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SUMMARY

Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases,

little is known about the modified positions and their function(s). Here, we develop Ψ-seq for

transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and

de novo identification of previously reported positions and discover hundreds of novel sites in

human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUSs) uncovers

which PUSs modify each site and their target sequence features. mRNA pseudouridinylation

depends on both site-specific and snoRNA-guided PUSs. Upon heat shock in yeast, Pus7-
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mediated pseudouridylation is induced at >200 sites and Pus7 deletion decreases the levels of

otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA

pseudouridine stoichiometries are conserved, but reduced in cells from dyskeratosis congenita

patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcritome-wide

scope for pseudouridine, and methods to dissect its underlying mechanisms and function.

Introduction

The most abundant RNA modification is pseudouridine (Ψ). In yeast, Ψ is present in many

positions in tRNAs, in 46 positions across the four rRNAs (25S, 18S, 5.8S, 5S), and in 6

positions in U1, U2 and U5 snRNA (Charette and Gray, 2000; Ofengand, 2002; Yu et al.,

2011). Although ψ’s base pairing is similar to uridine, isomerization allows the potential

formation of an extra hydrogen bond, and may contribute to structural stability (Durant and

Davis, 1997; Kierzek et al., 2014). Pseudouridine is catalyzed by pseudouridine synthases

(PUSs). In yeast, 8 non-essential PUSs directly catalyze ψ formation at specific sites in

tRNA, U2 snRNA and mitochondrial rRNA (Ansmant et al., 2000; Behm-Ansmant et al.,

2003; Massenet et al., 1999). In contrast, all positions in rRNA and one position in U2

snRNA are modified by the essential PUS Cbf5, which is guided to its target positions

through H/ACA-box snoRNAs, based on a 10–12 nt stretch of complementarity to the

sequence spanning the target (Lafontaine et al., 1998; Watkins et al., 1998). In human, 23

proteins harbor a PUS domain (Hunter et al., 2011), but most have not been studied for

function or specificity.

Although the roles of individual Ψ modifications have largely remained elusive,

pseudouridylation defects have profound effects. Alteration of bacterial rRNA

pseudouridylation affects antibiotic sensitivity (Toh and Mankin, 2008), ablation of rRNA

pseudouridylation by CBF5 deletion in S. cerevisae is lethal (Jiang et al., 1993; Zebarjadian

et al., 1999), and defects in DKC1/Dyskerin, the mammalian CBF5 ortholog, cause

dyskeratosis congenita (Heiss et al., 1998), a disorder characterized by failure of ribosome

biogenesis and an increased risk of cancer (Hoareau-Aveilla et al., 2008). Furthermore,

deletion of S. cerevisiae PUS1 results in growth defects, and mutation of human PUS1 leads

to mitochondrial myopathy and sideroblastic anemia (Fujiwara and Harigae, 2013).

Recent findings that a few Ψ sites in yeast U2 snRNA are induced by nutrient deprivation or

heat shock (Wu et al., 2011) and rRNA sites by rapamycin treatment (Courtes et al., 2014)

raise the possibility that the pseudouridine landscape may be more complex and dynamic

than previously assumed, and that Ψ might also be present in other RNA species, including

mRNA. Testing this hypothesis requires a sensitive method for transcriptome-wide mapping

of Ψ sites. Such an assay would also permit identification of the enzyme(s) that catalyze the

modification at each site and their specificity, as well as an assessment of whether Ψ is a

dynamic feature.

Here, we develop Ψ-seq, for transcriptome-wide quantitative mapping of Ψ, and use it to

identify the vast majority of previously reported sites in rRNA, tRNA and snRNA and

dozens of novel sites within snoRNAs and mRNAs. Combining Ψ-seq with genetic

perturbations, we associate each site with its cognate PUS and/or snoRNA, finding that
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mRNA Ψ sites are mediated by at least 4 different PUSs, conserved from yeast to mammals.

Hundreds of sites are induced by heat shock in yeast, in a Pus7-dependent manner, possibly

affecting transcript stability. Finally, we find subtle, but significant, decrease in rRNA and

TERC pseudouridylation in cells from patients with dyskeratosis congenita. Our results

establish show that Ψ is ubiquitous in diverse RNAs, and dynamic in mRNA, and provide a

transcriptome-wide assay for functional studies.

Results

Transcriptome-wide mapping of pseudouridine with Ψ-seq

To map Ψ across the transcriptome we developed Ψ-seq, relying on the unique stability of

N3-[N-cyclohexyl-N′-β-(4-methylmorpholinium)ethylcarbodiimide-Ψ (N3-CMC-Ψ) to

alkaline hydrolysis, and the ability of N3-CMC-Ψ to terminate reverse transcription. This

was previously used to test individual sites in primer-extension assays (Bakin and Ofengand,

1993, 1995; Bakin and Ofengand, 1998). Here, we coupled it with strand-specific RNA-seq.

Specifically (Figure 1A), we (1) treat polyA-selected RNA with CMC, which covalently

binds to U, G and Ψ residues (Ho and Gilham, 1971; Metz and Brown, 1969a, b); (2)

incubate CMC-treated RNA at alkaline pH, leading to hydrolysis of the less stable U-CMC

and G-CMC adducts; (3) fragment RNA (to 80–150 nt), ligate 3′ adapter and reverse

transcribe, expecting premature termination at Ψ-CMC sites; and (4) ligate an adapter to the

3′ end of the cDNA, followed by library preparation. For each experiment, we sequenced

both a treated sample and input RNA that was not treated with CMC, but otherwise handled

identically (Experimental Procedures).

We defined two metrics to analyze Ψ-seq data (Figure 1B). The Ψ-ratio is the proportion of

reads supporting reverse transcription termination at a position out of all the reads

overlapping it. The Ψ-fold-change (Ψ-fc) is the log2 transformed Ψ-ratio in the treated

samples divided by the Ψ-ratio in the non-treated (input) samples. This controls for non-

uniform coverage in RNA-seq due to mappability gaps or complex RNA processing.

