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This paper presents a large-scale atomic resolution simulation of nanoindentation int
thin aluminum film using the recently introduced quasicontinuum method. The purpos
of the simulation is to study the initial stages of plastic deformation under the action
of an indenter. Two different crystallographic orientations of the film and two different
indenter geometries (a rectangular prism and a cylinder) are studied. We obtain both
macroscopic load versus indentation depth curves, as well as microscopic quantities
such as the Peierls stress and density of geometrically necessary dislocations benea
indenter. In addition, we obtain detailed information regarding the atomistic mechanis
responsible for the macroscopic curves. A strong dependence on geometry and orien
is observed. Two different microscopic mechanisms are observed to accommodate
the applied loading: (i) nucleation and subsequent propagation into the bulk of edge
dislocation dipoles and (ii) deformation twinning.
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I. INTRODUCTION

As mechanical systems continue to decrease in
and begin to approach atomic length scales, it is bec
ing important to develop experimental and correspo
ing theoretical tools to characterize material propert
at these scales. One such experimental technique w
has become popular due to its relative simplicity
nanoindentation. In this procedure an indenter with
mensions of the order of tens of nanometers is pres
into the surface of a solid. Nanoindentation has n
become a standard technique for evaluating the mech
cal properties of thin films.1 It can also be a useful too
for studying the onset of plastic flow in small volumes
phenomenon which can play a significant role in mac
scopic deformation processes such as adhesion, fric
and fracture.2

The nanoindentation test is basically an extens
of traditional hardness and microhardness tests to v
small scales. The classical tests offer a reasonably
ambiguous measure of the hardness or mean pres
beneath the indenter for a given load which can th
be related to the yield strength of the material throu
semiempirical relations.3,4 The assumption here is that
large plastic region forms beneath the indenter which
be treated approximately through plastic slip line theor
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or more exactly by computation. Empirical correction
are sometimes necessary to account for effects suc
strain hardening and deviations of the indenter from
nominal geometry.

In nanoindentation this relative clarity is lost. A
the very small scales and loads common to these
periments the deformation is characterized by discr
dislocation nucleation events and the subsequent inte
tion of the small numbers of dislocations that have be
generated.5 This is not the large-scale plasticity observe
at the macroscopic scale. It is also not clear what r
other mechanisms such as diffusion and block slip2 play
in this small-scale incipient plasticity. Interpretation
further complicated by the fact that the response c
be highly dependent on the indenter geometry and
orientation relative to the specimen crystallography.
can also be strongly influenced by additional factors su
as surface effects,2,6 substrate effects,7 grain effects,8 and
pre-existing defect populations.9

Interpretation of nanoindentation tests may be fac
tated by a clearer understanding of the processes ta
place during the test. In recent years there have b
a number of molecular dynamics (MD) simulations
nanoindentation2,10–12 which have led to greater insigh
into the microscopics of nanoindentation. Due to t
computational intensity of the problem many of the
simulations were limited to very small model size
(cubes of only tens of atoms on a side) or very hi
loading rates, or both. In this work we make use of t
recently developed quasicontinuum method13–17 which
allows for the modeling of systems with dimensions
the order of microns and thus minimizes the possibil
 1999 Materials Research Society 2233
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of the contamination of the results by the bounda
conditions arising from the small model size. The iss
of loading rate is sidestepped since the simulation
carried out in quasistatic fashion, by determining a ser
of static equilibrium states, each corresponding to
different load. As long as the load increment is ke
sufficiently small, the results are independent of t
loading steps.

In this paper we focus on incipient plasticity, th
very initial stages of plastic activity, in an aluminum
thin film subjected to nanoindentation. We investiga
the mechanisms whereby dislocations are nuclea
their subsequent interactions, and the effects of inde
geometry and film crystallography. We find that depen
ing on the crystallography and geometry, complete
different microscopic mechanisms are observed w
correspondingly different macroscopic manifestatio
For a description of the technical details of applyin
quasicontinuum to study nanoindentation problems,
Ref. 17.

II. METHODOLOGY

The quasicontinuum methodology used here is
mixed continuum and atomistic method developed
study problems in the mechanics of materials whe
multiple scales operate simultaneously. It was origina
introduced14,15 to study single crystal mechanics an
later extended16,17 to treat polycrystals and polyphas
materials. The basic idea is that in a crystal undergo
mechanical deformation the majority of the lattice e
periences a slowly varying deformation on the atom
scale which is well characterized by the continuu
approximation. It is only in the vicinity of defects o
in the presence of mechanical manipulations on
order of the lattice spacing where discrete atomic effe
generally become important. There is thus no need
explicitly treat every single atom in the crystal as
done in standard lattice statics and molecular dynam
approaches.

Within the quasicontinuum method the solution
to select a small subset of the total collection of ato
to represent the energetics of the whole. The crys
is then divided into disjoint cells each containing
single one of these selected atoms whose energetics
assumed to represent those of all other atoms in its c
Thus if the exact energy of a collection ofN atoms is
given by,

Eexact ­
NX

i­1

Ei , (1)

where Ei is the energy of atomi, then within the
quasicontinuum method a reduced energy potentia
2234 J. Mater. Res., Vol. 1
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defined, such that,

Ereduced ­
RX

i­1

niEi , (2)

where R ! N is the number of representative atom
in the selected subset andni is the number of atoms
represented by atomi. Clearly, when all atoms are
selected to be representative atoms, the exact descrip
is recovered.

This reduced atomic description is stored on a fin
element mesh18 whose nodes coincide with the repre
sentative atom positions. The degrees of freedom
the system are the displacements of the representa
atom nodes. The positions of all other atoms in t
crystal, which are not explicitly accounted for, can b
obtained by finite element interpolation. This becom
necessary when computing the energies of the rep
sentative atoms which depend on the positions of th
neighboring atoms.

To compute the energies of the representative ato
the embedded atom method (EAM)19 is employed. In
this scheme the energy of an atom is computed from
relative positions of all other atoms that fall within som
specified cutoff, using the relation,

Ei ­
1
2

X
j

f
°
rij

¢
1 Usrid , (3)

where rij is the distance from atomi to neighbor j,
fsrd is a pair potential characterizing the core-co
repulsion of the atomic nuclei,ri is the electron
density at atomi, and Usrd is the embedding en-
ergy due to the attraction between the nucleus a
ambient electron density. Within the EAM approx
mation the electron density is also taken to have
pairwise form,

ri ­
X

j

f
°
rij

¢
. (4)

The EAM offers a computationally tractable descriptio
of the material response which appears to describe m
metals quite adequately.20

Two separate methodologies are employed to obt
the positions of the atomic neighbors of the represe
tative atoms that are necessary for the evaluation
(3). The energy of representative atoms experiencin
slowly varying deformation in their vicinity is computed
in a local fashion where it is assumed that the nea
environment of the atom is well-characterized by t
deformation gradient at its position. This is essentia
the continuum approximation, and this limit of the fo
mulation corresponds to a nonlinear anisotropic elas
description of the material. At the other extreme a
atoms experiencing large variations of deformation
their vicinity. These atoms are computed nonlocally
4, No. 6, Jun 1999
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the sense that the positions of the neighboring ato
are independent of the deformation at the representa
atom position. This corresponds to the lattice statics
atomistics limit of the formulation.14

The total energy of the system can now be compu
from (2) and (3) and equilibrium configurations a
identified by minimizing this energy with respect
the representative atom positions. This approach co
sponds to a zero temperature quasistatic solution.
minimization is carried out by a quasi-Newton solv
with a conjugate gradient backup when the initial gue
is outside the basin of attraction of the Newton solv
(see Ref. 17 for details). At each relaxed configurat
the forces (per unit thickness in the out-of-plane dire
tion) on the representative atoms are brought to be
1026 eVyÅ2.

