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Weyl semimetals are three-dimensional crystalline systems where pairs of bands touch at points in momentum
space, termed Weyl nodes, that are characterized by a definite topological charge: the chirality. Consequently,
they exhibit the Adler-Bell-Jackiw anomaly, which in this condensed matter realization implies that application
of parallel electric (E) and magnetic (B) fields pumps electrons between nodes of opposite chirality at a rate
proportional to E · B. We argue that this pumping is measurable via nonlocal transport experiments, in the
limit of weak internode scattering. Specifically, we show that as a consequence of the anomaly, applying a local
magnetic field parallel to an injected current induces a valley imbalance that diffuses over long distances. A
probe magnetic field can then convert this imbalance into a measurable voltage drop far from source and drain.
Such nonlocal transport vanishes when the injected current and magnetic field are orthogonal, and therefore
serves as a test of the chiral anomaly. We further demonstrate that a similar effect should also characterize Dirac
semimetals — recently reported to have been observed in experiments — where a pair of Weyl nodes coexisting
at a single point in the Brillouin zone are protected by a crystal symmetry. Since the nodes are analogous to
valley degrees of freedom in semiconductors, this suggests that valley currents in three dimensional topological
semimetals can be controlled using electric fields, which has potential practical ‘valleytronic’ applications.

Weyl semimetals (WSMs) are three dimensional analogs of
graphene that have received much attention following a recent
proposal that they may occur in a class of iridate materials1.
They host electronic excitations that disperse linearly from
degeneracy points at which two energy bands meet. Near
these points, the electronic states are described by the Weyl
equation, familiar from particle physics1–4, and possess a def-
inite chirality. While the robustness of such two-fold band-
touchings — which require the breaking of either time re-
versal or inversion symmetries — has long been known2,3,
the topological aspects of WSMs were only appreciated more
recently1,4–6. A Weyl node is a topological object: depending
on its chirality it acts as a source or sink of Chern flux in the
Brillouin zone. Since the total Chern flux through the Bril-
louin zone must vanish, Weyl nodes necessarily occur in pairs
of opposite chirality. This topological property of the nodes
protects a single Weyl node against opening a gap: in order to
remove a Weyl band-touching, a perturbation must necessar-
ily couple the nodes, and thus WSMs should be robust against
smooth disorder that only weakly mixes nodes separated in
momentum space.

Closely related to the WSM is the Dirac semimetal7–9

(DSM), where a pair of Weyl nodes of opposite chirality co-
exist at a point in the three-dimensional Brillouin zone —
and therefore four bands touch, rather than two. Although
naïvely it appears that this situation would be unstable against
a variety of gap-opening scenarios, in certain cases the re-
sulting gapped phases always break a crystalline point-group
symmetry. Therefore, as long as such symmetries are pre-
served, the Dirac point10 remains stable. A convenient pic-
ture of the simplest DSM is two copies of a WSM, with each
copy labeled by a different crystalline point group ‘isospin’

index. (To avoid confusion, we refer to the valley degree of
freedom common to both cases as ‘pseudospin’.) DSMs are
thus crystalline symmetry-protected topological semimetals,
and from the preceding discussion it should be evident that
stable three-dimensional Dirac points appear in pairs that lie
on axes of high crystal symmetry. Recent photoemission11–14

and magnetotransport15 measurements appear to support the
theoretical prediction8,9 that the three-dimensional materials
Na3Bi and Cd3As2 host DSM phases.

Such robust topological phases are typically characterized
by the presence of protected surface states, or by unusual elec-
tromagnetic (EM) responses. WSMs are no exception: for
instance, in Ref. 1, it was demonstrated that they possess pro-
tected chiral Fermi arc surface states. Similar features are also
expected for DSMs, as long as the protecting crystal symme-
try remains unbroken; the resulting surface states, of course,
now carry additional isospin labels.

The unconventional bulk EM response of a single three-
dimensional Weyl node is known as the Adler-Bell-Jackiw
anomaly5,16,17: simultaneous application of parallel electric
and magnetic fields (applying ‘E ·B’) leads to production or
depletion of charge, depending on the chirality. This is clearly
incompatible with charge conservation. The appearance of a
Weyl node of opposite chirality resolves this apparent contra-
diction, since the charge produced (depleted) at one node is
accounted for by that depleted (produced) at the other, and it
is clear that the total charge is conserved. However, treating
the node index (hereafter, ‘valley’, in accord with the usual
semiconductor terminology) as another quantum number, it
is equally clear that the valley charge is not conserved in the
presence of E · B: this is the chiral anomaly of the WSM.
For the DSM as we have mentioned, in addition to the val-
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ley pseudospin index which labels the point in the Brillouin
zones where the bands touch, there is an additional two-fold
‘isospin’ index that labels the crystalline point-group repre-
sentation. The discussion of the anomaly goes through more
or less unchanged for each of these isospin species.

How can we observe this effect in experiments?
Any proposal to detect the anomaly should be capable

of distinguishing anomaly-related physics from conventional
metallic behavior, and should ideally vanish in the absence of
the anomaly – i.e., either when E · B = 0 or in the absence
of Weyl nodes; furthermore, it should be applicable to topo-
logical semimetals realized in several different systems — in
other words, we seek a response characteristic of the phase
rather than of any specific realization.