We confirmed Ψ-seq’s ability to identify Ψ sites and quantify their relative stoichiometry, by

spiking into a complex sample a 150-nt synthetic RNA oligoribonucleotide with a single Ψ

site at position 43 (Experimental Procedures). Examining the Ψ-ratio revealed a single

strong peak precisely one base downstream of the modified site, as expected (Figure 1C). To

assess whether Ψ-seq could quantify Ψ’s stoichiometry, we mixed the modified

oligoribonucleotide with a non-modified counterpart, at ratios ranging from 0% to 100%.

There was excellent quantitative agreement between the known stoichiometry and its Ψ-seq

quantification (Pearson r=0.98, Figure 1C–D). Thus, Ψ-seq can identify Ψ sites and quantify

their relative stoichiometry by the Ψ-ratio. However, the Ψ-ratio does not capture the

absolute stoichiometry: even with a fully pseudouridylated probe only 43% of the reads

terminated at the Ψ site, suggesting partial efficiency of either CMC modification or Ψ-CMC

mediated reverse transcription termination. Finally, down-sampling of the spike-in data

showed that Ψ-ratios depended on sequencing depth: variability of Ψ-ratio estimates

decreased with increased depth and with increased Ψ stoichiometry (Figure S1).
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Ψ-seq of log-phase yeast reliably detects known Ψ sites

We applied Ψ-seq to RNA isolated from yeast at log-phase, and found excellent overlap

(Figure 1E) between the experimentally determined Ψ sites and the 45 known sites within

the three rRNA subunits (18S, 25S and 5.8S) (Ofengand, 2002). We had a very high

discriminatory power between a gold standard of positive (known) and negative (all

remaining) sites in rRNA, thresholding on either the Ψ-ratio (area under the receiver-

operator curve (AUC) =0.942), Ψ-fc (AUC=0.955), or their logistic combination

(AUC=0.967) (Figure 1F). Based on this analysis of known sites, we called a site as

pseudouridylated in a transcriptome-wide analysis (Experimental Procedures) using the

‘pseudouridine detection thresholds’ of Ψ-fc >3 (8 fold-enrichment) and Ψ-ratio >0.1. These

thresholds favor precision over sensitivity: 31/32 rRNA positions called by these criteria are

known sites (precision=97%), but 14/45 known sites are not called (sensitivity=69%). Thus,

all subsequent analyses may underestimate the number of true Ψ sites. Further supporting

call accuracy, 88/94 called sites (94%) in log phase yeast were immediately preceded by a

‘U’ (Figure 1G), and 5/6 remaining sites were one nucleotide away from the 88 called sites,

and thus read accumulation at these five sites is likely due to ‘stuttered’ termination of

reverse transcription (Bakin and Ofengand, 1998). Down-sampling of a deeply sequenced

sample shows dependency of site detection on sequencing depth and transcript expression

(Figure S2).

Ψ-seq of deletion mutants associates Ψ sites and their cognate PUSs

Applying Ψ-seq to RNA from yeast at mid-log, we called both known target sites and ones

not previously reported. To validate these putative sites, we reasoned that Ψ-seq in deletion

mutants of either PUSs or relevant snoRNAs would allow us to match sites to their cognate

enzymes, and increase our confidence in their accuracy. Indeed, Ψ-seq of deletion strains for

snR34 or snR189 found specific reduction at the two known positions targeted by each 18S

and 25S rRNA, whereas other sites remained correlated, readily identifying the cognate

target sites (Figure 2A).

Next, we applied Ψ-seq to deletion strains of each of four additional snoRNAs and eight

non-essential PUSs (Pus1, Pus2, Pus4, Pus5, Pus6, Pus7, Pus9, Deg1) (Figure 2B). Across

the 14 experiments, we identified 291 sites with median Ψ-fc >3 and median Ψ-ratio >0.1,

with 55/291 dependant on a single PUS by stringent criteria (Experimental Procedures,

Figure 2B). Ψ-seq of a Cbf5 conditional knockdown detected 67 Cbf5-dependent sites

(Experimental Procedures, Figure 2C).

Overall, we called 328 unique sites across these experiments (‘Pan Ψ collection’, Table S1),

108 of which were associated with one or more PUS and/or snoRNA (‘PUS-dependent Ψ

collection’). These sites spanned various classes of coding and non-coding RNA (Figure 2D,

2E). While subsequent analysis focuses on the higher-confidence, PUS-dependent

collection, many of the additional sites in the Pan Ψ collection are likely truly

pseudouridylated, but did not pass our stringent criteria; Alternatively, Ψ at some sites may

be catalyzed by more than one PUS, and thus fail to pass our stringent thresholds.
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Unbiased analysis of Ψ in rRNA, tRNA and snRNA

The PUS-dependent collection associated the overwhelming majority of known sites with

their correct PUS and snRNA dependencies, demonstrating the power of our approach. For

rRNA, 24/24 Cbf5-dependent sites are known targets of pseudouridylation, 8/9 associations

between snoRNAs and rRNA sites are known, as is the identified Pus5-mediated Ψ site in

mitochondrial 21S rRNA. One unknown, snR3-dependent site at position 2140 on 25S

rRNA will require further verification.

For tRNA, many known sites and their associated modifiers were identified, including Pus1-

mediated Ψ sites at positions 26–28 in several tRNAs, Pus7-dependent sites at position 13 of

glutamate tRNA, Pus9-dependent site in mitochondrial aspartate tRNA at position 32, and

Deg1-dependent sites at positions 37–38 in several tRNAs.

For snRNAs, we correctly identified all three previously identified sites in positions 35, 42

and 44 of U2 snRNA, and their dependence on Pus7, Cbf5 and Pus1, respectively. We also

detected the known site in U5 snRNA, and found it depends on Cbf5 (not previously

known).

