wall develops, a so-called wall jet, which contains a series of compression and expansion waves
[Lamont and Hunt, 1980] (Figure 1b). The maximum pressure across the impingement region occurs in the
center of the flow and pressure distribution decays radially from this maximum [Donaldson and Snedeker,
1971; Carling and Hunt, 1974; Lamont and Hunt, 1980; Lengrand et al., 1982].

Impingement on an inclined plate shifts the location of maximum pressure and of the stagnation point, as a
function of the downstream distance (Figure 1c) [Lamont and Hunt, 1980; Wu et al., 2002; Nakai et al., 2006;
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Figure 1. Underexpanded jet structures for (a) a free jet and a jet impinging on a (b) perpendicular, (c) inclined, and (d)
parallel surfaces. Figure 1b is after Lamont and Hunt [1980]. Figure 1c is after Plemmons et al. [2008]. Figures 1a and 1d
are schlieren images obtained at pressure ratios of 23 and 32, respectively.

Crafton et al., 2006]. Lamont and Hunt [1980] find that the maximum pressure is substantially larger for an
inclined plate than for a normal plate for a given downstream distance. These results were confirmed by
Crafton et al. [2006], who experimentally measured the surface pressure and jet velocity associated with jet
impingement on an inclined plate with pressure sensitive paint and particle image velocimetry.

To briefly complete the discussion of terminology and introduce our results, we show the structure of one
of our laboratory jets parallel to the wall in Figure 1d. The Mach disk shock is disconnected from the sur-
face, as in the case of the inclined plate (Figure 1c). Almost directly below the Mach disk shock location, a
shock wave-boundary layer interaction results in an oblique shock foot that impinges on the plate. Pressure
gradients across shock waves interact with the flow along the surface causing upstream thickening of the
boundary layer, external flow compression via the oblique shock, and flow (boundary layer) separation on
the surface downstream of the oblique shock foot.

We first investigate whether the presence of the parallel surface will change the features of the jet, in par-
ticular the location of the Mach disk shock that separates supersonic and subsonic flows. Secondly, we
examine the ground signature resulting from the interaction of the jet with the surface and the implications
for devastation due to a lateral blast, such as occurred at Mount St. Helens.

3. Laboratory Setup

Experiments were conducted in an open-ended shock tube facility (Figure 2). The shock tube consisted
of a cylindrical reservoir with 50 mm inner diameter and 50 mm length attached to a convergent nozzle
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Figure 2. Schematic of experimental setup (not to scale).
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(Figure 3). Near the exit of the nozzle,
or vent, a Mylar diaphragm initially
separated the high-pressure nitrogen
gas in the reservoir from the ambient
air. The initial reservoir to ambient
pressure ratio varied from approxi-
mately 30:1 to 40:1 for all experiments
discussed here. The initial reservoir
pressures for each experiment are
included in Table 1. More details on
the experimental facility can be found
in Orescanin et al. [2010].

The experiment initiated with the
rupture of the diaphragm. The
depleting reservoir pressure ratio
is measured using a piezoelectric
gauge with 1 ps resolution. The
underexpanded jet exhausting
from the reservoir propagated over
an optically transparent flat plate

mounted either vertically or horizontally relative to the imaging plane (Figure 2). The jet was visualized
using a single-shot schlieren technique, as described in Orescanin et al. [2010], as it propagated across

the plate in two views: (i) from the side, corresponding to a elevation view, or (ii) from above the plate,
corresponding to a map view. In the latter case, the images were backlit through the transparent plate.
The resolution of measurements made from schlieren images was 0.25 mm. The vertical distance of the
plate from the lip of the nozzle was varied from 0 mm, i.e., in direct contact, to 3 mm, that is from 0D to
0.3D where D = 10 mm is the diameter of the nozzle. The purpose of choosing these two configurations was
to simulate both a volcanic jet that travels along the ground immediately upon exiting a vent (0D) versus
one that first travels some distance above the ground (e.g., across a valley) before hugging the ground

Nozzle block 10mm
Diaphragm
D
. Nozzle lip
¢ Offset
Plate

Figure 3. Detail of the shock tube nozzle and plate for a 3 mm
(0.3D) offset. The nozzle has a throat diameter D of 10 mm. A
diaphragm is located 4 mm from the nozzle exit plane. A 50 mm
reservoir is connected to the block (outside the field of view).

