Large-scale wave-front reconstruction for adaptive optics
systems by use of a recursive filtering algorithm

Hongwu Ren, Richard Dekany, and Matthew Britton

We propose a new recursive filtering algorithm for wave-front reconstruction in a large-scale adaptive
optics system. An embedding step is used in this recursive filtering algorithm to permit fast methods to
be used for wave-front reconstruction on an annular aperture. This embedding step can be used alone
with a direct residual error updating procedure or used with the preconditioned conjugate-gradient
method as a preconditioning step. We derive the Hudgin and Fried filters for spectral-domain filtering,
using the eigenvalue decomposition method. Using Monte Carlo simulations, we compare the perfor-
mance of discrete Fourier transform domain filtering, discrete cosine transform domain filtering, mul-
tigrid, and alternative-direction-implicit methods in the embedding step of the recursive filtering
algorithm. We also simulate the performance of this recursive filtering in a closed-loop adaptive optics
system. © 2005 Optical Society of America
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1. Introduction

The worldwide efforts at constructing ground-based
giant telescopes with high light-gathering power re-
quire advanced adaptive optics (AO) systems for real-
time compensation for optical distortion caused by
atmospheric turbulence. Fast and efficient wave-
front estimation and control algorithms are impor-
tant in most of these AO systems. The number of
wave-front-sensor subapertures and deformable mir-
ror actuators increases with the diameters of these
large telescopes.! When the number of actuators on
the deformable mirror, denoted n, is on a scale of
10*-10°, traditional wave-front reconstruction tech-
niques based on direct matrix inversion and matrix
vector multiplication are no longer practical because
of their large computational cost for updating the
deformable mirror commands, which scales as order
n® denoted by O(n?, after the inverse matrix is
found. To resolve this difficulty, many efficient iter-
ative and direct methods have been proposed.

The discrete Fourier transform domain filtering
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(DFTDF) method of wave-front reconstruction has
been widely used for various wave-front-sensing ge-
ometries on rectangular apertures.2®> The DFTDF
method is the equivalent of using a periodic boundary
condition with Poisson’s equation for wave-front re-
construction. However, Nollé pointed out that the
least-squares solution of a wave-front reconstruction
problem is equivalent to the solution of Poisson’s
equation with Neumann boundary conditions. There-
fore when the DFTDF method is applied to wave-
front reconstruction, large edge errors will occur if a
wrong boundary condition is used. This effect was
investigated recently.2-4 To reduce edge errors in this
method, Poyneer et al.3 recently introduced a curl-
free boundary method to expand the solution’s aper-
ture and also designed a filter in the discrete Fourier
transform (DFT) domain that would be suitable for
the Fried geometry.” Poyneer et al.* used a later mod-
ified Hudgin filter in the DFT domain as a Shack-
Hartmann wave-front sensor.

An extra system of boundary equations needs to be
solved in this approach. Roddier and Roddier® pro-
posed another method for solving the wave-front re-
construction problem by using DFTDF recursively.
This strategy can also overcome the edge error, but,
as the filtering was performed in the DFT domain,
the rate of convergence of the iterative solution is
slow because of the application of the wrong bound-
ary condition. The DFTDF method can be computed
at the cost of O(n log n). Recently Gilles et al.? and
Gilles® developed two multigrid preconditioned



conjugate-gradient (PCG) methods for extreme AO
systems. MacMartinl® proposed local and hierarchic
iterative wave-front reconstructors, and Shi et al.1!
validated them at the Palomar Observatory. These
wave-front reconstructors can be computed at the
cost of O(n) ~ O(n*®). Ghiglia and Romero!? investi-
gated large-scale wave-front reconstruction algo-
rithms for the Hudgin geometry,3 using a fast elliptic
partial differential equation solver. They considered
Poisson’s equation with a Neumann boundary condi-
tion as the model for wave-front reconstruction. Later
they developed a PCG algorithm with which to solve
the phase unwrapping problem, in which the discrete
cosine transform domain filtering (DCTDF) was used
as a preconditioner.4

Ren and Dekany?'5 proposed recently a recursive
filtering (RF) algorithm?!® with which to solve the
Fried-geometry wave-front reconstruction on an
embedded square aperture in which an annular ap-
erture is inscribed. The residual error is updated by
direct or conjugate-gradient (CG) procedures. When
the latter procedure is used the RF algorithm acts
just as a PCG method, and the embedding step in
the RF algorithm serves as the preconditioning
step. Because most of the computation for the wave-
front reconstruction is done on a square aperture,
fast methods can be used with the RF algorithm in
the embedded square aperture. A masking opera-
tion is used in the embedding step through multi-
plication of the preconditioning solution by a
telescope pupil mask. This is an important opera-
tion and to our knowledge was first proposed in Ref.
15. Previously we performed the embedding step of
the RF algorithm by using the Sylvester equation
through an alternative direction-implicit (ADI)
method.’® We reduced the number of solution do-
main dimensions from two to one through the
Sylvester equation, such that the wave-front recon-
struction could be done efficiently by the ADI
method. We solved the Hudgin-geometry wave-
front reconstruction problem in the embedding step
for Fried-geometry wave-front reconstruction.