A pseudo-two-dimensional implementation of qua
continuum was used in the current study. Although
atomistic calculations were made in three dimensio
(i.e., each representative atom is surrounded by a sp
of atoms for the purpose of calculating its energy), t
displacement fields were constrained to have no varia
in the out-of-planez-direction, thus,

ux ­ uxsx, yd, uy ­ uysx, yd, uz ­ uzsx, yd ,
(5)

where ux, uy, and uz are the displacements in th
respective directions. This is a form of generaliz
plane strain.

Finally, the selection of representative atoms a
their local versus nonlocal status is automatically carr
out by the formulation using appropriate criteria and
constantly updated as the deformation progresses. M
details on this and other fine points of the method c
be found in the references cited at the beginning
this section.

III. PROBLEM DESCRIPTION

A rigid knife-like indenter is driven into a thin
aluminum film (0.1mm thick) resting on a rigid sub
strate. Both rectangular and cylindrical indenter cro
sections were considered. Aluminum was chosen
these simulations, despite the fact that it is a di
cult material to treat experimentally due to oxide fo
mation, because of the availability of a good EA
potential for it.21 EAM potentials traditionally suffer
from serious underestimation of surface and stack
fault (SF) energies. However, the Ercolessi–Adams
tential for Al has a SF energy of 0.10 Jym2 which
compares reasonably well with experimental values
0.12–0.14 Jym2 and a (111) surface energy of 0.87 Jym2

which is again comparable with the experimental valu
of 1.14–1.20 Jym2. The elastic moduli predicted by thi
potential areC11 ­ 117.74 GPa,C12 ­ 62.06 GPa, and
C44 ­ 36.67 GPa. The experimental values extrapolat
J. Mater. Res., Vol. 1
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to T ­ 0 are C11 ­ 118.0 GPa, C12 ­ 62.4 GPa, and
C44 ­ 32.5 GPa.21 The equilibrium lattice constant i
a0 ­ 4.032 Å.

In the following sections we will often make use
simple linear elastic solutions for an isotropic mater
to help rationalize the simulation results. The mate
parameters appearing in these solutions are the s
modulusm and Poisson’s ration. We compute effective
values for these parameters fromC11, C12, and C44

by performing a Voigt average which ensures that
invariants of the elastic modulus tensor computed us
the effective isotropic moduli are the same as th
computed from the anisotropic moduli.22 This leads to
the relations,

m ­
1
5 sC11 2 C12 1 3C44d , (6)

n ­
1
2

∑
C11 1 4C12 2 2C44

2C11 1 3C12 1 C44

∏
, (7)

which give m ­ 33.14 GPa and n ­ 0.319 for
Ercolessi–Adams aluminum.

The knife-like geometry was dictated by the pseu
2D nature of the quasicontinuum model adopted. T
prefix pseudois meant to emphasize that although t
analysis is carried out in a 2D coordinate system, o
of-plane displacements are allowed and all atomi
calculations are three-dimensional, as explained in
previous section. Within this setting only dislocatio
with line directions perpendicular to the plane of analy
can be nucleated, and no variation in the out-of-pla
z-direction can be sustained. These constraints ap
to be compatible with the two-dimensional nature
the indenter, although some deformation paths may
unavailable.

Two different crystallographic orientations were i
vestigated, as displayed in Fig. 1 where the dimens
of the investigated system are also given. In the fi
configuration the film was oriented so that the prefer
slip system k110l h111j was parallel to the indenta
tion direction to facilitate dislocation nucleation [s
Fig. 1(a)]—this will be referred to as thedislocation
orientation. In the second configuration the indenter w
driven into a (111) surface of the crystal [see Fig. 1(b
The preferred slip system is now angled with respec
the indentation direction. In this case the indentation w
accommodated by a deformation twinning mechani
as will be seen in a following section, and so th
configuration is referred to as thetwinning orientation.

In addition to the two different crystallograph
orientations, two different indenter geometries we
studied. The first, as depicted in Fig. 1, is a rectang
indenter with a width of about 25̊A. The second indente
geometry (not depicted in the figures) was a cylindri
indenter with a radius of 11.6̊A. We note that the choice
of indenter size was dictated by convenience and d
4, No. 6, Jun 1999 2235
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FIG. 1. Schematic representation of the nanoindentation mo
(a) dislocation orientation and (b) twinning orientation.

not reflect a fundamental limitation of the system siz
that can be considered. For both indenter geomet
the indenter was modeled as a displacement boun
condition applied to the surface atoms lying beneath
The indenter is thus rigid and phantom in the sense
the interactions between tip atoms and film atoms are
considered. The substrate was modeled as a rigid sur
allowing no displacements, and on the sides of the mo
symmetry boundary conditions were applied. The t
surface of the film (aside from the region directly bene
the indenter) was left free. Between the indenter and
crystal, both friction-free and perfect stick conditio
were considered. Neither boundary condition reprodu
the complexities of interaction between the tip and
crystal; however, they may be expected to act as bou
to this behavior. In practice, the results were not grea
influenced by the choice of boundary condition.

The thin film investigated in this simulation i
0.1 mm thick, 0.2mm wide, and infinite in the out-of-
plane direction, as indicated above. This system size
selected to ensure that far-field boundary conditions
2236 J. Mater. Res., Vol. 1
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not affect the behavior in the vicinity of the indente
Increasing system size did not change the resu
The system investigated here is very large by curr
atomistic modeling standards. A standard lattice stat
analysis of this system would require the treatme
of 1.3 million atoms or about 4 million degrees o
freedom and would have to be performed on a para
supercomputer. By using the quasicontinuum method
computational intensity is greatly reduced. Within th
quasicontinuum calculation, at most only 4000 atom
are treated explicitly (12,000 degrees of freedom), a
a simulation can be run on a desktop workstation in
few days.

IV. NANOINDENTATION IN THE
DISLOCATION ORIENTATION

A. Rectangular indenter

The first orientation investigated was selected,
explained, to facilitate dislocation emission by orientin
the crystal such that the indentation direction coincid
with a preferred slip directionf110g and the indenter
sides are parallel to the (111) slip planes. The indente
thus pushed into as110d plane of the crystal. The indente
is a rigid rectangular block 23.3̊A wide (10 lattice
spacings in thex-direction). Friction-free conditions were
assumed between the indenter and the thin film surfa
The number of atoms in contact with the indent
remains constant (the atoms directly beneath the inde
displace very little in thex-direction and it is assumed
that they cannot slip out from under the indenter).

1. Load-displacement response

The load-displacement curve obtained from t
simulation is presented in Fig. 2. The calculations we

FIG. 2. Computed load versus displacement curve for nanoinde
tion into a s110d plane (dislocation orientation) of an aluminum thi
film with a rigid rectangular indenter.
4, No. 6, Jun 1999
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carried out with displacement control and thus t
figure represents the load required to hold the inden
at a given indentation depth. At each load step
indentation depth is increased by 0.1Å. Loads are given
in Newtons per meter length of the indenter in the o
of-plane direction. The curve starts out negative a
load of25.40 Nym (point A) and climbs to20.63 Nym
(point B) at zero indentation. This corresponds
the initial surface relaxation in the vicinity of the
indenter. The load is still negative at pointB because
the atoms beneath the indenter are artificially held
zero displacement instead of being allowed to displa
slightly downward with the rest of the surface.