(0.3D). Data acquisition was triggered by the
arrival of the initial shock wave at a dynamic
pressure gauge (with 1 ps response time)
located in the far field, off axis from the jet
exhaust. The gauge signal acquisition was
synchronized with the reservoir pressure mea-
surement. A high-speed video (which could
be manually triggered) was recorded with and
without the gauge present to ensure it had no
effect on the jet.

Qualitative surface flow visualizations were
also made using pressure sensitive paint

(PSP) and shear stress (S3F) paint applied to
the plates [Crafton et al., 2011]. A platinum
tetra(pentafluorophenyl)porphine-based
porous polymer paint manufactured by Inno-
vative Scientific Solutions, Inc. (ISSI) was used.
The response time of this PSP was on the order
of 30 to 50 ps [Flaherty et al., 2014]. Qualitative
measurements were also made using a surface
stress sensitive film (S3F) [Fonov et al., 2006].
Markers are applied to a thin film, and the
displacement is measured. The two diagnos-
tics were used to ensure the surface signature
was not dependent on the measurement
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Table 1. The Experimental Conditions for Each of the Schlieren Images Shown in the Paper?

Figure Shot Initial Reservoir ~ Mean Pressure Figure Shot Initial Reservoir ~ Mean Pressure
Number  Number  Pressure (atm) Ratio Number  Number  Pressure (atm) Ratio
4a 442 375 36 4d 455 414 24
4b 443 37.6 32 4e 452 388 18
4c 433 379 28 4f 457 40.0 15
5a 444 38.6 37 5d 447 413 24
5b 445 375 32 5e 448 413 19
5c 446 414 30 5f 449 39.0 15
6a 440 36.3 35 6d 457 40.0 23
6b 441 37.5 32 6e 452 388 18
6¢ 450 383 28 6f 453 40.5 16
7a 488 36.3 35 7d 498 37.7 22
7b 489 36.0 31 7e 499 37.7 18
7c 497 38.0 28 7f 500 382 15
8a 491 39.8 39 8d 494 38.0 21
8b 492 36.5 31 8e 495 38.0 18
8¢ 493 41.7 30 8f 496 38.0 15

aMean pressure refers to the average pressure over the image acquisition time.

technique. The model was illuminated using a liquid-cooled I1SSI LM2X-400 light-emitting diode, and a
Cooke pco1600 CCD camera was used for image acquisition. Surface measurements using both techniques
are obtained as the ratio of intensity between wind-on and wind-off (no-flow) conditions.

4, Experimental Results

Upon rupture of the diaphragm separating the pressurized reservoir from the ambient air, an underex-
panded jet exhausts from the reservoir. Single-shot schlieren images are used to construct a time sequence
visualizing the jet structure during the reservoir blowdown. For reference, this “blowdown” of an uncon-
fined jet is first shown in Figure 4. As discussed in section 2, the primary shock structure of the jet consists of
two curved barrel shocks, a normal Mach disk shock, and oblique reflected shocks. As the reservoir depletes
in time, the shock structure retreats back toward the nozzle vent. Previous work has demonstrated that

for reservoir-to-ambient pressure ratios above about 15, the jet structure is self-similar and the Mach disk
location can be predicted using steady state empirical relations applied at the instantaneous pressure ratio

d) 24 ' e) 18 f) 15

Figure 4. Selected series of schlieren images of a free nitrogen jet exhaust during the reservoir blowdown with no
plate boundary. Flow is from left to right. Captions indicate the mean reservoir to ambient pressure ratio during image
acquisition. Note the migration of the Mach disk toward the nozzle as the reservoir pressure decreases.
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Figure 5. (a—f) Selected series of schlieren images of a nitrogen jet exhaust over a flat plate during the reservoir blow-
down (elevation view). Captions indicate the mean reservoir to ambient pressure ratio during image acquisition. The
offset of the plate from the vent exit is 3 mm.