Cbf5-dependent pseudouridylation in the 5′ guiding sequence of C/D box and H/ACA box
snoRNAs

To our knowledge, no Ψ site within snoRNA has been mapped to date, although Ψ content

within snoRNAs has been reported (Ni et al., 1997). The PUS-dependent Ψ collection had

six Cbf5-dependent snoRNA sites, 4 within C/D box snoRNAs and 2 in H/ACA box

snoRNAs. All 4 Cbf5-dependent sites in C/D box snoRNAs occurred in the 5′ terminus of

the snoRNA guiding sequence (Figure 3A, arrows). Pseudouridylation within this stretch is

conserved, as 6/9 Ψ sites in C/D box snoRNAs identified in human HEK293 cells (below)

are present within the short complementarity stretch of the snoRNA (Figure 3B). The Pan-Ψ

collection had 21 additional sites in H/ACA box snoRNAs: 10/21 in H/ACA box snoRNAs

with resolved hairpin (targeting) structures (Piekna-Przybylska et al., 2007), and 4/10 in the

5′ arm of the guiding sequence (none in the 3′ arm) (Figure 3C, arrows). We cannot

conclusively determine that these sites are Cbf5 dependent, since our detection power is

limited by the dramatic decrease in the levels of H/ACA box snoRNAs upon Cbf5

knockdown (Figure 3D), consistent with their stabilization via Cbf5 binding (Lafontaine et

al., 1998).

PUS-dependent Ψ sites in mRNAs at consensus sequences of cognate PUSs

Whereas no Ψ sites have been previously reported in mRNAs, Ψ-seq uncovered 41 PUS-

dependent sites in 41 mRNAs from yeast grown in mid-log phase. These include 34 Cbf5-

dependent sites, occurring at a variety of consensus sites, suggesting they may be mediated

by snoRNAs (below). Conversely, the 7 sites dependent on one of three non-essential PUSs

(Pus1, Pus4, Pus7), were typically associated with distinct consensus motifs: each of the 3

PUS4 dependent sites (in TEF2, MPM1, and ICL2) resided in a ‘RRUUCNA’ motif

(underlined U indicates the putative site), perfectly conforming to the known Pus4

‘GGUUCRA’ target sequence at position 55 of tRNA (Becker et al., 1997a); one PUS7-

dependent site in SPI1 was at a ‘UGUAA’ sequence, matching a ‘UNUAR’ consensus at

Schwartz et al. Page 5

Cell. Author manuscript; available in PMC 2015 September 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Pus7 targets in tRNAs and in snRNAs (Behm-Ansmant et al., 2003; Decatur and Schnare,

2008) (and which we expand to ‘UGUAR’, below). With one exception, all Pus1 dependent

targets (in coding and non-coding genes) were preceded by an A, suggesting partial, but

lesser, sequence specificity. We did not observe any positional bias along coding sequences

(we only analyzed coding regions due to very short UTRs, limited annotation, and very few

Ψ sites in non-coding regions).

Cbf5-dependent Ψ sites in mRNAs and snoRNAs are likely snoRNA-guided

As the substrate specificity of Cbf5 is typically mediated through H/ACA box snoRNAs, we

hypothesized that the Cbf5-dependent sites in mRNAs were also snoRNA-guided. To test

this hypothesis, we compiled all known H/ACA box targeting arms and used a

thermodynamics-based method to assess the folding energy of each snoRNA against each

Cbf5-dependent Ψ site (Experimental Procedures). For each site, we identified the

snoRNA with the minimal predicted free energy (strongest co-folding) and calculated a Z

score for this association with respect to the predicted energies of association with all

remaining snoRNAs. Validating our approach, we found that known rRNA Ψ sites had

significantly stronger associations with H/ACA box snoRNAs than their shuffled

counterparts (Figure 3E).

Overall, Cbf5-dependent sites in mRNAs and snoRNAs had stronger associations with

targeting regions in H/ACA box snoRNAs than shuffled controls. This was partly evident

when comparing the two distributions (one sided Wilcoxon test, P=0.07, Figure 3E), and

most prominent for outliers (e.g., Figure 3F). For example, 23.2% of Cbf5-dependent sites in

mRNA and snoRNAs were associated with an H/ACA box with a Z score < −3.5, compared

to 11% for shuffled controls (χ2 test, P=5.8×10−8).

Dynamic Pus7-mediated pseudouridylation of mRNAs in heat shock may affect RNA levels

The PUS-dependent sites in mRNAs raised the possibility that they may be differentially

regulated under different conditions. To test this hypothesis, we compared Ψ-seq profiles in

log phase to those from yeast in growth saturation, cold shock, and heat shock. While only a

few positions selectively acquired in Ψ stationary phase or cold shock (Figure 4A), 265

putative Ψ sites were induced in heat shock (45°C) vs. log growth (30°C) in three

independent replicates (Figure 4A, Table S2). A few are in key heat shock induced genes

(e.g., HSP60, HSP104, MDJ1, SSA4; Figure 4B), but most are in transcripts expressed at

similar levels in heat shock and vegetative growth (Figure 4B), suggesting that they are

differentially pseudouridylated, rather than differentially expressed.

The majority of heat shock acquired sites (159/265, 60%) occur in a perfect ‘UGUAR’ Pus7

consensus sequence (R=G>A) (Figure 4C), suggesting that the pseudouridylation program

in heat shock is induced through Pus7. To test this hypothesis, we applied Ψ-seq to a Δpus7

strain in normal and heat shock conditions. Ψ sites harboring the Pus7 consensus were

reduced to background levels in the Δpus7 strain in both conditions (Figure 4D–E). Thus,

there is a widespread, Pus7-mediated, pseudouridylation program in heat shock, that may

encompass the previously identified position in U2 snRNA induced in heat shock (Wu et al.,

2011). Importantly, the distribution of Ψ-ratios in UGUAR sites in mRNA in heat shock is
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comparable to that of rRNA sites, suggesting that mRNA sites are pseudouridylated to high

stoichiometries (Figure S3A).

To explore the role of pseudouridylation, we compared the expression level (from RNA-seq)

between WT and Δpus7 yeast for 142 genes that harbor Pus7-dependent Ψ sites in heat

shock vs. the remaining, non-pseudouridylated genes (Figure 4F), in either heat shock or

normal conditions. In heat shock, pseudouridylated genes were expressed at ~25% higher

levels in WT strains than in Δpus7 strains, whereas non-pseudouridylated genes were

expressed at roughly equal levels in the two strains. In contrast, the two sets were

comparably expressed in WT and Δpus7 at 30°C. These differences in expression only in

pseudouridylated genes and only in heat shock suggest that pseudouridylation may

contribute to RNA stability. We did not, however, find a significant correlation between the

Ψ-ratio and the change in expression. Future studies of RNA half-life with methods

compatible with dynamic responses (Miller et al., 2011) will help study this phenomenon.

