CaltechAUTHORS
  A Caltech Library Service

Discrete 2-Tensor Fields on Triangulations

de Goes, Fernando and Liu, Beibei and Budninskiy, Max and Tong, Yiying and Desbrun, Mathieu (2014) Discrete 2-Tensor Fields on Triangulations. Computer Graphics Forum, 33 (5). pp. 13-24. ISSN 0167-7055. https://resolver.caltech.edu/CaltechAUTHORS:20140930-100031848

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20140930-100031848

Abstract

Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite-element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1111/cgf.12427DOIArticle
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12427/abstractPublisherArticle
Additional Information:© 2014 The Author(s.) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. Issue published online: 23 AUG 2014; article first published online: 23 AUG 2014. We thank Patrick Mullen for his feedback on a draft of this paper, and Dmitry Pavlov for early discussions. MD, MB, and FdG were partially supported through NSF grant CCF-1011944 and a PhD Google Fellowship, while YT and BL were partially supported through NSF grants IIS-0953096, CMMI-1250261 and III-1302285.
Funders:
Funding AgencyGrant Number
NSFCCF-1011944
PhD Google FellowshipUNSPECIFIED
NSFIIS-0953096
NSFCMMI-1250261
NSFIII-1302285
Issue or Number:5
Record Number:CaltechAUTHORS:20140930-100031848
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20140930-100031848
Official Citation:de Goes, F., Liu, B., Budninskiy, M., Tong, Y. and Desbrun, M. (2014), Discrete 2-Tensor Fields on Triangulations. Computer Graphics Forum, 33: 13–24. doi: 10.1111/cgf.12427
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:50120
Collection:CaltechAUTHORS
Deposited By: Jason Perez
Deposited On:01 Oct 2014 21:55
Last Modified:03 Oct 2019 07:20

Repository Staff Only: item control page