Here we show that the slow relaxation of valley charge
(characterized by an inter-node scattering time τv , which is
typically long as it involves large quasi-momentum transfer
in the Weyl case, or scattering between different point-group
representations in the Dirac case) results in a signature of the
charge pumping in nonlocal resistance measurements (Fig. 1).
While in general sensitive to various experimental parameters,
in the “quantum” limit when the valley imbalance generated
is limited only by relaxation at the contacts, we find that ap-
plying a voltage VSD at x = 0 yields a nonlocal voltage at x
that is determined only by intervalley relaxation in the bulk,

|Vnl(x)| = VSDe
−x/`v , (1)

where `v =
√
Dτv is the valley relaxation length, andD is the

charge diffusion coefficient. In contrast, conventional Ohmic
voltages decay on the scale of the sample thickness. In addi-
tion, the dependence of nonlocal response on field orientation
(described in detail below) further reflects its origins in the
anomaly. In particular, Vnl = 0 when an E ·B term is absent.
Thus in the idealized limit, `v →∞, this gives an unambigu-
ous signature of the anomaly.

The proposed experiment is easily sketched; for the mo-
ment, let us focus on the Weyl case. First, a charge current is
driven across the sample in a region where a local magnetic
field Bg is applied. Due to the chiral anomaly, in the steady
state a valley imbalance – in the ideal case, proportional toBg
– is generated in the region where charge current flows. As
long as the inter-node scattering is weak, the valley imbalance
is long-lived and can diffuse far away (i.e., a distance of or-
der `v) from the region where it is generated. In the absence
of a magnetic field, the valley imbalance does not couple to
an electric field and is thus challenging to detect. However,
such a coupling does arise when a local “detection” magnetic
field Bd is applied – once again, a consequence of the chiral
anomaly. In this case, the valley imbalance manifests itself
by building up an electrical voltage across the sample. When
Bg is oriented perpendicular to the source-drain current, or
Bd perpendicular to the direction in which the voltage drop
is measured, Vnl vanishes, reflecting the fact that the anomaly
is sensitive to the angle between E and B. While this nonlo-
cal effect bears some resemblance to the so-called ‘Zeeman-
driven spin Hall effect’ and associated transport phenomena in
graphene18–21 and other spin Hall materials, the dependence
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FIG. 1. Nonlocal Transport Experiment. A source-drain current
Isd is injected into a Weyl semimetal slab of thickness d via tunnel-
ing contacts of thickness Lg . In the presence of a local ‘generation’
magnetic field Bg , a valley imbalance ∆µ is created via the chiral
anomaly and diffuses a distance L � d away. If a ‘detection’ field
Bd is applied, the valley imbalance can be converted into a potential
difference Vnl between top and bottom contacts of size Ld.

on the orientation of the magnetic field is unique and is a sig-
nature of the chiral anomaly.

Before proceeding, we briefly review other recent proposals
to study the anomaly in WSMs. One observation5 is that there
is an additional, anomaly-induced current along the magnetic
field direction; the resulting anisotropy in the magnetoconduc-
tance has been suggested22,23 as a signature of the anomaly.
However, one might expect such anisotropy simply on sym-
metry grounds24 in a conventional metal, since the magnetic
field provides a preferred direction. Additionally, the anomaly
results in a negative classical magnetoresistance that can be
quite large23; however this remains a quantitative rather than a
qualitative signature, and may be overwhelmed by other con-
tributions making it challenging to detect. Another proposal25

is to realize a WSM by magnetically doping a topological in-
sulator; the symmetry-breaking ferromagnetic order can then
be used as a probe of the underlying topological semimetal.
For instance, as a consequence of the anomaly, vortex lines in
the ferromagnet carry one-dimensional chiral modes, and the
ferromagnetic Goldstone modes couple to charge plasmons.
While striking, such features are not easy to probe, and are
specific to the example studied rather than serving as a gen-
eral signature of a WSM. In Ref. 26, an anomalous Hall ef-
fect signature was discussed, related to the Weyl anomaly6;
however this is absent for certain high symmetry crystals and
needs additional information on the momentum space loca-
tion of nodes to be turned into a sharp signature. Thus, ex-
isting approaches to study the topological response of WSMs
stand in marked contrast to the simple transport experiment
proposed here, which applies generally to all realizations of
WSMs, and furthermore satisfies the criteria outlined ear-
lier: namely, it involves a signal that is absent for conven-
tional [semi]metals and can be ascribed to the presence of an
E ·B term by examining its dependence on the orientation of
the magnetic field. Furthermore, as we demonstrate, modulo
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some reasonable caveats about disorder, our results apply also
to DSMs. We note that, in contrast to other transport-related
predictions, our proposal involves a physical mechanism —
the diffusion of valley imbalance — that is distinct from the
transport of electric charge and is crucial to the nonlocality of
the response. As a consequence of the nonlocality, we may at-
tribute our signal to a specific magnetoresistance mechanism
(namely, the anomaly) circumventing the challenges usually
involved in interpreting magnetotransport measurements. The
experiment proposed here thus serves as an ‘order parameter’
for topological semimetals of both the Dirac and Weyl vari-
eties, and is the only sharp signature proposed to date that is
agnostic to the specific details of the experimental realization.

In the remainder, we first outline a simple description of
transport in a WSM, and proceed to discuss the chiral charge
pumping within this formalism. Having formulated a limit
where the solution is especially transparent, we demonstrate
the existence of a nonlocal response and examine its behavior
in various cases, before turning to a simple model of impu-
rity scattering that permits us to provide parametric estimates
of various length scales; we also demonstrate that our results
remain applicable to the case of a disordered DSM. We con-
clude with a discussion of our results and possible extensions.