Following this initial relaxation the response is line
as predicted by elasticity theory for a rigid rectangu
indenter which maintains a constant contact area w
varying indentation depth.23 While the elasticity solution
predicts a linear response, it is noncommittal with resp
to the slope, and therefore it cannot simply be used
a test for the accuracy of the computations in the line
regime. The reason for this is that the elasticity soluti
is computed for the idealized case of rigid indentati
into an elastic half-space. The use of an infinite dom
leads to an arbitrary unresolved constant in the ela
displacement fields which finds its way into the slope
the load-displacement curve.

2. Dislocation nucleation

The linear portion of the load-displacement cur
terminates abruptly atC with the emission of dislocations
from beneath the indenter. The dislocations nucleate
a single minimization step, going from incipient sli
distributions at the indenter tips to a fully formed dipo
of dissociated edge dislocations beneath the surfa
The dislocations are emitted at an indentation de
of 6.7 Å at a load per unit thickness of 24.7 Nym
which corresponds to a hardness (i.e., mean press
of 9.8 GPa. This is more than two orders of magnitu
larger than the values reported in macroscopic hardn
tests of aluminum, which are about 40 MPa.3 We may
also compare this value with recent nanoindentat
experiments in (100) single crystal aluminum24 which
measured a peak hardness of 1.1 GPa using a Berko
indenter with a 0.1mm tip radius. This is consisten
with many observations of significant increases in ha
ness with reduced indentation size (see, for exam
Ref. 25).

The dislocated structure beneath the indenter
given in Fig. 3 along with the out-of-plane displacemen
experienced by the atoms. Two dissociatedk110l edge
dislocations have been emitted beneath the inde
tips, first from the right and then from the left. In th
simulation the symmetry was broken due to numeri
noise. This is acceptable because it is expected
J. Mater. Res., Vol. 1
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FIG. 3. Dislocated structure beneath the rectangular indenter
corresponding out-of-plane displacement plot after nucleation (dim
sions and displacements in̊A).

symmetry will also be broken in real systems due
imperfections and misalignments.

The dislocations are composed of1y6 k112l Shock-
ley partials which bound a stacking fault. On the left,

1
2 f110g !

1
6 f121g 1

1
6 f211g ,

stopd sbottomd (8)

and on the right,

1
2 f110g !

1
6 f121g 1

1
6 f21 1g .

stopd sbottomd (9)

Isolated Shockley partials carry an out-of-plane com
ponent of

p
6a0y12 where a0 is the lattice parameter.

For aluminum this yields a value of 0.82̊A. In the
simulations, a smaller relative out-of-plane displaceme
was observed across the stacking fault of 0.65Å. This is
most likely due to the small splitting distance (,13.5 Å)
and the resulting core-core interactions of the partia
This splitting distance is smaller than that of an isolat
edge dislocation which was found to be 15.4Å13 as a
result of the dipole configuration the dislocations occup
It should be noted that both values are large compared
the experimental bounds set by Mills and Stadelman26
4, No. 6, Jun 1999 2237
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probably as a result of the relatively low stacking fau
energy of the EAM potential.

The two nucleated dislocations adopt a stagge
configuration instead of arranging so that their ex
half-planes line up. This is well known from elementa
dislocation theory. Consider a simple model where w
neglect the stress field due to the indenter, the ima
effects due to the surface, and the dissociation of
dislocations into partials. We then have an edge dislo
tion dipole of strengthb and width 2a (see Fig. 4). The
dipole energy as a function of separationd is given by,27

Ud ­
mb2

2ps1 2 nd

∑
ln

r
b

2
1
2 cos 2u

∏
, (10)

where the polar coordinatessr , ud fix the relative po-
sitions of the two dislocation lines. For the given co
figuration, r ­

p
4a2 1 d2 and u ­ tan21s2aydd. The

dipole energy (10) has a minimum value atu ­ py4
which corresponds to a position of stable equilibriu
at a distance ofd ­ 2a ­ 23.2 Å. The case where the
dislocations line up atu ­ 0 corresponds to a loca
maximum of the energy or to a position of unstab
equilibrium. In the simulation, the distance betwee
the centers of the dissociated dislocations is 22.2Å,
in good agreement with the predicted value. A mo
elaborate analysis which accounts for the dissociat
of the dislocations into partials and makes use of
more general expression for the interaction energies
dislocations of arbitrary Burgers vectors resulted in
similar solution and is not presented here for reaso
of brevity.

After nucleation, the dislocation dipole travels int
the bulk and its center settles at a depth of 355Å. It is
believed that this value is independent of the simula
system size; however, simulations with larger mode
were not carried out to verify this. Figure 5 shows
closeup of the mesh near the indenter after the dip

FIG. 4. Simple dislocation dipole model.
2238 J. Mater. Res., Vol. 1
t
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of
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s

le

settles at its equilibrium depth. The mesh is fully refine
(i.e., all atoms are represented) near the indenter, wh
surface effects come into play, and near the dislocat
cores. Away from these nonlocal regions, the mesh
coarsened out, resulting in significant reductions in t
number of degrees of freedom that must be treated
order to obtain a mesh, such as the one in Fig. 5, wh
only the regions in the immediate vicinity of defects a
fully refined, it was necessary to modify the criterio
selecting between local and nonlocal methodologies (
Ref. 17). Instead of using the total deformation gradie
F in the criterion,F is decomposed into its plastic an
elastic parts,F ­ FeFp, and only the elastic part is use
in the criterion. This will be explained in more detail i
a forthcoming publication.

3. Estimation of the Peierls stress

We may use the equilibrium distance to obtain
estimate for the Peierls stress predicted by the EA
potential. Neglecting the dissociation of the dislocatio
into partials, we consider an edge dislocation dipole
depth h beneath the indenter. For simplicity, we tak
the dipole to be lined up and not staggered. The dip
is free to glide along the indentation direction and w
seek the equilibrium distance at which the forces in th
direction cancel out. The forces between the dislocatio
making up the dipole are zero and so we focus on a sin
dislocation. Aside from lattice friction, there are tw
forces acting on this dislocation, (i) the Peach–Koeh
force sFPKd due to the indenter stress field driving th
dislocation into the bulk, and (ii) the image forcesFI d

FIG. 5. Quasicontinuum mesh near the indenter after dislocat
emission. The nodal positions correspond to representative atom s
Dimensions are in̊A.
4, No. 6, Jun 1999
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pulling the dislocation to the surface. The force on t
dislocation is the sum of these forces. The dislocat
is attracted to the surface, very near to it, and repul
everywhere else. Upon emission, the dislocation esca
the attractive region and propagates into the bulk. It w
continue until it is stopped by lattice friction. Thus a
the equilibrium depth, the force on the dislocation w
be balanced by the lattice friction force resulting fro
the Peierls stresssp (i.e., the stress required to move
dislocation in a lattice),

FPK 1 FI ­ bsp . (11)

To compute the Peach–Koehler force, we require
shear stress field beneath the indenter. For a friction
rectangular indenter of width2a acting on an elastic
body occupying the lower half-plane,y , 0, the shear
stress in bipolar coordinates is,23

sxy ­ 2
Pr2 sin u

psr1r2d3/2
sin

∑
u 2

3
2 su1 1 u2d

∏
, (12)

where P is the indentation load and the coordina
system is defined in Fig. 6. At a distanceh beneath the
right indenter tip we have,r ­

p
a2 1 h2, r1 ­ h, r2 ­p

4a2 1 h2, u ­ 2 tan21 hya, u1 ­ 2py2, and u2 ­
2 tan21shy2ad. The resulting Peach–Koehler force is

FPKshd ­ sb ? s d 3 , ­ bsxyshd , (13)

where b is the Burgers vector,s is the applied stress
tensor, and, is the dislocation line vector.