[Orescanin et al., 2010; Orescanin and Austin, 2010]. In the experiments reported here, pressure ratios up to
41 are investigated.

In our experiments with a parallel plate, schlieren images of impinging jets are obtained in two planes. Ele-
vation and map views for the 0.3D case are shown in Figures 5 and 6, respectively; terminology is identified
in Figure 1d. Some features of an unconfined, underexpanded jet can be identified, including the char-
acteristic barrel and Mach disk shocks. However, when the jet impinges on the plate, additional features
associated with wave reflections from the plate surface and formation of a boundary layer along the plate
arise. The presence of the surface results in the loss of the axisymmetric jet structure and the formation of a
complex three-dimensional flow.

In the elevation view of the jet with the plate offset by 0.3D, the free jet structure is observed in the top
half of the image, including the normal Mach disk shock (Figure 5a). However, due to the surface interac-
tion the Mach disk shock is elevated above the flat plate and its diameter is reduced. The reflection of the

d) 23 v e) 18 f) 16

Figure 6. Selected series of schlieren images of a nitrogen jet exhaust over a flat plate during the reservoir blowdown
(map view). Captions indicate the mean reservoir to ambient pressure ratio during image acquisition. The offset of the
plate from the vent exit is 3 mm.
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Figure 7. (a—f) Selected series of schlieren images of a nitrogen jet exhaust over a flat plate during the reservoir blow-
down (elevation view). Captions indicate the mean reservoir to ambient pressure ratio during image acquisition. The
plate is positioned directly at the vent lip (0 mm offset). Data are corrected for variations in the pitot probe location (seen
on Figures 7a and 7d).

barrel shock from the plate is observed near the vent. The reflected barrel shock intersects the Mach disk
shock at a (three-shock) triple point. The third shock emanating from the triple point is directed back
toward the plate along which a boundary layer is developing. The interaction of pressure gradients with
the boundary layer causes the upstream boundary layer to thicken and the flow potentially to separate
[Mark, 1958; Liepmann and Roshko, 2001]. The compression of the flow in the region of boundary layer
thickening results in an oblique shock wave and apparent separation region. Importantly for our results,
the foot of the oblique shock is located almost directly below the Mach disk shock location for all pres-
sure ratios. As a result, the oblique shock foot cannot always be distinguished from the Mach disk shock
in the map view of the jet due to the integrating nature of the schlieren visualization (Figure 6). Additional
shocks, most noticeably secondary (Figure 1d) and even tertiary interactions, are evident downstream.

o 18 015

Figure 8. (a—f) Selected series of schlieren images of a nitrogen jet exhaust over a flat plate during the reservoir blow-
down (map view). Captions indicate the mean reservoir to ambient pressure ratio during image acquisition. The plate
is positioned directly at the vent lip (0 mm offset). Data are corrected for variations in the pitot probe location (seen on
Figures 8a and 8d).
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5. Discussion

5.1. Effect of Jet Impingement on a Parallel Surface

For a free jet exhausting from a finite reservoir with continuously decreasing reservoir pressure, our previous
studies have shown that the Mach disk shock location can be predicted using the steady state correlation
evaluated at the instantaneous pressure, above pressure ratios of about 12:1 to 15:1 [Orescanin et al., 2010;
Orescanin and Austin, 2010]. Therefore, the location of the Mach disk shock can be predicted by the Ashkenas
and Sherman [1966] relation:

1
Xm P’ 2
— =0.67| — 1
where x,, is the standoff distance of the Mach disk shock, P, is the instantaneous reservoir pressure, and P,, is
the instantaneous ambient pressure.