We explored the basis for Pus7′s increased activity in heat shock. Surprisingly, both Pus7

RNA and protein levels are reduced in heat shock (Figure 4G), but there are significant

differences in Pus7 localization: it is predominantly nuclear in 30°C, and primarily

cytoplasmic in heat shock (Figure 4H, 4I). Thus, Pus7 localization may underlie its

enhanced repertoire of substrates in heat shock. Supporting a functional role for Pus7 in heat

shock, Δpus7 yeast show growth defects after heat shock in comparison to WT (data not

shown), consistent with a previous report on their increased heat sensitivity (Sinha et al.,

2008).

Finally, we explored factors that may govern modification specificity. First, in the most

highly expressed genes, ~30% of UGUAG containing loci are modified, suggesting that the

consensus plays a decisive role (Figure S3B). Furthermore, even among the remaining 70%,

Ψ-ratios were increased in WT compared to Δpus7 in heat shock (but not at 30°C),

suggesting that many are, in fact, modified (Figure S3C). Nonetheless, TGTAR loci called

as modified were more likely to have an A/T at position +3, and a pyrimidine at position −4

(Figure S3D), suggesting that features beyond UGUAG also contribute to specificity.

Pseudouridylation profiles and mechanisms are conserved in human

To assess the extent of similarity between yeast and human pseudouridylation, we

performed Ψ-seq in HEK293 cells and fibroblasts (below). Applying the same thresholds,

we identified 396 putative Ψ sites (Table S3): 353 sites in mRNA and 43 sites in non-coding

RNAs (excluding rRNA). We found no functional enrichments in pseudouridylated genes

compared to an expression-matched control set and the sites were relatively uniformly

distributed across coding and untranslated regions (data not shown).

To associate PUSs to Ψ sites, we examined the sequences surrounding the sites. The most

enriched motif (Figure 5A, 70/396 sites), had a GUUC core and was generally characterized

by ‘RGUUCNANYCY’, perfectly corresponding to the known Pus4-modified site in

tRNAs, and extending the Pus4 consensus in yeast. Another enriched motif (Figure 5B),

‘UGUAG’, present in 8 sites, is consistent with a mammalian Pus7 homolog. Thus,
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homologs of the same two site-specific PUSs are likely active on yeast and mammalian

mRNA.

The similarity between Ψ sites in yeast and mammals suggested that the other 318 sites,

lacking a Pus4 or Pus7 consensus, may be modified by DKC1/Dyskerin, the mammalian

Cbf5 ortholog. To test this hypothesis, we used siRNAs to knock down DKC1 to ~8% of

WT RNA levels (data not shown), and found significant reduction (Figure 5C,

Experimental Procedures) in Ψ levels at 58/396 sites. The 58 DKC1-dependent sites had

significant complementarity to human snoRNAs (P<0.03, one sided K-S test vs. randomly

shuffled sequences using the same approach as in yeast). In contrast, Ψ levels were only

negligibly reduced upon knockdown in sites containing either a Pus4 or a Pus7 motif (Figure

5C). Many of the 262 sites that we had neither associated with DKC1 (by knockdown) nor

with Pus4 nor with Pus7 (by motif) had borderline effects from DKC1 knockdown, and may

thus be substrates missed by our stringent criteria.

The number of Ψ sites we report in human is likely a very conservative lower bound, due to

our stringent thresholds and requirement for very deep coverage, in particular at moderately

or lowly expressed transcripts (Figure S2A). Indeed, when slightly relaxing the criteria of

calling a Ψ site (minimal Ψ-ratio: 0.05, minimal Ψ-fc: 2.5), we identified 176 additional

Dyskerin-dependent sites. Only two sites are substantially increased upon Dyskerin/Cbf5

knockdown, suggesting a <1% false detection rate. Thus, as in yeast, mammalian mRNAs

have a rich landscape of Ψ sites, mediated by at least three orthologous PUSs.

rRNA Ψ levels are conserved from yeast to human

We next examined whether the extent (stoichiometry) of pseudouridylation was conserved

across species, focusing on rRNA positions that are largely conserved throughout eukaryotes

and substantially covered in our data. To enhance our comparisons, we also collected Ψ-seq

data from log-phase Candida albicans and from mouse bone marrow derived dendritic cells.

We found that Ψ levels were quantitatively conserved between S. cerevisiae and C. albicans

(R=0.78, Figure 5D), between human and mouse (R=0.78, Figure 5E), and even between

yeast and human (R=0.67, Figure 5F), suggesting that both the presence and relative

abundance of rRNA Ψ sites are under strong purifying selection.

Reduced rRNA Ψ levels in cells from dyskeratosis congenita patients

It has been hypothesized that aberrant rRNA pseudouridylation could underlie X-linked

dyskeratosis congenita, caused by mutations in DKC1/dyskerin, but the extent to which it is

altered remains controversial (Wong and Collins, 2006), (Bellodi et al., 2013), (Gu et al.,

2009; Mochizuki et al., 2004).

Applying Ψ-seq to fibroblasts derived from 7 and 11 year old patients harboring two distinct

mutations (del37L and A386T, respectively) and to cells from age-matched controls, we

found subtle – yet significant – decreases in rRNA pseudouridylation among patients

(Figure 5G), and Ψ-seq profiles further group in unsupervised analysis by disease and not by

age (Figure S4A). The subtle effect, on average a reduction of 10% in Ψ-ratio per site, likely

explains why these were difficult to observe with less sensitive techniques. As a reference,
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rRNA pseudouridylation per site is reduced on average a dramatic 55% upon DKC1

knockdown (Figure 5H).