The image force acting on one of the dislocations
a dipole of widthd at depthh beneath the surface ca
be shown to be,

FI ­
mb2

ps1 2 nd

∑
1

4h
2

4h3s4h2 2 3d2d
s4h2 1 d2d3

∏
. (14)

The left term in the square brackets represents
attraction of the dislocation to its image. The right ter
corresponds to the repulsion from the image of the ot
dislocation in the dipole and the contribution of a
additional stress field added to obtain correct bound
conditions on the free surface.22 Using the equilib-
rium depth ofh ­ 355 Å and the load after emission

FIG. 6. Bipolar coordinates for a 2a indentation contact.
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which was 14.7 Nym, we obtain a Peierls stress,sp .
8.3 MPa or sp . 2.5 3 1024 m. This compares to a
value of 6.8 3 1024 m, obtained previously by Shenoy
et al.17 for a screw dislocation using the same EAM
potential. Experimental estimates for the Peierls stress
aluminum vary from2.7 3 1025 m to about1023 m.28

The lower estimate, recently obtained by Kosugi an
Kino,28 is presented by the authors as being more in lin
with yield stress measurements and other observations
this is true, then the Ercolessi–Adams potential appea
to overestimate the Peierls stress by about an order
magnitude.

The shear stress distribution beneath the inden
immediately prior to indentation is given in Fig. 7. The
stresses presented in the figure are the atomic le
stresses computed for each atom (see, for examp
Refs. 29 and 30). We focus on thexy component of
the stress tensor because for this orientation this is a
the resolved shear stress on the active slip system wh
controls dislocation emission. The maximum shear stre
prior to emission is 3.0 GPa or aboutmy10 which is of
the order of the theoretical elastic limit. We note tha
the maximum shear stress lies very close to the surfa
where the atomic level stresses, which are rigorous
defined only in bulk regions, are suspect and thus t
maximum stress must be accepted with reservation. T
shear stress computed from elasticity theory in Eq. (1
predicts an infinite stress at the indenter tip, so dire
comparison is not possible. The maximum compute
shear strain is 10.3%.

4. Elastic model for dislocation emission

It is interesting to examine how well a simple elasti
model can predict the load necessary for dislocatio
emission. Since elasticity theory predicts an infinit
stress at the indenter tip, a criterion based on critic
resolved shear stress cannot be applied here and ins
we turn to an energetic criterion. Consider the energ
balance of the nucleationC ! D (Fig. 2). Prior to
nucleation the total energy is,

UC ­
1
2 Pcr hcr ­

1
2 kh2

cr , (15)

FIG. 7. Shear stress distribution beneath the rectangular inden
(dislocation orientation) immediately prior to dislocation emissio
(spatial dimensions are in̊A, stress is in GPa).
4, No. 6, Jun 1999 2239
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wherePcr is the maximum load at emission,hcr is the
indentation depth at emission, andk is the initial linear
slope of the load-displacement curve. After nucleation
is as though a Burgers vector has been removed from
elastic loading, thus the force is reduced from the critic
load tos1 2 byhcrdPcr and the elastic indentation dept
is reduced tohcr 2 b. The total energy atD is then,

UD ­
1
2 kshcr 2 bd2 1 U' , (16)

whereU' is the additional energy due to the presence
the dislocations. Equating (15) and (16) and rearrang
we have,

Pcr ­
U'

b
1

1
2 kb . (17)

If we neglect the interaction between the emitted disloc
tions and the stress field of the indenter, we may appro
mate U' as the energy of the dislocation dipole (se
in Fig. 4) when positioned at its equilibrium depthh
beneath the surface as computed from (11). The ene
will be composed of three parts: (1) the elastic ener
including image effects,27

UI ­
mb2

4ps1 2 nd

∑
ln

2h
b

1 ln
2sh 1 dd

b

∏
; (18)

(2) the dipole interaction energy (10) at the equilibriu
distanced ­ 2a (i.e., r ­ 2

p
2a and u ­ 45±),

Umin
d ­

mb2

2ps1 2 nd
ln

2
p

2a
b

; (19)

and (3) the additional surface energy due to the format
of steps on the surface,

Ug ­ 2g111b , (20)

whereg111 is the (111) surface energy. Summing (18)
(20) and substituting into (17) we obtain the elast
estimate for the critical load for dislocation emission,

Pcr ­
mb

4ps1 2 nd
ln

32hsh 1 2ada2

b4

1 2g111 1
1
2 kb . (21)

Substituting in the appropriate values includingg111 ­
0.869 Jym2 andk ­ 36.7 GPa, we findPcr ­ 24.6 Nym
(for the equilibrium depthh ­ 355 Å) in surprisingly
close agreement with the observed value of 24.7 Nym.

Following nucleation a significant drop in loa
is observed. The elastic estimate consistent with
above model for this load drop is that it correspon
to relaxation of a Burgers vector worth of elastic in
dentation. Thus,

DP ­ kb , (22)

which gives DP ­ 10.5 Nym. The actual load drop
observed is 10.0 Nym.
2240 J. Mater. Res., Vol. 14
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5. Second dislocation emission

After the load drop, the load-displacement curv
picks up and resumes a linear ascent with a sligh
more moderate slope of 34.4 GPa (as compared w
the initial slope of 36.7 GPa). The change in slope
a result of the presence of the emitted dipole whi
modifies the compliance of the elastic medium, maki
it a little less stiff. A second dislocation dipole i
emitted at an indentation depth of 10.8Å at a load of
28.3 Nym (point E in Fig. 2). It is interesting that the
second emission occurred at a higher load than the fi
again as a result of the presence of the emitted dipo
The simulation was terminated at this point witho
an attempt to establish the new equilibrium depths
the dislocations, thus the load drop associated w
the second emission was not obtained. We investig
unloading in the next section for a cylindrical indente

6. Density of geometrically necessary dislocations

A connection can be made here with the simp
model for the density of geometrically necessary dis
cations beneath an indenter proposed by Fran¸coiset al.31

Neglecting any elastic deformation, the model assum
that a new dislocation dipole is punched out every tim
the indenter travels a Burgers vectorb (2.85 Å for
aluminum); the resulting density is,

rGND ­
2n
A

­
2h

bA
, (23)

where n is the number of dislocations nucleated,A is
the area of crystal projected on thexy-plane, andh

is the indentation depth. In the simulation the mod
assumptions are not satisfied. The second emission
curs 4.1Å after the first, which is about 1.4b. If we
assume that subsequent emission will occur at sim
intervals, this leads to a dislocation density about 30
lower than that predicted by the model. The discrepan
appears to be related to the backstress exerted by
dislocation dipole which was emitted earlier, an effe
which is neglected by Fran¸cois’ model. Such an assump
tion may be appropriate in the case of other dislocat
sources, such as cracks, where emitted dislocations
driven to large distances by the crack tip stress fie
creating dislocation free zones of the order of thousan
of angstroms. However, the indenter stress field wh
decays as1yr (as opposed to1y

p
r for the crack) keeps

the dislocations far closer and thus heightens their eff
on subsequent emission. An expression for the den
of geometrically necessary dislocations beneath a con
indenter has recently been given by Nix.32

7. Boundary condition effects

Finally, a note on the effect of boundary condition
on the simulation outcome. The results presented in t
, No. 6, Jun 1999
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section are for a friction-free indenter. The same sim
lation was also carried out for perfect-stick bounda
conditions. In both cases the qualitative response w
the same and the quantitative differences were relativ
small. The main difference was that emission occurre
little earlier in the perfect stick simulation (6.0̊A instead
of 6.7 Å) and at a slightly lower load (22.1 Nym instead
of 24.7 Nym). The resolved shear stress at emissi
was a little higher (3.7 GPa compared with 3.0 GP
Thus, it appears that the indenter boundary condit
is of limited significance. In the remaining simulation
perfect-stick conditions were employed because they
computationally more convenient.