For a given experiment, we measured the lateral distance from the vent exit to the Mach disk shock from
each schlieren image. The images were obtained at selected times during the blowdown of the reservoir
by setting a delay to the camera acquisition. The reservoir pressure was recorded for each experiment as a
function of time. The reservoir pressure value corresponding to the image acquisition could therefore be
determined (Table 1). The normalized results are shown in Figure 9. In the region where the free jet cor-
relation applies, both map and elevation views for both 0D and 0.3D offsets indicate that the Mach disk
shock location is well predicted by the free jet correlation of Ashkenas and Sherman [1966] (equation (1)), if
evaluated at the instantaneous pressure ratio.

The decrease in the vertical extent (width and height above the plate) of the Mach disk shock due to the
interaction with the plate is evident in the schlieren images and in a comparison of measurements of the
width of the shock in map and elevation views respectively with the width in a free jet (Figure 10). Note
that no distinct Mach disk shock is evident in the 0D map view, and therefore, no data are presented. In
the 0.3D map view, the Mach disk shock and oblique shock foot are coincident to within the resolution
of the experiments; thus, the width of the map view normal shock feature (Figure 8c) is measured and
reported here.

Addy [1981] observed that the diameter of the Mach disk shock is proportional to the square root of the
pressure ratio, based on their free jet experiments. Our free jet data at pressure ratios above about 20 are
in reasonable agreement with their correlation, which is consistent with the self-similarity in jet structure
(Mach disk shock width to barrel shock width) that has been reported for pressure ratios above about 15
[Orescanin and Austin, 2010, Figure 14]. The data are more scattered for the jet with the parallel plate; how-
ever, in spite of the scatter, it is clear that the Mach disk has a very different shape in the two cases. In a free
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Figure 10. Width of shock feature versus instantaneous pressure ratio. In
the elevation view, the Mach disk shock width is measured. In the map
view, the width of the map view shock feature (Figure 8c) is measured. A fit 5,2, Shock-Boundary Layer
(solid line) for the normalized Mach disk shock diameter from Addy [1981]
is in reasonable agreement with the present free jet data for pressure ratios
above about 20. Self-similarity in jet structure has been reported for pres- ) )
sure ratios above about 15 [Orescanin and Austin, 2010]. The presence of action with the boundary layer can
the plate decreases the width of shock from that of the free jet. produce a separation region where

the flow detaches from the surface.
The separation region is downstream of an oblique shock foot which is evident in the schlieren images. In
addition to schlieren visualization, qualitative surface measurements were made using pressure sensitive
paint (PSP), shown in Figure 11. The resulting distinctive ground signature associated with shock impinge-
ment can be observed clearly as a sudden increase in pressure (denoted “A” in the figure). The spanwise
width of the separated region is comparable to the width of the Mach disk shock in the map view.

Interaction
As discussed in section 2, shock inter-

In the schlieren images, the oblique shock foot impinges the plate at approximately the same horizontal
distance from the vent as the (elevated) Mach disk shock (Figure 12a). The measured location of the sur-
face demarcation in the paint measurements and the oblique shock impingement location identified in the
schlieren images correspond throughout the blowdown of the reservoir (Figure 12b).

5.3. Implications for Lateral Blasts

Perhaps the most significant result of these laboratory experiments is the fact that structures in the free

jet are transmitted through the boundary layer onto the solid boundary (ground) surface, as discussed in
section 5.2 and shown in Figures 5, 7, and 11. In addition, the downstream location of the Mach disk shock is

Intensity Ratio (ISR

07 085 1 1.15 13

35

Mach disk
Oblique shock shock

foot

Pl A o
ate Boundary layer Boundary layer

separation region

20
X (mm)

a) b)