Decreased pseudouridylation in telomerase RNA component (TERC) in dyskeratosis
congenita cells

Dyskeratosis congenita can also be caused by mutations in the ncRNA telomerase

component, TERC (Hoareau-Aveilla et al., 2008; Trahan and Dragon, 2009). TERC is

bound and stabilized by DKC1, but is destabilized in dyskeratosis congenita (Ashbridge et

al., 2009). Our findings of Ψ sites within snoRNAs (Figure 3) prompted us to examine

whether TERC, which harbors an H/ACA box domain, might be pseudouridylated as well,

in a DKC1-dependent manner. While TERC sites were not called in Hek293 cells, the read

distribution across TERC revealed a putative Ψ site at position 307 (Figure S4B). This site

was not called due to low read counts in the lowly-expressed TERC. TERC expression was

even lower in the fibroblasts (Patients FPKM: 0.15 and 0.28; controls: 2.8 and 0.8),

precluding any analysis.

To detect and quantify Ψ sites in TERC we first enriched it in RNA from fibroblasts of

patients and age-matched controls using hybrid capture with RNA Antisense Purification

(RAP) (Engreitz et al., 2014) (Experimental Procedures). This resulted in ~750 fold

enrichment in the fraction of reads in the CMC-treated samples aligning to TERC compared

to poly(A) selected RNA. Ψ-seq of the hybrid-captured RNA confirmed substantial

pseudouridylation of position 307 (Figure 5I), a highly conserved uridine (Figure 5K) in a

region essential for telomerase activity and TERT binding (Chen et al., 2002), and showed

that it is modified at significantly higher levels in the control sample (Ψ-ratio=0.47) than in

the patient sample (Ψ-ratio=0.33) (Figure 5J, χ2 test, P=0.006). A similar reduction was

observed when comparing samples from the 11 year old patient to the age matched control

(χ2 test, P=0.01; Figure S4C). Another putative Ψ site was found at position 179 albeit at

substantially lower levels (Ψ-ratio=0.11). This confirms two of the six previously proposed

Ψ positions in TERCs (we do not find evidence for the others) (Kim et al., 2010), suggests

that TERC pseudouridylation may be compromised in dyskeratosis congenita, and provides

a general way to quantify Ψ in lowly expressed genes.

Discussion

Ψ-seq profiles Ψ in an unbiased, quantitative, transcriptome wide manner at single-

nucleotide resolution. It discovered pseudouridines in S. cerevisiae and human snoRNAs

and mRNA, catalyzed by both snoRNA-dependent PUSs and site-specific PUSs guided by

consensus sequences. We identified a dynamic program induced in yeast heat shock, where

Ψ sites accumulate at hundreds of mRNAs, possibly affecting RNA levels. Ψ-seq allows us

to compare Ψ stoichiometries across rRNA positions, finding that these are highly

conserved, but reduced in cells from dyskeratosis congenita patients. Although we cannot

exclude the possibility of some false positives, our stringent controls and excellent

correspondence to prior knowledge suggest that their rate is low. The roles of PUSs and Ψ

are likely more complex than previously assumed, and our genome-wide method can help

study this.
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Ψ-seq can be further enhanced in several ways. First, to accurately estimate Ψ levels in

lowly expressed transcripts it can be combined with hybrid capture, as demonstrated for

TERC, or with new methods to pre-enrich for pseudouridylated RNA. Second, Ψ-seq cannot

monitor Ψ levels at 3′ transcript ends, as it relies on reverse transcription termination. To

help probe Ψ in short RNA, we could couple Ψ-seq with alternative ligation protocols.

Finally, Ψ-seq is theoretically limited in identifying two closely proximal pseudouridines, as

reverse transcription is expected to always terminate at the downstream – and never at the

upstream - site. In practice, however, this does not appear to be a major limitation: for

example, we detect adjacent positions in rRNA (e.g., 25S:1052 and 1056) or in U2 snRNA

(positions 42 and 44). This is likely due to a incomplete stoichiometry, incomplete CMC-

labeling of Ψ bases and/or imperfect efficiency ofRT-stopping at CMC-treated sites, though

Ψ quantification at such adjacent sites may nonetheless be impacted.

PUS substrate specificity

Site-specific, non-essential PUSs in S. cerevisiae were previously thought to modify only

one (or a few) residues, by recognizing secondary or tertiary structures in a specific RNA

substrate (Becker et al., 1997b). Our results demonstrate that such PUSs have a dramatically

larger substrate repertoire than previously assumed, and suggest that many PUS-mediated

modifications are guided in part by primary sequence features in their substrates (Figure

6A).

This is conserved from yeast to mammals, where the predominant consensus is identical to

that in yeast Pus4, suggesting that Ψ is mediated by TruB1/TruB2, the mammalian orthologs

(Zucchini et al., 2003). There are at least 23 putative PUSs in human (Hunter et al., 2011),

and one cannot fully rule out the possibility of additional PUSs in yeast; perturbation

experiments will help elucidate their targets, as well as resolve possible functional

redundancies (Grosshans et al., 2001).

We also find evidence for mRNAs pseudouridylation via snoRNA-dependent PUSs. A more

elaborate repertoire of snoRNA substrates, potentially mediated through imperfect

complementarities, has previously been hypothesized (Wu et al., 2011), based on the single

finding that heat-shock/nutrient-deprivation induced Ψ at position 93 in U2 snRNA is

guided through imperfect pairing with snR81 (Wu et al., 2011).

Pus7-pseudouridylation program in heat shock

The Pus7-dependent induction of pseudouridylation during heat shock is an attractive

system for further studies of Ψ function. The specificity of the modified site to heat shock

(despite lower levels of Pus7 than in other conditions) and the similarity of distribution of Ψ-

ratios to rRNA could be consistent with a regulated system, but further functional studies are

warranted. This program may be mediated through Pus7 localization in the cytoplasm in

heat shock (Figure 6B). Since RNA levels of pseudouridylated targets are higher in WT

compared to Δpus7, it is tempting to speculate that Ψ may serve to stabilize transcript

structure in heat shock. Alternatively, Ψ could target specific mRNAs to heat shock induced

stress granules in a similar manner to m6A destabilization of RNA by directing it to P

bodies (Wang et al., 2014). Such responses could help cells to better withstand heat shock,
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consistent with the increased heat sensitivity of the Pus7 deletion strain in S. cerevisiae

(Sinha et al., 2008). Pseudouridylation of a stop codon was previously shown to suppress

translation termination (Karijolich and Yu, 2011), suggesting that Ψ might modify the

genetic code. We found only a single putative site in a stop codon in HEK293 cells and none

in yeast; greater depth may revise these predictions.