I. MODEL AND TRANSPORT THEORY FOR WEYL
SEMIMETALS

A. Transport Equations

We begin by sketching the derivation of the transport equa-
tions relevant to the problem in the WSM case. The simplest
models of WSMs have two nodes separated in momentum
space, and henceforth we specialize our discussion to this situ-
ation (the extension of our results to the case with several such
pairs of nodes is straightforward; we will say more about the
DSM, where there are additional subtleties owing to the co-
incidence of two Weyl nodes at a single Dirac point, below.)
Electrons emanating from the two valleys (denoted by ‘right’
(R) and ‘left’ (L), and referred to as ‘pseudospin’) are charac-
terized by local electrochemical potentials in each valley,

µR,Lec = µR,L + eφ,

defined as the sum of the electric potential φ and the valley
chemical potential µR,L. We assume that each valley has the
same finite doping level, so that the density of states ν3D is
finite, and equal in both valleys. As a result, charge transport
within a valley is characterized (at B = 0) by a finite Drude
conductivity, σ, related to the diffusion coefficient D via the
Einstein relation σ = e2Dν3D. All the chemical potentials
are measured with respect to thermal equilibrium, so that the
expressions below do not include any equilibrium ‘magneti-
zation’ currents27.

In a magnetic field B ≡ Bn̂, the currents in each valley
can be expressed purely in terms of the potentials by solv-
ing for the Landau levels (LLs) of the Weyl nodes. Recall
that a single node28 gives rise to an infinite set of LLs that
disperse quadratically in the field direction, ER,Ln (k · n̂) =

kz kz

E E

µRµL

RL

FIG. 2. Landau levels at Weyl Nodes. Filled (empty) circles denote
occupied (empty) LLs. Each node has non-chiral LLs that disperse
parabolically in the field direction (here ẑ) as well as a single chi-
ral LL that disperses according to the node chirality (red, blue). A
chemical potential imbalance between the nodes leads to a net cur-
rent flowing along the field, even for spatially uniform µ.

~vF sign(n)
√

2|n|eB/~c+ (k · n̂)2 with, n = ±1,±2, . . .,
as well as a single (n = 0) LL with ER,L0 (k · n̂) = ±~vFk · n̂
that disperses linearly along the field, with a chirality set
by that of the node (Fig. 2). Each energy level is degen-
erate, with NΦ/A = 1/2π`2B states per unit area, where
`B = (~c/eB)1/2 is the magnetic length corresponding to the
magnetic field B. As a consequence of the chiral n = 0 LL,
electrons at a Weyl node carry a current along the field even
for spatially uniform chemical potential; the total anomaly-
related current is obtained by summing over all the occupied
modes in this LL. In addition, in each valley there is also
the conventional transport contribution due to gradients of the
electrochemical potential. In our semiclassical limit, we as-
sume this deviates only weakly from its zero-field value and
is therefore well-described in terms of the Drude conductivity
σ. These two contributions combine to give the total transport
current density29

jR,L = −σ
e
∇µR,Lec ± e2B

4π2~2c
µR,L. (2)

These equations should be complemented by the continuity
equations. In the presence of the chiral anomaly, we have30

∇ · jR,L + ∂tρ
R,L = ± e3

4π2~2c
E ·B (3)

where the E ·B = −B ·∇φ term5,16,17 is due to the anomaly,
and captures the valley charge pumping. Using (2) and mod-
eling inter-valley relaxation via a characteristic scattering rate
by impurities 1/τv , ∂tρR,L = ± 1

2τv
(ρR − ρL), the steady-

state continuity equations in the two valleys reduce to

− σ

e
∇2µR,Lec ± β

e
n̂ ·∇µR,Lec = ∓eν3D

2τv
(µRec − µLec), (4)

where β = 1
2π`2B

e2

h . Note that the continuity equations depend
only on the electrochemical potential, unlike the currents.

Equations (2), (4) supplemented by appropriate boundary
conditions determine the charge and valley currents in the sys-
tem. From this point on, we specialize to the setup illustrated
in Fig. 1, and choose coordinates in which the z direction is
perpendicular to the film.
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B. Boundary Conditions

We now establish the current boundary conditions in the
presence of leads and magnetic field. We assume that the
boundaries do not induce inter-valley scattering31. The bound-
ary conditions become especially transparent when treating
the interfaces in the Landauer formalism (see Fig. 3) and with
the assumption of no intervalley scattering in the leads. Let
us assume that there are Nn non-chiral channels in a region
of area32 A, each with transmission coefficient Ti. Within the
Landauer picture, these carry a current that depends on the
contact conductance per unit area, g = e2

h
1
A

∑Nn

i=1 Ti and the
electrochemical potential between the contact and the WSM
surface. In contrast, the chiral channels in each node carry a
current that depends only the electrochemical potential on one
side of the interface – i.e., either that of the contact or of the
WSM, depending on the direction. With these considerations,
and introducing source and drain chemical potentials µS,D,
we find that the boundary conditions for the top surface are

jRz (d) =
g

e
(µRec(d)− µS) +

β

e
µRec(d),

jLz (d) =
g

e
(µLec(d)− µS)− β

e
µS , (5)

while on the bottom surface we have

jRz (0) =
g

e
(µD − µRec(0)) +

β

e
µD,

jLz (0) =
g

e
(µD − µLec(0))− β

e
µLec(0). (6)

In the above equations, it is understood that β =

sign(Bz)
e2

2πl2Bh
; we recognize this as the conductance per unit

area of the chiral modes, which have T = 1. We will as-
sume that in both generation and detection regions B lies in
the yz plane, inclined at angle θ from ẑ. In this case we have
β ∝ cos(θ) = B · ẑ/B. Below, we will focus on the case
when the field is along ẑ, i.e., θ = 0.