B. Cylindrical indenter

We now replace the rectangular indenter with
cylindrical indenter and repeat the indentation sim
lation. The new indenter has a radius equal to t
rectangular indenter half-width,R ­ a ­ 11.64 Å. The
crystallographic orientation of the thin film is the sam
as in the previous section and as depicted in Fig. 1(a

Perfect-stick conditions were used to character
the contact between the indenter and the film surfa
(as motivated in the concluding remarks of the previo
section). For a cylindrical indenter, the contact ar
increases with indentation depth and thus new ato
will occasionally come into contact with the indente
surface. To account for this the boundary conditio
for the cylindrical indenter are handled as follows:
every load step the indenter is pushed a small dista
(0.2 Å) farther into the crystal. All atoms already in
contact with the indenter are moved down with it. I
addition, any atoms that are found “inside” the indent
after it is repositioned are relocated onto its surfa
and constrained to remain there. The energy of the n
configuration is then minimized. At the end, any atom
that are found to be held to the indenter face by
tensile load are released and allowed to move away
the energy is minimized once more. This proved to
important during the nucleation phase.

1. Load-displacement response

The load-displacement curve for the cylindrical in
denter including the loading phase, nucleation pha
and unloading phase is presented in Fig. 8. As for
rectangular indenter, it is not possible to obtain a d
finitive relationship between load and indentation dep
from the elasticity theory solution for indentation into
semi-infinite half-plane. Instead, the theory predicts t
relationship between indentation load and the cont
half-width a,23

P ­
pma2

2s1 2 ndR
. (24)
J. Mater. Res., Vol. 1
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We use the solution for a frictionless punch for conv
nience. The elastic solution for perfect-stick conditio
is analytically more complex than the friction-free cas
while at the same time both solutions are quantitativ
very similar except in the immediate vicinity of th
indenter. Substituting in the appropriate values (m ­
33.14 GPa,n ­ 0.319, and R ­ 11.64 Å) the relation
reduces toP ­ 0.657a2 with P obtained in Nym anda
taken in Å.

In elasticity theory it is assumed that the contaca
grows continuously with the loadP; however, due to
the atomic resolution of our simulation the contact a
grows in quantized jumps as new atoms become trap
by the indenter. Figure 9 compares the load ver
contact area obtained from the simulation compared w
that predicted by (24). We see that up to dislocat
emission the elastic curve (24) nicely characterizes
atomic solution that follows it in stepwise fashion.

Despite the sudden increases in contact area
load-displacement curve in Fig. 8 is very smooth. Poi
A andB correspond to load steps where the contact a
increased due to the trapping of new surface atoms
the indenter. Between these points the response is li
with slight changes of slope occurring with the trappi
of new atoms, as might be expected. However, the cu
deviates from the linear response as it approaches
point of dislocation nucleation atC. Overall, the response
has a power law form as would be expected for
indenter of varying cross section.

FIG. 8. Computed load versus displacement curve for nanoinde
tion into a s110d plane (dislocation orientation) of an aluminum th
film with a rigid cylindrical indenter.
4, No. 6, Jun 1999 2241
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FIG. 9. Load versus contact half-width for cylindrical indentation
the dislocation orientation (points correspond to simulation results
dashed line to the elasticity theory prediction).

2. Dislocation nucleation

The elastic response continues up to an indenta
of 6.6 Å when a dipole of Shockley partial dislocation
is emitted (see Fig. 10). Immediately prior to nucleatio
five atoms (per repeat distance in the out-of-plane
rection) are in contact with the indenter. Dislocati
nucleation occurs by the atoms originally just outsi
the contact region (marked A and B in Fig. 10) movin
up to the indenter and those at the original outer con
points (marked A′ and B′ in the figure) moving slightly
down and away from the indenter. In this way surfa
steps are formed beneath the indenter, as indicated in
figure. The reason for the emission of Shockley parti
and not full edge dislocations is the interference of
indenter with the movement of atoms A and B. If th
boundary conditions are modified so that these atoms
allowed to move “through” the indenter without penalt
a dipole of fully dissociated edge dislocations is emitt
at this point just as observed for the rectangular inden
However, with the indenter present as a rigid barri
atoms A and B move up, come in contact with t
indenter and stop there, and the crystal has to make
with partials.

The emission occurs at a load of 15.3 Nym (25%
lower than the nucleation load observed for the perfe
stick rectangular indenter) and a corresponding sh
stress of 3.8 GPa (close to the 3.7 GPa observed
that case). The partials move down and away from
indenter laying down a stacking fault in their wake a
until settling at an equilibrium distance of 42̊A below
the surface. The partials are of type61y6 f211g, the
2242 J. Mater. Res., Vol. 1
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FIG. 10. Atomic structure beneath the cylindrical indenter at
indentation depth of 6.6̊A showing the nucleated Shockley dipol
and stacking fault (dimensions are in̊A).

same as the leading partials observed in the rectang
indentation. The dipole has a width of 9.5Å, signifi-
cantly smaller than the dipole width in the rectangul
indenter which was simply equal to the indenter wid
of 23.2 Å. Another difference is that in the previou
indentation a dipole of fully dissociated edge dislocatio
was nucleated, not Shockley partials as seen here.

These differences are due to the interaction a
interference of the indenter geometry with the respon
of the underlying crystal. For the rectangular indent
the shear stress gradually builds up at the inden
tips (which remain in a constant position relative
the crystal) until emission occurs. However, for th
cylindrical indenter, the indenter “tips,” or outer point
of contact, occasionally move out as more atoms co
in contact. The maximum shear stress always lies cl
to these outer contact points. Thus the incipient s
buildup is constantly moving out as new atoms com
into contact until the slip distribution becomes unstab
and emission occurs.

The partial dislocations form a dipole which as
the case of the edge dipole discussed earlier, does
line up, although in this case the degree of misalignm
is much smaller (see Fig. 10). This misalignment c
be more clearly (and quantitatively) seen in Fig. 1
which shows the slip under the left and right conta
points of the indenter immediately prior to emissio
and immediately after. Before emission the incipient s
profiles on the left and right are identical and overla
However, after emission we see that the slip profil
are displaced relative to each other by a small amo
4, No. 6, Jun 1999
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(about 2Å), indicating that the dislocation cores are n
lined up.