In the research reported in this paper we inves-
tigated the effect of curvature and Tikhonov regu-
larization on wave-front reconstruction. In Section
2 we cast the regularized least-squares wave-front
reconstruction equation into a general form, of
which the curvature and Tikhonov regularization
are special cases. In Section 3 we derive the regu-
larized Hudgin and Fried filters for spectral domain
filtering in the discrete cosine transform (DCT) and
the DFT domains that we use with square-aperture
wave-front reconstruction in the embedding step of
the RF algorithm. In Section 4 the RF algorithm is
described and analyzed. In Section 5 we investigate
the performance of the DCTDF, DFTDF, multigrid,
and ADI methods when they are used in the em-
bedding step of the RF algorithm with two residual
error updating procedures and also discuss the fea-
sibility of a direct updating procedure for the RF
algorithm.

2. Regularized Least-Squares Wave-Front
Reconstruction

For single-conjugate AO systems the relationship be-
tween wave-front sensor measurements and the
wave-front phase in the pupil plane can be described
by

s=Pd +n, @)

where s is the wave-front slope measurement vector,
¢ is the phase profile sampling vector, P is a gradient
matrix that maps the phase profile to the wave-front
slope, and m is the slope noise vector. One can obtain
the regularized wave-front reconstruction formula
with curvature-smooth prior information as a con-
straint in the reconstruction process by minimizing
the regularized least-squares objective function:

Q=(s—Pd)'C, (s — Pd) + Bd"K'Ko. (2)

On the right-hand side of Eq. (2), the first term is
the data fitting function, where C, is the noise covari-
ance matrix, and its inverse is used as a weighting
matrix in this term. The second term is the regular-
ization function, where B is a small regularization
parameter and matrix K is a regularization matrix.
From Eq. (2) we get

& =Rs, (3)

where R is the reconstruction matrix, which takes the
following form:

R=(P"C,”'P + BK'K) 'P"C, . (4)

Assuming that the noise for each subaperture of the
wave-front sensor is white with variance o°, C,
= oI, where I is the identity matrix. With this as-
sumption, Eq. (4) simplifies to

R=FP", (5)
where F' is the inverse filtering matrix, denoted by
F=(W+¢*BK'K)"". (6)

In Eq. (6), matrix W is equal to PP and is the
system matrix for wave-front reconstruction. When K
is taken as Laplacian matrix L, the second term in
Eq. (2) is used for curvature regularization. This
curvature-regularized wave-front reconstructor can
also be derived from the minimum-variance®? or
maximum a posteriori method6-17 by use of matrix
BL'L as the approximation of the inverse covariance
matrix.1® When K is taken as the identity matrix, the
second term corresponds to the Tikhonov regulariza-
tion. When regularized parameter B is taken to be
zero or when the noise level approaches zero, the
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reconstructor described by Eqgs. (5) and (6) is reduced
to a standard least-squares wave-front reconstructor.

3. Wavefront Reconstruction by Spectral-Domain
Filtering

Equations (3) and (5) indicate that wave-front recon-
struction can regarded as two sequential operations.
First, slope vectors are mapped to residual phase
vectors with matrix P”. Then an inverse filtering step
is performed in which matrix F'is used. We derive the
spectral-domain filtering (SDF) formula for square-
aperture wave-front reconstruction from inverse fil-
tering matrix F in this section. We derive the spectral
filters in the DCT and DFT domains by using the
eigenvalue decomposition!® method and relate the
DCT and DFT methods to boundary conditions of the
difference and interpolation equations.

A. Spectrum Matrix of Filtering Matrix F

If a matrix @ is a real symmetrical matrix (RSM), it
can be diagonalized as follows by a real orthonormal
matrix V that satisfies V' = V' (Ref. 19):

Q=VAV '=VAV", (7

where matrix A is a real diagonal matrix composed of
the eigenvalues of matrix @, and it is called the spec-
trum matrix of matrix A. Every column vector of ma-
trix Vis a real orthonormal eigenvector of matrix @. If
a real matrix is equal to its transpose, it is a RSM.
From Eq. (6) we can see that filtering matrix F' is a
RSM because each of the matrices W and K"K is a
RSM. Matrix K"K is equal to K? because regularized
matrix K is assumed to be either a Laplacian or an
identity matrix, both of which are RSMs. Applying
the eigenvalue decomposition [Eq. (7)] to both sides of
Eq. (6) yields a regularized spectrum matrix for fil-
tering matrix F' in the orthonormal transform domain
described by V-

AF = (AW + 0'2BAK2)71, (8)

where the zero eigenvalues of both Ay and Ag corre-
spond to the infinite eigenvalues of Ay. Therefore they
correspond to the null space of filtering matrix F.