C. Relaxation in Leads

We digress briefly to discuss a subtlety that emerges when
placing leads on a WSM. We wish to induce and detect dis-
equilibrium between valley populations. However, a normal
metal lead attached to a WSM has in effect a vanishingly
small relaxation length for the valley degree of freedom; ideal
contacts to such leads therefore suppress valley imbalance33.
Therefore, for a given conductivity of the WSM film, tunnel-
ing contacts to metallic leads34 generally sustain a larger val-
ley imbalance. For simplicity, we work in the thin film limit,
g � σ/d, where d is the thickness of the film. This condi-
tion implies that voltages are built up across the surfaces only,
while inside the film fast diffusion makes the electrochem-
ical potentials uniform across the film thickness. However,
it should be kept in mind that this assumption is not neces-
sary for nonlocal transport to arise; we will discuss the case of
transparent contacts below.

µS

µD

µR(d)µL(d)

µL(0) µR(0)

Nn

Nn

Nn

Nn

N�

N�

N�

N�

FIG. 3. Landauer Description of Contact Boundary Conditions.
Each node has Nn � 1 non-chiral ‘normal’ transport channels in
an area A (black arrows), with transmission coefficient Ti. Since we
assume that there is no intervalley scattering at the interfaces, we can
simply count the number of channels and obtain a ‘normal’ conduc-
tance per unit area g = e2

h
1
A

∑Nn
i=1 Ti for these channels. Here Ti

is the transmission coefficient of channel i, assumed much smaller
than unity for much of the paper (tunneling contacts). In addition, in
each node there are also NΦ chiral channels propagating in opposite
directions in the two nodes (red/blue arrows), where NΦ = A/2π`2B
is the number of flux quanta threading the contact area. Applying the
Landauer formalism, assuming reflectionless contacts, and assigning
appropriate chemical potentials to the different channels, we obtain
boundary conditions (5,6) for the current density.

II. NONLOCAL RESPONSE

We will work in the thin-film limit, where the various
chemical and electrochemical potentials are assumed uniform
across the film thickness. In this situation, averaging the conti-
nuity equations over the film thickness and using the boundary
conditions (5) and (6), we find

∇2
⊥µ

av
ec =

2g + β

σd

(
µavec −

µS + µD
2

)
,

∇2
⊥δµec =

1

`2eff
δµec +

β

σd
(µS − µD). (7)

where ∇2
⊥ = ∂2

x + ∂2
y . We have defined the average elec-

trochemical potential, µavec = 1
2d

∫ d
0
dz(µRec + µLec), and the

difference between valley electrochemical potentials, δµec =
1
d

∫ d
0
dz(µRec−µLec), and finally introduced the effective valley

imbalance relaxation length,

`−2
eff =

1

Dτv
+

2g + β

σd
. (8)

As discussed above, the leads induce additional intervalley re-
laxation, at a rate Γleads = 2g+β

ν3De2d
.

Equations (7) allow us to analyze the valley transport in a
thin WS film in the presence of external leads. The genera-
tion region is taken to consist of two massive source and drain
leads of width Lg � `eff. In this limit, they act as a valley bat-
tery, inducing in the source-drain region a valley imbalance

δµec(0) = −
βg`

2
eff,g

σd
(µS − µD). (9)

Here, the subscript g labels parameters pertaining to the gen-
eration region, and the corresponding local magnetic fieldBg .
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Note that even though there is a negligible electrochemical po-
tential drop across the film when g � σ/d, a valley imbalance
is nevertheless generated by the preferential population of chi-
ral modes at sample boundaries. This is essentially equivalent
to the effect of the E ·B term, with ∇µec playing the role of
the electric field.

The imbalance generated in the source-drain region diffuses
over the sample, but due to intervalley scattering the imbal-
ance decays away from the generation region with a charac-
teristic length `v =

√
Dτv . This follows from the fact that in

the region between the ‘battery’ and ‘detector’ leads there are
no contacts, and also we have B = 0, under which conditions
we assume that the surfaces do not induce inter-valley scatter-
ing. Then the propagation length of the valley imbalance is
maximal, and limited only by the weak inter-valley impurity
scattering, `eff = `v , and so

δµec(x) = δµec(0)e−
|x|
`v . (10)

To detect this imbalance far away from the generation re-
gion, one can place voltage probes in a region where a local
‘detector’ magnetic field, Bd, with the corresponding βd, is
applied. The chiral anomaly will then transform valley imbal-
ance into charge current in the vertical direction. In order to
compensate this current, a measurable voltage drop is devel-
oped between the top and bottom detecting leads. We assume
that the detector is a non-invasive probe, that is, it does not
alter the value of the valley imbalance it measures. This im-
poses a restriction on the length of the detecting leads, which
will be formulated below.

Demanding that the total current through the top and bottom
contacts of the detector vanishes and using (5,6) yields for the
measured chemical potential difference between them:

µt − µb =
βd

2gd + βd
δµec(x). (11)

Using Eqs.(9,10), we can relate the measured "nonlocal" volt-
age drop Vnl = (µt − µb)/e to the source-drain voltage
VSD = (µS − µD)/e. It is convenient to introduce a dimen-
sionless coefficient αnl that characterizes the strength of non-
local response as a ratio of these voltages:

αnl(x) =
Vnl(x)

VSD
= − βd

2gd + βd

βg`
2
eff,g

σd
e−
|x|
`v . (12)

This equation takes an even more transparent form if we as-
sume that in the generation region, relaxation due to interval-
ley scattering can be completely neglected, and occurs solely
at the leads. In this case, we can neglect the first term in the
l.h.s. of Eq.(8) for `eff,g , which yields

αnl(x) = − βd
2gd + βd

βg
2gg + βg

e−
|x|
`v . (13)