Interestingly, Ψ levels at position 50 in 5S rRNA, also catalyzed by Pus7, also increase in

heat shock, suggesting that it is not fully modified during exponential growth, and that its

pseudouridylation might confer an advantage during heat shock. These data challenge the

notion that rRNA modifications are constant across growth conditions, and suggest that the

stoichiometry of rRNA modification may also change in response to external stimuli.

Pseudouridylation in dyskeratosis congenita

Pseudouridine is particularly important in dyskeratosis congenita, caused by mutations in the

Cbf5 ortholog DKC1/dyskerin. Our results contribute two findings. First, we observed a

subtle, yet significant, quantitative difference in Ψ levels in patient derived samples,

compared to age-matched controls, which were not previously observed in some studies

(Wong and Collins, 2006), but suggested in others (Bellodi et al., 2013), possibly due to less

sensitive methods. Second, we detect two putative Ψ sites in TERC, one of which at very

high levels and at highly conserved position 307 within the essential P6.1 hairpin (Chen et

al., 2002). A Ψ site was previously proposed at that position, and shown to significantly

increase stability of the loop structure in vitro (Kim et al., 2010). Our findings may unify the

two roles attributed to dyskerin – of stabilizing TERC and of pseudouridylating RNA – and

suggest that dyskerin may both bind to and pseudouridylate TERC, and that both processes,

perhaps in a mechanistically coupled manner, may be disrupted in the disease.

Pseudouridylation in ncRNAs at sites of inter or intra-molecular interactions

It has previously been noted that Ψ sites in rRNA and snRNAs tend to occur in ‘important’

regions that directly interact with other molecules. In U1, U2, U4 and U6 snRNAs, for

example, Ψ sites occur at or close to a site that basepairs with intronic RNA to facilitate

RNA splicing (Charette and Gray, 2000). In rRNA there is a high density of conserved Ψ

sites at the peptidyl-transferase center and at the decoding center of the 25S rRNA subunit,

which interacts with mRNA and with the tRNA stem-loop (Bakin et al., 1994; Bakin and

Ofengand, 1993; Lane et al., 1992). Our study extends these observations to snoRNAs,

where we find Ψ sites within both C/D and H/ACA box snoRNAs, at positions involved in

base-pairing with target sites. The highly conserved Ψ site in TERC is also in a region

crucial for telomerase activity, involved in binding to TERT (Chen et al., 2002).

Ψ may also play a role in intramolecular interactions. For example, a Pus1 dependent Ψ site

at position 273 in NME1, the RNA component of yeast RNAse MRP, is in a stem structure

in the P2 region (Esakova and Krasilnikov, 2010; Esakova et al., 2013; Reilly and Schmitt,

1995), and a site in the helix 2 loop of U3, is involved in pre-ribosomal rRNA cleavage.

Mapping Ψ sites in ncRNA molecules may help delineate sites involved in inter and

intramolecular interactions.
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Our quantitative and high-resolution methodology coupled with genetic perturbations

yielded unbiased, transcriptome-wide maps of Ψ across different RNA species, identified

consensus sequences recognized by the PUS enzymes, and established pseudouridine as a

ubiquitous and dynamic modification of eukaryotic mRNA. Further studies will leverage

this method and finding to elucidate Ψ’s function in the RNA life cycle, especially of

mRNA.

Experimental Procedures

Yeast growth conditions

Unless otherwise noted, yeast were grown in YPD supplemented with .27mM uridine, heat

shock was performed at 45°C for the designated time points, and collected as described in

the Extended Experimental Procedures. Growth curves were measured in 96 well plates

using a Tekan plate reader. Deletion strains are listed in the Extended Experimental
Procedures.

Ψ-seq

Ψ-seq was performed on PolyA+ RNA treated with. CMC essentially as previously

described (Bakin and Ofengand, 1993; Bakin and Ofengand, 1998), and detailed in

Extended Experimental Procedures. Input controls were handled identically in all steps

but without CMC treatment. Following the procedure, RNA-Seq libraries were prepared by

an RNA ligation method as detailed in the Extended Experimental Procedures and

sequenced on Illumina HiSeq 2500 with 30bp paired end reads.

Detection of Ψ sites

Reads were mapped to the yeast genome (sacCer3) using Bowtie, or to the human (hg19)

genome using Tophat,, with parameters and scripts as described in the Extended
Experimental Procedures. For rRNA and snRNA sites, we aligned reads against specific

database of these two classes. Mouse reads were aligned to mouse rRNA from Refseq. C.

albicans reads were aligned to the C. albicans genome (SC5314 version A21). Ψ sites were

identified by first calculating a Ψ-ratio for each treated or input sample, followed by Ψ-fold

change (log2 fold changes of Ψ ratios in the treated versus non-treated samples). Sites were

filtered by parameters listed in the Extended Experimental Procedures. For all unique

sites passing the filters in at least one sample, we calculated a Ψ-ratio and Ψ-fc in each

sample and considered all sites whose median Ψ-ratio and median Ψ-fc exceeded 0.1 and 3,

respectively (unless otherwise noted). We demanded that each 21 nt sequence surrounding

the putative Ψ site be unique, and also filtered sites in positions other than immediately

following ‘U’. To compare orthologous rRNA sites across species, we used ‘needle’ (Rice et

al., 2000) for pairwise alignments of rRNAs with lift over of known Ψ sites (Machnicka et

al., 2013) from human to mouse and from S. cerevisiae to C. albicans. For further details see

Extended Experimental Procedures.
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Synthetic spike-ins

We in vitro transcribed an RNA bait containing only a single uridine (Extended
Experimental Procedures), and mixed pseudouridylated and non-pseudouridylated RNA at

indicated ratios.