Figure 11. (a) Sample PSP image of the flat plate surface during blowdown in a 0.3D offset case (instantaneous reservoir
to ambient pressure ratio of 26). These data are qualitative; however, the color indicates levels relative to the ambient
pressure. The feature associated with oblique shock impingement is denoted A. Flow is left to right. (b) Sketch showing
jet flow features in elevation view which were examined for correlation with surface demarcation.
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Figure 12. (a) Measured distance of schlieren features from the nozzle vent as a function of the instantaneous reservoir
pressure ratio. All jet features retreat toward the vent as the reservoir pressure depletes. The oblique shock impinge-
ment location from schlieren images (open circle), indicated in Figure 1d, corresponds closely to the elevated Mach disk
shock location, both in experiments (filled circle) and in the predictions of Ashkenas and Sherman [1966] (solid line). (b)
Measured distance of surface features downstream of the nozzle vent from PSP data (diamond) and S3F data (square).
The demarcation of the onset of flow separation from surface paints (diamond and square), indicated as feature A in
Figure 11, corresponds closely to the Mach disk shock location from schlieren images (filled circle). The prediction of
Mach disk shock location of Ashkenas and Sherman [1966] (solid line) is shown for reference.

unchanged from its position in the free jet by the presence of a parallel flat plate. The Mach disk shock is col-
located with the oblique shock foot. Unlike the sharp contrast in flow properties across a Mach disk shock in
a free jet, the transition zone in the presence of a flat plate is extended by flow separation (Figure 11), which
may make such a transition easier to identify in a field situation than if the transition was simply across a
small shock wave.

Within the body of the jets above the boundary layer, there are some similarities and some differences with
free jets (Figures 4, 6, and 8). Of specific relevance to the field situation would be changes of the jet structure
in map view, if these are projected through the boundary layer, as established above; changes in the eleva-
tion view would be much more difficult to document in the field, and so we do not discuss them further. In
map view, the Mach disk location remains at the same distance as in the free jet case, but the diameter is
smaller than in the free jet case (Figures 9 and 10), perhaps indicating a slightly narrowed destruction zone,
depending on the actual distance of the underlying boundary.

As discussed in Kieffer and Sturtevant [1984], some aspects of laboratory experiments can be scaled to field
observations, and some cannot. However, even in the absence of true scaling, laboratory simulations afford
an opportunity to consider processes that may not be evident during or after natural events. In the cases
studied here, effects of compressibility can be examined, but effects of gravity, which may be important in
large-scale natural eruptions, cannot. However, we expect gravity effects to become important primarily
after the transition to internally subsonic flow occurs.

5.4. Comparison With Simulations

The flow-field dynamics of a jet exhausting from a pressurized reservoir are tied to the time-dependent
depressurization history of the reservoir or blowdown. With proper scaling, blowdown dynamics from the
laboratory can be used to interpret near-vent (proximal) conditions for discharge from high-pressure vol-
canic reservoirs. Here we use this fact to compare and contrast blowdown models of the 1980 lateral blast at
Mount St. Helens.

The model of Kieffer [1981] for the dynamics of the lateral blast was an early form of a blowdown model
based on a free jet emerging from a pressurized reservoir without interfering surfaces, such as the ground.
The 1981 model predated supercomputer capacity, and Kieffer made estimates of the position of the shock
from the Ashkenas-Sherman steady state relation (equation (1)) using the longest vent dimension for scal-
ing. The vent was assumed to have an east-west width of 1000 m, a north-south thickness of 500 m, and a
height of 250 m. The Mach disk shock was calculated to be at 11 km. Using an improved estimate of reservoir
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dimensions based on Donnadieu and Merle [2001], Orescanin et al. [2010] updated the reservoir to have a
width of 850 m, thickness of 100 m, and height 1300 m. Using 850 m as the determining vent dimension, the
Mach disk shock was calculated to be at 5.7 km for a pressure ratio of 100:1, at 8.2 km for a pressure ratio of
150:1, or at 9 km for a pressure ratio of 250:1. This current study further shows that the distances calculated
for the imprint of the Mach disk shock on the ground are not changed from Orescanin et al. [2010].