This equation is the central result of the paper, and gives
the general dependence of the nonlocal transport on contacts,
fields and intervalley relaxation in the limit when the latter is
weak. Note that this condition is not unreasonable: a WSM
and its attendant topological features are stable only for weak

intervalley scattering, corresponding to large `v . Furthermore,
it is in this limit – specifically, for `v � d – that the nonlocal
response dominates standard Ohmic voltages between the film
surfaces. It is instructive to analyze Eq. (13) in two limits:

(i) In the limit of weak generation and detection magnetic
field, βg � gg , βd � gd, the nonlocal response

αnl(x) ≈ − βd
2gd

βg
2gg

e−
|x|
`v . (14)

is proportional to the magnetic fields Bg, Bd, and changes
sign if the direction of one of these fields is reversed. In this
limit, the nonlocal voltage is inversely proportional to the con-
ductance of the contacts gg, gd. Therefore, the nonlocal volt-
age is larger for tunneling contacts, as long as they continue
to have a higher conductance than the chiral channels.

(ii) In the opposite limit when gd � βd, gg � βg , it takes a

remarkably simple form, αnl(x) ≈ −e−
|x|
`v , equivalent to that

quoted in Eq. (1). and depends neither on the properties of the
contacts, nor on the magnitude of the generating and detecting
magnetic fields (although of course a directional dependence
remains). This is the “quantum” limit, when the generation
of valley imbalance is limited at the relaxation by the contact
itself. Note that β = (λF /`B)

2
e2/2πλ2

Fh, where λF is the
Fermi wavevector in the node, and e2/hλ2

F ∝ gideal, the max-
imal (‘Sharvin’) contact conductance per unit area. In order
that the semiclassical limit holds, we wish to have many filled
LLs below the Fermi surface, which assumes that λF /`B is
small, requiring β � gideal. However, since tunneling contacts
have g � gideal, this is not too restrictive, and we expect that
the “quantum” limit can indeed be reached in experiments.

Finally, we revisit our assumption that the detector does
not alter the value of the valley imbalance it measures; this
constrains detector size, as follows. The detector is essen-
tially a shunt connecting two valleys, allowing valley cur-
rent to ‘leak’ at a rate Γleads. The detector is non-invasive
if this leakage current is much smaller than the total valley
current flowing under the detector, jv ∼ Dδµ/`v . Compar-
ing the latter to leakage current, jleak ∼ ΓleadsLdδµ, we ob-
tain that the detector size, Ld � σ/d

2gd+βd

d2

`v
. This condition

is quite weak, since d � Ld � `v can be satisfied for large
enough σ/d(2gd + βd), which is well within the tunneling
contact/thin-film limit discussed here.

A. Extension to Dirac Semimetal

The situation in the case of a Dirac semimetal is slightly
more involved; this is because at each Dirac point there is a
pair of Weyl nodes of opposite chirality distinguished by the
point-group index or ‘isospin’. Thus, for each isospin one
obtains a scenario similar to that described above, with valley
imbalance having an opposite sign for the two isospin species.
In order for this simple picture to hold, we must make two
crucial approximations. The first is to ignore higher-order
terms in the dispersion, which lead to mixing of chiralities;
the second is that we assume that the isospin relaxation time
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FIG. 4. Charge, Valley and Isospin Relaxation and Mixing in
Topological Semimetals. We depict the different relaxation pro-
cesses in disordered topological semimetals. Charge is relaxed by
processes that scatter within a single Weyl node (τ−1

c ); valley pseu-
dospin (indicated by node position, ±K) is relaxed by processes
involving large momentum transfer, which for screened impurities
leads to strong suppression relative to charge relaxation, τ−1

v ∼
τ−1
c (kF /2K)4; and in the Dirac case, the point-group isospin (in-

dicated by ↑, ↓) is relaxed by scattering between the two Weyl nodes
at a single Dirac point, which are shown separately for clarity, but
are in fact degenerate. Finally, curvature terms in the Dirac case mix
electron-like (hole-like) isospin-↑ states with hole-like (electron-like)
isospin-↓ states with a strength ∼ βk2

F . Note that in fact the isospin
relaxation occurs by a combination of this mixing and charge relax-
ation at a single node, yielding τ−1

i ∼ τ−1
c (βk2

F /εF )2.

τi due to impurity scattering is much larger than the valley re-
laxation time, in order that we may treat isospin as a ‘good’
quantum number over the length- and time-scales relevant to
our experiment. We will discuss both these approximations
in the next section. Note also that the relevant time scale
for valley relaxation is the shorter of τv and τi, since strong
scattering between isospin species will relax the valley imbal-
ance. This follows because in any situation where at a given
valley the population of one isospin species increases due to
the anomaly, the population of the other isospin decreases as
the anomalous contribution has the opposite sign for the two.
With this caveat, the rest of the argument goes through identi-
cally, and one obtains a similar nonlocal transport signature as
(1, 12-14) with `v replaced by min(

√
Dτv,

√
Dτi). In the next

section, we will discuss estimates for the relevant timescales
using a simple disorder model.

III. RELAXATION PROCESSES IN DISORDERED
DIRAC/WEYL SEMIMETALS

A. Charge and Valley Relaxation in WSM

In this section, we use a perturbative treatment of disorder
to estimate the characteristic rate of two scattering processes
relevant to a WSM (see Fig. 4):

(i) quasiparticle scattering at a single Weyl node, which re-

laxes charge imbalance at a rate τ−1
c ;

(ii) inter-valley (i.e. ‘pseudospin-flip’ scattering, which re-
laxes valley imbalance at a rate τ−1

v ; and

(We will discuss extensions to the Dirac case, where there is
an additional issue of isospin relaxation, below.)