PUS dependent sites

We identified differentially pseudouridylated sites across deletion strains of non-essential

PUSs and snoRNAs we tested both the number of reads starting and overlapping at each

putatively identified position between a given sample and the background of all samples,

with a procedure based on a χ2 test detailed in the Extended Experimental Procedures,

and similar procedures for heat-shock, Pus7-dependent sites, Cbf5-dependent sites, and

CDK1-dependent sites.

Motif analysis

We used position specific scoring matrices (PSSMs) defined by 21 bp sequences spanning

the identified Ψ sites, visualized using SeqLogo in R, and displaying only regions with non-

uniform sequence composition.

Prediction of association between Cbf5-dependent target sites and snoRNAs

We assessed the hybridization potential between Cbf5-dependent target sites and H/ACA

box snoRNAs by calculating free energies of concatenated upstream and downstream

complementary arms (Piekna-Przybylska et al., 2007), separated by a constant hairpin

sequence, folded against a 20-nt region surrounding each CBF5 dependent site using

RNAcofold (Gruber et al., 2008), with parameters and constraints described in the Extended
Experimental Procedures. We shuffled each 20-nt region 15 times (maintaining a center

U) as controls.

Pus7 localization

Pus7 localization was measured by microscopy of S. cerevisiae encoding GFP-tagged Pus7

grown at 45°C using a Nikon Eclipse Ti with oil immersion at 100X magnification. ImageJ

was used to quantitate GFP intensity with DAPI staining to define nuclear boundaries, as

detailed in the Extended Experimental Procedures.

Bone marrow derived dendritic cells

Cells were prepared as previously described (Amit et al., 2009). All experiments were

performed in compliance with the institutional guidelines and were reviewed and approved

by the Institutional Animal Use and Care Committee (IAUCC) of MIT (Protocol

0612-058-15).

DKC1 knockdown

Human HEK293 cells were plated in 6-well plates at 20% confluence. siRNAs targeting

DKC1 (catalog numbers: s4111 and s4112) were transfected using Lipofectamine

RNAiMAX (Life Technologies) following the manufacturer’s protocols, with boosts at 48
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and 96 hours; As negative controls, we used Ambion® In Vivo Negative Control #1 siRNA

(catalog number: 4457287). Cells were harvested at 144 hours.

Samples from dyskeratosis congenita patients

Fibroblasts were obtained from Coriell [(GM01774 (del37L, 7 years), AG04646 (A386T, 11

years), GM00409 - (healthy 7 year old), GM01864 - (healthy 11 year old)].

RAP-RNA enrichment of TERC

We performed RAP on intact isolated total RNA as previously described for RAP-

RNA[AMT] (Engreitz et al., 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Ψ-seq for high resolution, transcriptome-wide profiling of pseudouridine

• Many novel sites in mRNA; dynamically regulated in heat shock

• Sites depend on conserved cognate pseudouridine synthases in yeast and human

• Reduced rRNA and TERC pseudouridine in dyskeratosis congenita patients
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Figure 1. Ψ-seq quantitatively measured transcriptome-wide pseuodouridylation profiles
(A) Ψ-seq procedure. Poly(A) selected RNA is treated with CMC, which covalently binds to

U and residues, and, to limited extent, G (Ho and Gilham, 1971; Metz and Brown, 1969a, b),

followed by incubation at alkaline pH, leading to hydrolysis of U-CMC adducts, which are

less stable than Ψ-CMC counterparts. RNA is next fragmented to a size range of 80–150 nt,

followed by adapter ligation to the 3′ end. Reverse transcription is primed off of the adapter,

expected to lead to premature termination one base pair immediately downstream of

pseudouridylated sites. A second adapter is ligated to the 3′ end of the cDNA and libraries

are amplified and sequenced in paired end mode. (B) Scoring modified sites. Ψ-ratio (red,

top) between reads terminating at a site and reads overlapping it, and Ψ-fc (blue, bottom),

the fold change in Ψ-ratio in the CMC-treated sample over non-treated control. (C)
Validation with a synthetic spike in. Ψ-fc (Y axis) at each position (X axis) across a

synthetic spike-in harboring one pseudouridylated site at varying stoichiometries (color

legend) at the indicated position (arrow). (D) Ψ-seq quantifies relative stoichiometry. Scatter

plot comparing Ψ-ratios (Y axis) at the pseudouridylated site in the spike-in with

pseudouridine stoichiometries (X axis). The Pearson correlation coefficient (r) and

associated P value are denoted. (E) Ψ-seq detects known Ψ sites in rRNA. Ψ-fc values (Y

axis, dark blue) at each position (X axis) in 18S rRNA, overlaid with all known Ψ sites in
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this subunit (grey vertical lines). (F) ROC curves for different metrics (color legend) for

calling putative Ψ sites. Each classifier was trained based on Ψ-seq data from human rRNA,

and tested on their performance in yeast rRNA. (G) Nucleotide distribution across all sites

passing our detection thresholds in a sample in mid-log yeast. See also Figure S1.
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Figure 2. Identification of PUS-dependent Ψ sites in yeast
(A) Ψ-seq correctly distinguishes targets of snoRNAs. A comparison of Ψ-fc scores across

all known Ψ sites in three rRNAs (18S, 28S, 5.8S) measured in yeast strains in which either

H/ACA box snR34 (X axis) or snR189 (Y axis) were deleted. snR34 is known to target

positions 2880 and 2886 in 25S rRNA (red), snR189 targets positions 2735 in 25S and 466

in 18S rRNA (purple), all detected as outliers in these experiments. (B) Ψ-seq associated

modified bases with their cognate PUS and snoRNAs. Heatmap depicting Ψ-ratios (Z scores

per row, color bar) across all sites (rows, gene and position labeled on left) in the PUS-

dependent collection that are dependent on a snoRNA or a non-essential site-specific PUS

(columns). For tRNAs, the labeled position is with respect to a multiple alignment of tRNAs

with manual correction at two sites, to allow comparison between sites. A check mark

indicates that a site was both previously known to be pseudouridylated and that its catalysis

was known to be mediated through the enzyme or snoRNA with the minimal Z score in the

figure. (C) Ψ-seq identifies Cbf5-dependent Ψ sites. As in (B) for all sites (rows) dependent

on Cbf5. (D) Distribution of Ψ sites in different RNA classes, in the Pan-Ψ collection (left)

and PUS-dependent collection (right). CDS: mRNA coding sequence. (E) Ψ-ratios (Y axis)

across the snoRNA snR47 (left), the mRNA GLK1 (middle), and the mRNA SPI1 (right),

which depend on Cbf5, Pus1 and Pus7, respectively. Ψ-ratios are presented for CMC-treated

(black) and non-treated (red) samples. Called Ψ sites are marked in vertical thick grey lines,
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and their ‘absence’ position (in the relevant deletion strain) is marked by a dashed grey box.