The misalignment can be explained in terms of t
same kind of simple model used earlier and presente
Fig. 4. The interaction energy for a dipole of Shockle
partial dislocations can be shown to be,

Ud ­
mb2

s

8ps1 2 nd

3

∑
s4 2 nd ln

p
4a2 1 d2

bs
2

3d2

4a2 1 d2

∏
1 dgSF , (25)

where bs ­ a0y
p

6 is the magnitude of the Shockle
partial Burgers vector. This energy is different from th
dipole energy given in (10) which was evaluated for
dipole of pure edges. The energy given here accounts
both the edge and screw components of the partials
includes the additional stacking fault energy due to t
misalignment. The inclusion of the stacking fault ener
makes a large difference in the predicted equilibriu
configuration. Without the stacking fault term, the dipo
energy is minimum at,

d ­ 2a

s
2 1 n

4 2 n
. (26)

However, with increasing stacking fault energy, th
equilibrium distance between partials decreases, and
aluminum sgSF ­ 0.1 Jym2d the minimum is at zero,
thus no misalignment is expected. This is essentially
agreement with the observed structure, since the sm

FIG. 11. Slip beneath the left (m) and right (≤) contact points of
a cylindrical indenter, prior to emission (hollow symbols) and aft
emission (solid symbols).
J. Mater. Res., Vol. 1
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misalignment observed is beyond the resolution of t
elastic model.

After emission of the partial dislocation dipole, th
maximum stress normal to the indenter face

°
syy

¢
is

reduced from229.4 to 222.6 GPa (which explains the
drop in load upon emission). At the same time th
shear stress beneath the indenter outer contact po
increasesfrom 3.8 to 4.5 GPa and stays about consta
until a second partial dislocation dipole is emitted
an indentation depth of 7̊A and a load of 14.7 Nym
(E ! F in Fig. 8). The two dipoles reconstruct as
dissociated edge dislocation dipole very similar to t
one observed earlier for the rectangular indenter. T
dipoles in this case also take on a staggered configura
and travel downward into the bulk.

It is interesting to consider the atomistic mechanis
for the emission of the second partial dipole consid
ing the interference of the indenter with the formatio
of surface steps. Figure 12 shows the atomic struct
beneath the indenter after emission of the second dip
With the emission of the second set of partials we exp
surface steps two atomic layers high (as indicated
the dashed line in the figure). Due to the interferen
of the indenter this is not possible. Instead we see t
the atoms to the inside of the outer contact points ha
moved farther away from the indenter, creating an alm
flat depression beneath the indenter, and the steps for
are not sharp. As a result there is a significant amo
of distortion in the vicinity of the indenter which can b
seen by viewing Fig. 12 at an oblique angle and looki
along thex-direction beneath the indenter. Part of th

FIG. 12. Atomic structure beneath the cylindrical indenter after t
emission of the second partial dislocation dipole which is out of t
picture (dimensions in̊A).
4, No. 6, Jun 1999 2243
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distortion is no doubt due to the perfect-stick bounda
conditions imposed on the crystal. With a frictionles
indenter the contact atoms (A and B in the figur
could have moved out to the sides to better reprodu
the stepped configuration with a resulting reduction
distortion.

3. Elastic model for dislocation emission

One can attempt to predict the width of conta
and load for initial dislocation emission from elasticit
theory. The shear stress beneath a cylindrical indente
given in bipolar coordinates by,23

sxy ­ 2
my

Rs1 2 nd
r

p
r1r2

sin

∑
u 2

1
2 su1 1 u2d

∏
,

(27)

where for a general pointsx, yd, r ­
p

x2 1 y2, r1 ­p
sx 2 ad2 1 y2, r2 ­

p
sx 1 ad2 1 y2, u ­ tan21 yy

x, u1 ­ tan21 yysx 2 ad, and u2 ­ tan21 yysx 1 ad
(see Fig. 6). The shear stress is not singular at the o
contact points (it is zero there) so we may consider t
customary nucleation criterion of the formtmax ­ tcr

wheretmax is the maximum shear stress andtcr is the
critical shear stress threshold for dislocation nucleatio
The maximum shear stresses do not lie along the pla
beneath the contact points, as may have been expec
but rather they lie a little to the inside atx ­ 6

p
3ay2

and y ­ 2ay2. The maximum shear stress is,

tmax ­
ma

4Rs1 2 nd
. (28)

Applying the maximum stress criterion we find a conta
half-width at emission (this would also be the emitte
dipole half-width) equal to,

acr ­ 4s1 2 nd
tcr

m
R , (29)

and using the elastic relation between contact width a
load (24) the critical load for emission follows as,

Pcr ­ 8ps1 2 ndmR

√
tcr

m

!2

. (30)

When the exact value oftcr is not known, an estimate for
the critical values may be obtained by usingtcr ø my10,
2244 J. Mater. Res., Vol. 1
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in this case (29) and (30) reduce toacr ­ 0.4s1 2 ndR
and Pcr ­ 1y4s1 2 ndmR.

Relations (29) and (30) predict a linear scaling
both critical half-contact and critical load with indente
radius. It is of interest to validate this with the simula
tion. Figure 13 presents the critical load for a series
simulations, with indenter radius ranging from 4.48
69.84Å. The simulation results appear as points and t
solid line is a linear fit to them. We see that the scali
does indeed appear linear over the investigated rang

Ignoring, for the moment, the fact that the solid lin
does not intercept they-axis at zero, we use the elasti
prediction (30) to obtain the critical stress correspondi
to its slope. The slope is 6.67 GPa which corresponds
tcr ­ 3.6 GPa. The elastic prediction using this valu
appears as the dashed line in the figure. The ques
remains, why the simulation results are offset by
constant value from the elastic prediction.

The reason for this discrepancy is the fact th
the elasticity solution assumes a continuously increas
contact with applied loading, while the atomistic simu
lation is discrete. Thus relation (29) may predict an
value while in actual fact atoms on the surface occu
discrete sitesnc where n is an integer andc is the
x-spacing of atoms on the surface (c ­ 2.33 Å for the
current orientation). If we explicitly account for this b
roundingacr from (29) up to the nearest atomic site, th
critical load follows from (24) as,

P ­
pmn2c2

2s1 2 ndR
for Rn21 , R < Rn , (31)

FIG. 13. Scaling of the critical emission load beneath a cylindric
indenter with indenter radiusR (the points correspond to simulation
results, the solid line is a linear fit to these points, the dashed
is the elastic prediction, and the dotted line is the elastic result wh
accounting for lattice discreteness).
4, No. 6, Jun 1999
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where from (29),Rn ­ mncy4s1 2 ndtcr . The amended
relation in (31) appears as the dotted curve in Fig. 1
This curve shows the maximum scatter the lattice d
creteness may be expected to generate, and we see
the simulation data lie well within this spread. It shou
be stressed that in the actual simulation the atoms
the surface move considerably due to elastic strain
prior to being trapped by the indenter and thus t
assumption that atoms are trapped at their reference s
nc is not satisfied. The curve defined by (31) is thus ju
an indication of the type of effect lattice discretene
may play. It is also interesting to note that the cur
diverges forR , R1; this is the case where the critica
half-contact predicted by elasticity theory is less than t
atomic spacing on the surface.