In order that we can distinguish the nonlocal and Ohmic
responses, we require that d � √

Dτv . Furthermore, to
define a local diffusive charge conductivity σ while treating
the valley imbalance as a slowly relaxing quantity, we need
τc � τv . When both these criteria are satisfied, the nonlocal
response can be clearly distinguished and is then a measure of
the anomaly in the WSM. In the DSM, we additionally require
that all length scales are small compared to

√
Dτi, so that our

assumption of treating the two isospin species as independent
is reasonable over scales at which we measure unambiguously
nonlocal effects.

We consider scattering from impurities randomly dis-
tributed with average density nimp, each of which we shall
assume is modeled by a smooth central potential v(r). We
will assume that (in the absence of external fields) each node
is doped so that the chemical potential is away from the nodal
point; we therefore take the (equilibrium) Fermi level in each
node to be εF = ~vF kF . We shall assume furthermore that
the Fourier transform of the impurity potential takes the form

v(q) =
v0

q2 + k2
sc

, (15)

where ksc = 2π/λsc is the characteristic screening wavevec-
tor. We will take the two nodes to be separated by a wavevec-
tor K. Since the screening is due to the density of electrons at
a single node (characterized by kF ) it is reasonable to assume
that ksc ∼ kF � |K|.

These minimal assumptions are sufficient to estimate the
rate of relaxation of charge and valley charge and therefore
are the only ones necessary for the WSM. Again, the DSM
case has additional subtleties as we elucidate below.

Using Fermi’s Golden rule and averaging over disorder,
we may estimate the relaxation time for quasiparticles on the
Fermi surface as

τ−1
c =

ν(εF )nimp

π~

∫
dk̂′

4π

∣∣∣v(kF k̂− kF k̂′)
∣∣∣2 (16)

where ν(εF ) = ε2F /(~vF )3 is the density of states at the Fermi
level in each node and the integral is over all possible angular
coordinates of the final state on the Fermi sphere. Using the
form of the impurity potential described above and the fact
that kF ∼ ksc to approximate the angular integration, we find

τ−1
c ≈ ν(εF )nimp

π~
|v(0)|2 (17)

In contrast, the charge relaxation involves a large momentum
transfer as it mixes the two valleys. Parametrizing the initial
and final momenta as ki = K + k, kf = −K + k′, we have

τ−1
v =

ν(εF )nimp

π~

∫
dk̂′

4π

∣∣∣v(2K + kF (k̂− k̂′))
∣∣∣2 (18)
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Since we have kF � |K|, it is reasonable approximate this
via

τ−1
v ≈ ν(εF )nimp

π~
|v(2K)|2 (19)

Therefore, we see that the ratio of the charge and valley relax-
ation times is given by

τc
τv
≈ |v(2K)|2
|v(0)|2 ≈

(
ksc
2K

)4

∼
(
kF
2K

)4

(20)

where we used |K| ∼ 1/a � kF , with a the lattice spacing.
Thus, as long as the doping of a node, parametrized by kF , is
small compared to the nodal separation – which is the criteria
that the nodes are clearly resolved – then the charge relax-
ation occurs on a parametrically shorter time scale than the
intervalley scattering. Note that we have been a little cavalier
in computing the relaxation rate rather than the transport life-
time (which differs by angular factors in the integration over
final momenta), but in the limits of interest to us this distinc-
tion is negligible.

B. Isospin Mixing and Relaxation in the DSM

We now discuss the extension of our model of disorder to
the DSM, where in addition to the charge and valley relax-
ation rates above, a crucial new quantity must be determined:
the rate of isospin relaxation at a single Dirac point, due to
mixing between the two Weyl nodes. This occurs both due to
weak chirality-mixing perturbations as well as impurity scat-
tering; we denote the relaxation rate due to the latter by τ−1

i
(see Fig. 4). We must also make some further assumptions
about the disorder. In order that our model serves as a rea-
sonable one for estimating the isospin relaxation in the DSM,
we require that the characteristic length scale of the potential
v(r) (parametrized, for instance, by the impurity screening
length) is large compared to that of the crystalline unit cell,
so that the precise position of the impurity within the unit cell
is unimportant35. We defer a detailed treatment of disorder
in the DSM to future work36, and for now simply sketch the
argument for why the rate for isospin changing scattering pro-
cesses is small. To do so, we must delve into a few more
details of the DSM than we have thus far.

The simplest model8,9 of DSMs, that apply to both the cases
of experimental interest, is to consider S and P band electrons
with strong spin-orbit coupling. After incorporating the crys-
tal field splittings allowed by the given point group symmetry,
one obtains a minimal 4-band k · p Hamiltonian describing
the
∣∣∣S 1

2
,± 1

2

〉
and

∣∣∣P 3
2
,± 3

2

〉
bands; the four remaining bands

mix and gap away from the Fermi level. Here we have cho-
sen the axis of quantization of angular momentum to coincide
with that of a crystalline point-group rotation. These bands
interchange their valence/conduction character as one moves
along the ΓQ line in momentum space. Here. we denote by
Q the point on the zone boundary through which the rotation
axis passes; in the standard Brillouin zone labeling conven-
tion, Q = A for Na3Bi, which has a hexagonal space group

P63/mmc, and Q = Z for Cd3As2 which has a tetragonal
space group P42/nmc. (In both cases, we label the axis of
symmetry kz). Owing to the point-group symmetry along the
ΓQ line, the resulting band crossing is stable. As we move
away from the ΓQ line, the