In contrast to our laboratory experiments that had uniform pressure in a simple cylindrical reservoir that is
discharged upon rupture of a diaphragm, supercomputer simulations, such as those of Esposti Ongaro et al.
[2012], use a much more complicated reservoir geometry and initial pressure distribution. In their simulation
of the Mount St. Helens blast, the reservoir pressure was taken to be 10 MPa above hydrostatic in a pressur-
ized conical-shaped portion of a hemisphere. Their initial atmospheric pressure is about 0.070-0.075 MPa
at the level of the vent. To simplify these initial conditions for this discussion and to facilitate comparison
with the earlier models and lab experiments, we estimate that the hydrostatic pressure at the center of mass
of the cone that erupts was roughly 3 MPa, so that an average total pressure of 13 MPa is representative, giv-
ing the ratio of vent pressure to atmospheric of ~ 175. We take the vent diameter for their simulations to
be the diameter of the base of the spherical cap of their cone, approximately 500 m (their Figure 1). For this
diameter and pressure ratio, the Ashkenas-Sherman relation gives the distance out to the Mach disk shock
as 4.4 km, almost exactly the distance at which the simulated flow suddenly decelerates at the end of the
“burst stage” (their Figure 2b). We suggest that the rapid deceleration observed in the simulations at this
distance is the Mach disk shock, smeared out by both computational limitations and multiphase particle
effects. Other than this suggestion, our results agree with Esposti Ongaro et al. [2012] that, for the particular
assumptions of their simulation, gas decompression drives the flow and extends out to about 4-5 km, and
the flow becomes gravity driven at greater distances.

However, the simulation represents only one pressure ratio and one vent size. We have done calculations
for different vent shapes (rectangular and circular), vent diameters (500 to 1000 m), average pressure ratios
(100:1 to 250:1), and total erupted volumes (roughly 0.10 to 0.15 km?3). Our analysis suggests that when sim-
ulations such as those of Esposti Ongaro are run through the range of parameters covering these instances,
the Mach disk location will range from 4 to 9 km.

In order to simulate volcanic directed blasts, we suggest two requirements for the simulation community.
The first is benchmarking numerical codes against laboratory experiments that provide data on the depres-
surization of the reservoir, its effect on the evolving flow field, and the effect of the ground on the flow. The
second is a parametric study of the effect of vent dimensions and pressure ratios. Until both types of simula-
tions have been done, it cannot be stated that there are no internal shocks and supersonic features, nor that
the role of gas depressurization can be neglected in the start-up conditions for simulations.

6. Conclusions

These results have several implications for volcanology and have a specific application to Mount St. Helens.
For an underexpanded jet exhausting from a finite reservoir and impinging on a flat plate oriented parallel
to the flow, the Mach disk standoff distance can be predicted from steady state free jet empirical relations
evaluated at the instantaneous pressure ratio, just as previously determined for a finite reservoir free jet.
This implies that the Mach disk standoff distance for volcanic eruptions directed parallel to the surrounding
topography can be estimated from that predicted for the free volcanic jets, described by the Ashkenas and
Sherman [1966] relation (equation (1)).

While the Mach disk standoff distance is the same for the free and the impinging underexpanded jets, the
Mach disk height is not and depends on the interaction of the jet with a parallel flat plate. The size of the
Mach disk shock is reduced, and the impinging jet loses symmetry due to the interaction of the barrel shock
with the flat plate.

Internal shocks can interact with and penetrate boundary layers. In particular, the oblique shock foot pen-
etrates the boundary layer and marks the ground at a location closely correlated with the Mach disk shock
location throughout the reservoir depletion. Thus, we would expect estimates of a supersonic-subsonic
transition in a devastation zone on the ground to be fairly accurate even if based on the location of a
calculated free jet Mach disk shock location.
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