At the heart of the preceding discussion was t
assumption that a critical resolved shear stress is a v
criterion for dislocation emission, and indeed a val
of 3.6 GPa was obtained from the slope of our scali
curve. However, it must be clearly recognized that th
is only an effective value as it applies to the smal
strain linear elastic solution. In the simulations, the actu
resolved shear stresses at emission did not equal 3.6
and were not even constant. In fact, the observed val
appeared to decrease with indenter radius ranging fr
4.2 GPa for the smallest indenter to 3.2 GPa for t
largest. The resolved shear strains did not show t
trend, and it is currently being investigated whether
emission criterion based on a critical resolved she
strain would be more useful. Such a criterion may
more physically meaningful because the resolved sh
strain is a measure of the incipient slip prior to dislo
cation emission. A critical shear strain may character
the loss of stability of the incipient slip profile at th
instant of emission. Note that for the elastic solutio
the shear stresses and strains are proportional and
the critical values (29) and (30) would be exactly th
same for a critical strain criterion withtcrym replaced
by 2ecr . This may explain the qualitative success of th
elastic model in predicting the correct scaling.

4. Unloading

Next, we turn to the unloading phase. Unloadin
was effected by reversing the direction of motion
the atoms beneath the indenter. These atoms are
slowly pulled up and released when found to be he
by a tensile load to the indenter face. The unloadi
curve can be seen in Fig. 8 from pointsF to J. A linear
unloading curve would be expected for the case wher
constant contact area is maintained during unloading33

as indicated by the dashed line. Instead we see that
unloading curve that is obtained is composed of sho
nearly linear segments with changes of slope at the po
where atoms are released from the indenter. At the s
J. Mater. Res., Vol. 1
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of unloading seven atoms (per unit repeat distance in
out-of-plane direction) are in contact with the indente
A series of snapshots of the atomic structure bene
the indenter during unloading is given in Fig. 14. AtG
(6.6 Å) the outer atoms are released, atH (5.6 Å) the
pair of atoms to the left and right of the central atom a
released, atI (4.2 Å) the central atom is released, an
finally at J the remaining pair is released. At the en
a rectangular dimple 14̊A wide and 2.8Å deep (and
infinite in the out-of-plane direction) is left behind as
permanent deformation. The residual depth is essenti
equal to the magnitude of the Burgers vector, 2.85Å.
The small difference is due to surface relaxation.

At the end of the unloading process, the edg
dislocation dipole remains in the crystal bulk, trappe
by lattice friction. Without the assistance of therma
vibration, absent in this zero temperature simulation, t
image forces alone are not sufficiently large to overcom
the Peierls barrier. It thus appears that in this case
Peierls barrier alone is responsible for the irreversibili
of the deformation. The rectangular indenter was n

FIG. 14. Atomic structure beneath the cylindrical indenter durin
the unloading stepsG through J, as indicated in the load displace
ment figure.
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unloaded, so it is not known whether the same eff
would be observed in that case.

V. NANOINDENTATION IN THE
TWINNING ORIENTATION

In the second orientation that was investigated
indented into a (111) face of the crystal with the glob
x-direction coinciding with thef1 12g crystallographic
direction. The most favorable available slip plane in t
analysis is now as1 11d plane oriented at 19.47± with
respect to the indentation direction with the slip directi
along this plane corresponding to the [112] directio
The crystal orientation and geometry were presen
earlier in the schematic in Fig. 1(b).

A. Load-displacement response and
partial dislocation nucleation

The resulting load-displacement curve is presen
in Fig. 15. This result is contrasted with the curv
obtained for the rectangular indentation in the dislocat
orientation which appears as a dashed line in the figu
The two curves are clearly quite different with th
new curve lacking the large load drops associated w
dislocation emission seen in the previous case. Inste
in this orientation the curve is linear throughout wi
occasional small steps at nearly constant load associ
with partial dislocation emission, as will be explaine
presently.

Whereas in the previous configurations studied, d
location emission was always a discrete event acco
panied by a marked load drop, in this orientation t

FIG. 15. Computed load-displacement curve for nanoindentation
a (111) face of an aluminum thin film (solid line), superimposed
the earlier curve computed for the dislocation orientation.
2246 J. Mater. Res., Vol. 1
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first dislocation is nucleated gradually during the line
portion of the load-displacement curve up toA. There is
no definite emission event and no discernible load dr
associated with this gradual nucleation. Instead, slip co
tinuously builds across thes1 11d plane to the left of the
indenter tip, gradually forming a partial dislocation. N
out-of-plane displacements were generated since the
tial is of a pure edge type, referred to as a 90± Shockley
partial. This dislocation has a1y6 f112g Burgers vector
and af110g line direction perpendicular to thexyplane of
the analysis. A view of the atomic structure beneath t
indenter after this partial is fully formed and just befor
the emission of a second partial at stepA is given in
Fig. 16. The partial dislocation at the tip of the slippe
region is indicated along with its highlighted extra hal
plane and some relevant crystallographic directions. T
slip plane appears as a dashed line.

The nucleated partial is of typeDg, as denoted in
the s1 11d face of the Thompson tetrahedron22 presented
in Fig. 17. In the figure,AB corresponds to the line
direction (the out-of-plane direction in the analysis).
the deformation were to follow along the same line
as the “dislocation orientation” presented in Sec. IV. A
we would expect a second partial dislocation to b
nucleated to complete the dissociated structure. In t
case, the full dislocation would be a 60± dislocation
(i.e., the Burgers vector and dislocation line would b
at a 60± angle) with af110g line direction. From the
Thompson tetrahedron we see that this dislocation c
have two possible Burgers vectors: either [101] (DA
in the figure) or [011] (DB in the figure). The two
options are symmetric and equally probable. For t
[101] dislocation the second partial would be a 30±

FIG. 16. Atomic structure beneath the indenter just before stepA
(dimensions are in̊A).
4, No. 6, Jun 1999
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FIG. 17. Thes1 11d plane of the Thompson tetrahedron.

Shockley with Burgers vectorf211g (gA in the figure),
while for the [011] dislocation the Burgers vector wou
be f121g (gB in the figure). These partials are of mixe
screw-edge type and if formed in thexy-plane of analysis
(which is perpendicular to the Thompson plane in t
figure) would carry out-of-plane components in oppos
directions.

As the deformation progresses the scenario en
sioned above does not transpire. Instead of nuclea
the second partial on the same plane to form a perf
dissociated dislocation, additional dislocations are nuc
ated onadjacentplanes of the same type as the origin
Dg partial. The first of these additional nucleation
occurs at the end of stepA in the load-displacemen
figure (Fig. 15) at an accumulated indentation depth
10.2 Å and the second occurs at stepB at an indentation
depth of 13.8Å. A series of snapshots of the successi
nucleations are shown in isometric view in Fig. 18. T
create the figure all atoms are projected onto thexy
plane and the plane is then rotated in 3D space to aff
the reader a clearer view of the structure beneath
indenter. Frame (a) contains a snapshot of the structur
the beginning of stepA (indentation­ 10.0 Å), showing
the partial dislocation with a stacking fault in its wake
(a) (b) (c)
FIG. 18. Isometric views of the structure beneath the indenter at (a) just prior to stepA, (b) just after stepA, and (c) just after stepB.
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Frame (b) taken at the end of the step indicates a sec
nucleation has occurred on a plane adjacent and ab
the previous one. It forms at about the same distan
from the surface where the previously nucleated par
originally formed and makes a step in the structu
we begin to see emerging. Thus the “kinked” regio
goes from a thickness of two atomic spacings near
surface to only one near the bottom where the origin
partial is still located. The structure near the surfa
corresponds to a microtwin with as1 11d twinning plane
and a [112] twinning direction. In frame (c) a third partia
has been emitted, increasing the thickness of the twin
region. The typical “needle-like” structure associate
with deformation twinning34,35 is beginning to emerge
with the discrete steps at which the needle becom
thinner, corresponding to the positions of the emitt
partials. The leading partial situated at the tip of th
needle is now out of the picture. Finally, Fig. 19 show
the atomic structure beneath the indenter at the end
the simulation at an accumulated indentation depth
14.8 Å. The twinning planes have been indicated by lin
and the needle-like morphology is clearly discernible