∣∣∣S 1
2
, 1

2

〉
,
∣∣∣P 3

2
, 3

2

〉
split linearly,

as do the
∣∣∣S 1

2
,− 1

2

〉
,
∣∣∣P 3

2
,− 3

2

〉
, but matrix elements between

these pairs are quadratic in the momentum measured from the
node. A simple k · p matrix describing a single Dirac point
that incorporates these symmetries is therefore37

Ĥ(k) =

 vF kz vF k+ 0 βk2
−

vF k− −vF kz βk2
− 0

0 βk2
+ vF kz −vF k−

βk2
+ 0 −vF k+ −vF kz

 , (21)

where we have defined k± = kx ± iky and assumed an
isotropic dispersion with ~ = 1, and expanded about the nodal
point, assumed to be (0, 0,K). As we see, in the absence of
the quadratic ‘curvature’ terms (i.e., when β = 0), the Dirac
point can be decomposed into two independent Weyl nodes of
opposite chirality38. In the absence of this term, rotationally
invariant impurities cannot scatter between the nodes. Thus,
any mixing between the two isospins depends on β. Trans-
forming to the eigenbasis of the β = 0 Hamiltonian, we find

ÛkĤ(k)Û−1
k =

 vF k 0 0 βk2
−

0 −vF k βk2
− 0

0 βk2
+ vF k 0

βk2
+ 0 0 −vF k

 . (22)

We see from this that the only mixing is between electron-
like (hole-like) states of isospin ‘up’ and hole-like (electron-
like) states of isospin ‘down’. Taking εF > 0 using first-order
perturbation theory in β we find that the curvature-corrected
eigenstates at the Fermi level mix the chiralities:

|k,+, ↑〉c ≈ |k,+, ↑〉+
βk

2vF
sin2 θke

−2iφk |k,−, ↓〉

|k,+, ↓〉c ≈ |k,+, ↓〉+
βk

2vF
sin2 θke

+2iφk |k,−, ↑〉 (23)

where we label the two chiralities with ↑, ↓, and the elec-
tron/hole nature is indicated by the ± label, and assume that
|k| = kF . In order that we may treat the electronic levels from
the two Weyl nodes at a single Dirac point as approximate chi-
rality eigenstates, we must demand that βkF /2vF � 1. We
note that a useful proxy for this assumption is that it breaks
down at doping levels where the energy bands show signifi-
cant deviation from linear behavior.

We now turn to an estimate of the relaxation time due to
impurity scattering. With the assumption of s-wave impuri-
ties made above, it is straightforward to estimate the scattering
rate due to impurities; we find, after a few elementary manip-
ulations and upon disorder-averaging that it is given by

τ−1
i =

ν(εF )nimp

π~

∫
dk̂′

4π

∣∣∣v(kF k̂− kF k̂′)
∣∣∣2

×
∣∣∣ c〈kF k̂,+, ↑ |kF k̂′,+, ↓〉c∣∣∣2 (24)
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Owing to the highly anisotropic nature of the matrix element,
performing the angular integration in (24) is fairly compli-
cated in the general case. However, for our purposes it suf-
fices to estimate an upper bound on τ−1

i . For this, it suffices
to observe that any angular dependence of the integrand can be
ignored (as these only correct the numerical prefactors), and
from (23) that the matrix element in (24) is proportional to
βkF /vF . Thus, we find that a rough estimate of the impurity-
induced isospin relaxation rate is

τ−1
i ≈ ν(εF )nimp

π~
|v(0)|2

(
βkF
2vF

)2

= τ−1
c

(
βkF
2vF

)2

(25)

It may be instructive to readers to note that this isospin relax-
ation process bears a mathematical resemblance to the Eliot-
Yafet mechanism of spin relaxation in weakly spin-orbit cou-
pled semiconductors. We see that once again, the criterion for
this rate to be small is to require that the curvature correction
to the dispersion is negligible at the relevant Fermi energy.

IV. MATERIAL CANDIDATES

A. Weyl Semimetals

To date, incontrovertible evidence that any material is in the
WSM phase is lacking, although the experimental situation of
transport measurements in the pyrochlore iridates39 is encour-
aging, particularly in Eu2Ir2O7 under pressure40. In addition,
other materials have been suggested as WSM candidates41–45,
and theoretical proposals to engineer Weyl nodes in topolog-
ical insulator/normal insulator heterostructures46–48 have ap-
peared. In the absence of an explicit realization, estimating ac-
tual values of experimental parameters is challenging. While
we will provide more estimates with more experimental input
in the more immediately compelling case of the DSM below,
for now we make some very general estimates that should be
broadly applicable to a variety of WSM candidates.

To that end, we note that the doping level x in a WSM can
be estimated by counting the fraction of the Brillouin zone
volume occupied by the Fermi sphere:

x =
2× 4πk3F

3

(2Kb)3
≈
(
kF
Kb

)3

(26)

where Kb is the momentum scale of the BZ and we have
assumed that there are only two nodes. If we assume that
K ∼ Kb

2 , we find using (20) and (26) that

τc
τv
∼
(
kF
2K

)4

∼ x4/3 (27)

Assuming a doping level of 1%, we find τv ∼ 500τc. Taking
a conservative estimate for the mean free path, ` = vF τc ∼
10 nm, we find that the valley relaxation length, `v is of the
order of a few microns. We therefore see that it is not too un-
reasonable to expect that high-mobility samples – where the
mean free path can exceed our quite conservative estimate –
may well exhibit significant, anomaly-induced nonlocal resis-
tance over scales where it is possible to distinguish this non-
local signature from Ohmic conductivity.