See also Figure S2 and Table S1.
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Figure 3. Pseudouridylation in yeast snoRNAs
(A) Complementarity regions between three C/D box snoRNAs in yeast (black) and target

sites in rRNA (red). Red arrows: detected Ψ sites. (B) As in A, but in human. (C) As in A,

but for H/ACA box snoRNAs. (D) SnoRNAs expression in WT strains (X axis) compared to

Cbf5 knockdown strains (Y axis), showing decreased expression of H/ACA box snoRNA

(red), but not C/D box snoRNAs (orange) or snRNAs (dark red), upon knockdown. (E)
Cumulative distribution frequencies of minimal Z-score transformed free energies, predicted

by cofolding each putative CBF5-dependent (or shuffled) site against all known H/ACA box

targeting arms. Distributions are plotted separately for sites in the rRNA (green), all

remaining sites in mRNA and snRNAs (blue), and their corresponding shuffled versions

(yellow and red, respectively). (F) Predicted associations between three CBF5-dependent

sites (red) and top-scoring H/ACA box snoRNAs (black).
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Figure 4. Induction of Pus7-dependent sites in heat shock
(A) Bar plots of the number of differentially modified sites (Y axis), in each of three

conditions (X axis) relative to mid-log yeast. Sites are color-coded based on RNA class

(color legend). (B) Differential modification in heat shock is not merely due to changes in

expression levels. Expression levels in heat shock (X axis) or non-heat shock (Y axis)

conditions for all genes harboring heat-shock induced Ψ sites. (C) Sequence motif learned

across all Ψ sites induced in heat shock, is strongly enriched for the TGTAR Pus7 motif. (D)
Ψ-ratios (Y axis) in CMC-treated (black) and non-treated (red) samples in five genes

(columns) acquiring Ψ sites in heat shock. Ψ-ratios are shown in WT in 30° (top) and heat-

shock (45°, middle), and in heat-shock in Δpus7 (bottom). Called sites are depicted in

vertical grey bars in the samples in which they are called, and dashed grey boxes in the

remaining samples. (E) Box plots of Ψ-ratios in WT or Δpus7 strains, grown in heat shock

or 30°, for 159 heat-shock induced sites harboring a Pus7 consensus (left) and 106 sites

without the consensus (right). (F) Cumulative distribution plots of fold changes of

expression levels between WT and Δpus7 strains (X axis), comparing genes harboring a

Pus7-induced Ψ sites (blue) to genes lacking it (red). At 45° (left), genes harboring Ψ sites
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are expressed at higher levels in the WT strain than in Δpus7, whereas non-pseudouridylated

genes are present at similar levels. At 30° (right), these differences are marginal. P-value of

the Kolmogorov-Smirnov test is depicted. (G) Pus7 transcript (left; mean TMM-normalized

FPKM values from three replicates) and protein (right, data in four replicates from (Nagaraj

et al., 2012)) levels (Y axis) in heat shock and non-heat shock conditions. Error bars are

standard error of the mean.(H, I) Pus7 localization. Fluorescent microscopy images (H) and

quantification (I) during a heat shock time course show mostly nuclear localization at 30°C

(time 0 in H, and red in I), which is significantly reduced after heat shock (time 60 in H,

blue in I). P-value of a Mann-Whitney test is noted. See also Figure S3 and Table S2.
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Figure 5. Ψ-seq of human RNA highlights conserved features and disease-relevance
(A–B) Sequence motifs from 70 sites harboring a Pus4 associated GUUC core (A) and 13

sites harboring a Pus7 associated UGUA core (B), of 396 modified sites in HEK293 RNA.

(C) Difference in Ψ-ratios in DKC1 knockdown relative to control (Y axis) in HEK293

cells. Box plots from left to right: DKC1-dependent sites, sites harboring Pus4 (GUUC) or

Pus7 (UGUAR) associated motifs, and all remaining sites. (D–F) Correlation of

pseduoridylation stoichiometries in rRNA between homologous positions in S. cerevisiae

and C. albicans rRNA (D), human and mouse (E), and yeast and human (F). Positions are

color-coded based on rRNA subunit. (G) Distributions of Ψ-ratios across rRNA positions in

fibroblasts from dsykeratosis patients (grey) and age-matched controls (pink). Left panel: 7

year old patient; Right: 11 year old patient. (H) Ψ-ratios in rRNA positions in DKC1

knockdown (grey) or control (pink) in HEK293 cells. (I) TERC modification is affected by

DKC1 knockdown. Number of reads (top; indicative of RT termination) and Ψ-ratios

(bottom) at each site in the TERC transcript (X axis). Reads are shown in both CMC-treated

(black) and non-treated (red) samples; Ψ-ratios for the treated samples. The putative Ψ

position is highlighted in a grey vertical bar. (J) Ψ-ratios for position 307 in 7-yr old patient
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and age matched control; Error bars: standard error. (K) RNA secondary structure of the

CR4/CR5 region in TERC redrawn based on (Zhang et al., 2011). Red arrow: putative Ψ

site. See also Figure S4 and Table S3.
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Figure 6.
(A) mRNA pseudouridylation in eukaryotes is mediated by at least four conserved PUSs,

some site specific (Pus1, Pus4, Pus7) and others snoRNA mediated (yeast Cbf5/human

DKC1). (B) Pus7 may orchestrate the yeast mRNA pseudouridylation program in heat

shock. At 30°, Pus7 is primarily nuclear, and its localization into the cytoplasm upon heat

shock may induce mRNAs pseudouridylation.
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