B. Deformation twinning

The appearance of deformation twinning is a su
prising result since aluminum is normally regarded
a metal that does not exhibit deformation twinning.34

Recently, however, deformation twinning has been o
served experimentally in aluminum at the tips of crac
in thin foils.36 The fact that in both the experiment an
our simulation a two-dimensional state of deformatio
exists (plane stress for the crack and plane strain
the indenter) suggests that perhaps the appearanc
deformation twinning in these cases is tied to the 2
kinematic constraints. It has also been observed t
other fcc metals that do not normally deformation tw
at certain temperatures, like gold and silver, do so un
the constraining action of a nanoindenter.25 Deformation
twinning may have been further facilitated in the curre
simulation since it was carried out at zero temperatu
and it is well known that deformation twinning become
more favorable with decreasing temperature. Finally
is also possible that the twinning observed here is
artifact of the simulation resulting from the limitation
4, No. 6, Jun 1999 2247
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FIG. 19. Final atomic structure beneath the indenter in the twinn
orientation, showing a deformation twin (dimensions inÅ).

of the embedded atom potential used to characte
the material.

The observation of deformation twinning for thi
orientation is especially interesting in light of the rece
debate in the literature concerning the plastic mec
nisms at work during very small-scale indentations in
(111) surfaces of fcc crystals. Some recent experime
work by Pharr and Oliver9 appears to indicate the lac
of near-surface dislocation activity during small-sca
indentation in silver. It was found that the dislocatio
rosette patterns normally observed on the surface a
indentation disappear for very small indentations. T
authors were unable to experimentally determine
active plastic mechanism, but they rule out diffusio
and postulate that either the dislocations are quic
annealed away, that they move down into the bu
without emerging at the surface, or that there is so
unknown mechanism at work. Belaket al.12 in their
MD simulations of nanoindentation in copper suppo
the view that no dislocation activity takes place
small-scale indentation for the (111) orientation. In th
case plastic deformation was accommodated by
movement of individual atoms to the surface or to i
terstitial positions with no dislocation activity apparen
By contrast, in recent MD simulations by Kelchne
et al.37 of nanoindentation in gold, dislocation activit
was observed in the (111) orientation. The resulti
structure after indentation contained partial dislocatio
stacking faults, and stair rod dislocations joining no
parallel h111j planes. Finally, in the present simulatio
as discussed above, deformation twinning was observ
2248 J. Mater. Res., Vol. 1
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These discrepancies in the simulation results may be
to real physical differences in the systems investigate
or they may simply indicate limitations of the variou
models used in the analyses. It appears that more w
needs to be done to clarify this issue.

C. Unloading

Finally, a word about unloading. The unloadin
portion of the load-displacement curve (see Fig. 1
follows the loading curve back down closely with th
exception that the steps, which now correspond to t
annihilation of the partial dislocations which travel bac
up to the surface, appear in different places. At the en
upon full removal of the load, the crystal is restore
to its perfect structure with no residual deformatio
This is not surprising considering the presence of t
stacking faults which tend to pull the dislocations bac
to minimize their energy. This has been observed expe
mentally in other materials such as calcite where sm
twins nucleated by indentation disappear upon remo
of the load.38

VI. CONCLUSIONS

This paper has presented a detailed computatio
investigation of the early stages of plastic formatio
observed under the action of a nanoindenter in
aluminum thin film. The quasicontinuum method14,17was
used to model the response, allowing for the study o
much larger system than standard atomistic techniq
would enable while retaining atomic resolution whe
necessary. An embedded atom potential due to Ercole
and Adams21 was used to characterize the aluminum.

Three different configurations were studied involv
ing different crystallographic orientations and indent
geometries. Indentation into as110d surface resulted
in the emission of dissociated edge dislocation dipo
from beneath the indenter. The emission events w
accompanied by sudden drops in the indenter load. Up
unloading, the dislocation dipoles remain trapped
the crystal as a result of lattice friction. In contras
indentation into a (111) surface was accommodated
a deformation twinning mechanism. In this case, t
load-displacement curve is nearly linear with small ste
at nearly constant load as successive Shockley par
dislocations are emitted in the twinning process. Wh
the crystal is unloaded, the partial dislocations are pull
back to the surface, undoing the twinning operatio
and restoring the crystal to its perfect structure. T
appearance of deformation twinning is a surprising res
since Al is not a metal commonly associated with th
mode of deformation. The result may be a consequen
of kinematic constraints imposed by the 2D nature
the simulation.
4, No. 6, Jun 1999
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The Peierls stress for an edge dislocation in a
minum was estimated from the equilibrium depth
which the emitted dislocation dipole settled. It wa
found to be2.5 3 1024 m (wherem is the shear modu-
lus) for the Ercolessi–Adams EAM potential used.
addition, the density of geometrically necessary dis
cations beneath the rectangular indenter was compu
and compared to the simple model of François et al.31

It was found that elastic effects and the presence
the dislocations emitted earlier, both neglected by t
Fraņcois model, are significant. The computed dens
was 30% smaller than the model prediction.

One of the provocative questions raised by th
study relates to the significance of the critical resolv
shear stress as a criterion for dislocation emission. Wh
studying the effect of indenter radius on dislocatio
emission, a linear scaling was found between critic
load and indenter radius, as predicted by elasticity the
where a critical stress criterion was assumed. Howev
in the simulations, the critical resolved shear stress
emission was not a constant. Instead, it decreased w
indenter radius from a value of 4.2 to 3.2 GPa. Th
is not thought to be a simulation size effect becau
the ranges of radii investigated are all very small wi
respect to the system size and the emission is hig
localized to the indenter tip. There are indications th
it may be the critical resolved shear strain that is mo
fundamental, and this is currently being investigated.

The above question is particularly important since
addition to rationalizing experimental results, an impo
tant goal of atomic-scale simulations of nanoindentati
is to obtain physically based criteria for dislocatio
nucleation beneath indenters. The objective here is
make contact with larger-scale dislocation dynam
models.39 Recently, such a model coupled with a finit
element simulation has been effectively used to study
dislocation structure induced by nanoindentation.40 How-
ever, since the discrete elements of these simulati
are dislocation segments, dislocation nucleation must
introduced by a phenomenological rule. As stated abo
it is one of the goals of atomic-scale simulations to obta
such rules, and this is currently being pursued.

The investigation presented in this paper is of
theoretical and computational nature. While there a
many recent nanoindentation experiments in a variety
materials, to our knowledge there have been no nano
dentation experiments done using the two-dimensio
knife-edge indenter envisaged here and hence it was
possible to make any direct comparisons with expe
mental data. While, clearly, such an experiment wou
be technically far more challenging than simpler 3D i
dentation due to tip fabrication, surface roughness, a
tip/substrate alignment issues, it could offer significa
advantages in the interpretation of results due to the s
pler geometry and simpler resulting dislocation structu
J. Mater. Res., Vol. 1
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