B. Dirac Semimetals

In contrast to the Weyl case where there is as yet a con-
vincing experimental realization, there are two promising ma-
terials that appear to exhibit Dirac semimetallic behavior in
three dimensions. Following predictions from density func-
tional theory calculations, photoemission and magnetotrans-
port studies of the three-dimensional materials Na3Bi and
Cd3As2 strongly suggest the presence of bulk Dirac points in
these materials.

Of these, the crystal structure of Na3Bi is significantly sim-
pler and has the added benefit of preserving inversion sym-
metry. In contrast, Cd3As2 has an 80-site unit cell in its
inversion-breaking low-energy crystal structure, complicating
our assumption that we can ignore the exact position of the
impurity within the unit cell, and invalidating the neglect of
inversion-symmetry-breaking terms that can mix chiralities at
O(k) rather than O(k2). A more careful treatment of disorder
than that given in the preceding section is therefore necessary.
In light of this, we will focus on providing estimates for vari-
ous relaxation scales in the case of Na3Bi.

From the photoemission data11,14 on Na3Bi, we estimate
that the Fermi energy (measured relative to the node) is around
εF . 0.02 eV. Note that this can be adjusted over a range
of about 0.1 eV by doping with potassium11. We approxi-
mate the Fermi velocity by vF ∼ 1 eV-Å, and ignore the
anisotropy in the node dispersion to obtain a characteristic
Fermi wavevector kF ∼ 0.02 Å

−1
. Using these values in

conjunction with the measured momentum-space separation
of the nodes14 2K ∼ 0.2 Å

−1
and (20) we find

τc
τv
∼
(
kF
2K

)4

∼ 10−4. (28)

Thus, even the conservative estimate of the electronic mean
free path such as that used above for the WSM, yields a valley
relaxation length `v of a hundred microns. It seems reasonable
to expect that various approximations (such as the neglect of
anisotropy in the Fermi velocity) will only effect this estimate
weakly, and that `v of order of tens of microns should be quite
feasible, as in the WSM example above.

The curvature term is somewhat trickier to estimate. If
we assume that the curvature emerges due to an underlying
parabolic dispersion ε ∼ k2/2m∗ to make a rough guess for
β ∼ 1/2m∗ ≈

(
m
m∗

)
× 3.8 eV-Å

2
, we can estimate

βkF
2vF

∼ 0.04
( m
m∗

)
(29)

Since we anticipate m∗ & m, we see that the curvature cor-
rection is relatively small; if we set m = m∗ and simply use
(25) to estimate the isospin relaxation time, then we find

τi ∼ 103τc (30)

which using our estimate for the mean free path yields a re-
laxation length of around 10 microns. As in the Weyl case, it
is reasonable to expect that the anomaly-induced nonlocality
can be clearly distinguished from Ohmic effects in samples of
reasonably high mobility.
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FIG. 5. “H-Geometry". An alternative setup in which the gener-
ation and detection regions are massive, so that valley relaxation at
the leads is diminished, making metallic contacts feasible.

V. DISCUSSION

We have suggested a route to studying the chiral anomaly in
three dimensional topological semimetals by using it to pro-
duce and detect valley imbalance and using the slow relax-
ation of the latter to produce nonlocal voltage drops, which
can be distinguished from more conventional Ohmic effects.
Additionally, the nonlocal response is strongly dependent on
the direction of applied magnetic fields, providing a means
to verify its origin in the chiral anomaly. We have tried to
provide the simplest description of the nonlocal response: we
have assumed that the contacts dominate the relaxation at the
leads and thus the process of imbalance generation and detec-
tion, and that intervalley scattering only limits the diffusion
of valley imbalance away from the contacts. Furthermore,
we took the contacts to be non-ideal, since metallic contacts
severely constrain the generation of valley imbalance in the
simple geometry proposed here. In spite of these restrictions,
we find a nonlocal response that depends predominantly on
parameters that can be tuned independent of the material, and
no fundamental limit on the nonlocal response is apparent.

To emphasize that the use of tunneling contacts, while im-
portant in our geometry, is not fundamental to the nonlocal
transport, we note that an alternative approach would be to uti-
lize the so-called “H-geometry” (Fig. 5), frequently employed
in spintronics. Here, two massive parts of the sample (gener-

ator,“G” and detector “D”) are connected by a narrow bridge
of length L � `v . Both massive parts are subject to local
magnetic fields Bg, Bd. In addition, current is driven through
region G, which leads to the generation of valley imbalance.
Thus, this region acts as a “valley battery”. The valley imbal-
ance diffuses over the bridge to region D, where once again
the chiral anomaly gives rise to a measurable voltage drop,
similar to the one studied above. The H-geometry may offer
some practical advantages for producing and measuring valley
currents in WSMs. In particular, this geometry increases the
effective value of d in the generation region. This increases
the source-drain diffusion time, thereby reducing Γleads, and
allows the generation of a sizable valley imbalance, limited
only by intervalley impurity scattering, even with good metal-
lic contacts.

We also constructed a simple model of scattering from
screened impurities, within which we were able to provide
estimates for the relevant relaxation scales applicable to the
experimentally relevant case of the DSM material Na3Bi. The
scales obtained are within current experimental capabilities,
and suggest that nonlocal magnetotransport measurements on
high-mobility samples of this material may be key to unravel-
ing its topological nature.

In closing we observe that since the chiral anomaly is
the distinctive topological EM response of a topological
semimetal, the fact that its effects have such a dramatic mani-
festation in relatively simple transport measurements suggests
that they may be useful in the search for both Weyl and Dirac
materials in three dimensions. Similar nonlocal probes may
be relevant to other cases in which topological features exist
even in systems which lack a bulk gap.
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