B. Regularized Inverse Filters in the Discrete Cosine
Transform Domain

The relationship between one-dimensional (1-D)
Laplacian matrix A and system matrix W of the Hud-
gin geometry can be expressed as!®

W=I®A+AQRI, 9)

in which [ is a matrix of size N X N and ® represents
the Kronecker product.2° System matrix W is the two-
dimensional (2-D) Laplacian matrix L of size N*
X N? and A is the 1-D Laplacian matrix of size N
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X N, which takes the following form:

1 -1
-1 2 -1
A= . (10

Equation (9) can be diagonalized by the following
2-D orthonormal transform matrix V:
V=UQ®U, 11
where U is the 1-D orthonormal transform matrix
that can diagonalize matrix A. From Egs. (9) and (11)
and from the properties of the Kronecker product, we
obtain the following spectrum matrix as the Hudgin
system matrix:
where A, is the spectrum matrix of matrix A and its
diagonal is composed of eigenvalues \,, of matrix A.
Correspondingly, the column vectors of orthonormal
matrix U are equal to eigenvectors u,, of matrix A.
Therefore, once we find the eigenvalues and eigen-
vectors of matrix A we can obtain spectrum matrix Ay
by using Eq. (12). We can find the eigenvalues and
eigenvectors from
A-\,Du,=0

(m=0,1, ..., N—1).

(13)

We solve this system of equations by using the
ordinary differential equation theory.l® Solution of
eigenvalue \,, and its corresponding eigenvector u,,
from Eq. (13) is equivalent to solution of the 1-D
second-order difference equation

U1 T 2= Ny — Uy 1 =0
(n=0,1, ..., N-1),
(14)
with the Neumann boundary conditions
Upm, -1 = Um, 0, U, N = Um, N-1- (15)

In Egs. (14) and (15), u,, , represents the nth compo-
nent of the u,, vector. Equation (15) is equivalent to
using a reflection operation for u,, , and u,, y—; with
respect to u,, _1» and u,, y_1 to obtain u, _; and
U, - The characteristic equation of homogenous lin-
ear equation (14) is
—r+@2-\)r—1=0. (16)
From the two roots of Eq. (16) we find the eigen-
vectors u,,:



Up o = Wpia cos[(n +1)6,,] + b sin [(n +1)0,]}, (17)

where w,, is the normalization coefficient. The vari-
ables a, b, and 6, are parameters that need to be
determined. Substituting Eq. (17) into (15) yields

=
S
—

) (25)

| =
==

1—cosb,

—sin 6,,

a
cos[(V + 1)0,,] — cos(N®,) sin[(N + 1)6,.] — sin(Nem)](b) =0. (18)

Equation (18) has nontrivial solutions if and only if
its determinant is equal to zero. From this condition
we obtain
(cos 0,, — 1)sin(N9,,) = 0. (19)
Solving Eq. (19) yields 0,, = mm/N, where m
=0,1,...,N — 1. To find the eigenvectors we set
a =sinb,, and b = 1 — cos 0,, and substitute them
into Eq. (17). Performing a reduction by using trigo-
nometric relations yields

B _/mm m(2n + 1w
Upon = W sm<2N)cos[2N], (20)

where normalization coefficient w,, is determined by

.y (mm Nil ,[m@n + w12 01
w,, = sin (2N><nocos [WD . (21)

From Egs. (20) and (21) we find the orthonormal
eigenvector u,,:

2 m2n + 1)
Up = \“‘N K COS[2N]
(n=0,1, ..., N—-1), (22)

where k,, = 1/\2 for m = 0 and otherwise k,, = 1.
Orthonormal matrix U obtained with the eigenvec-
tors in Eq. (22) is the 1-D DCT matrix.2! Substituting
Eq. (22) back into Eq. (14), we obtain the eigenvalues

m

)\m=4sin2<) (m=0,1, ..., N—1).

(23)

2N

We find that the system matrix of the Fried geom-
etry can be expressed as?®

W=HQRA+ARH, (24)

where H is an N X N matrix of the form

and matrix A takes the same form in Eq. (10). To
solve the eigenvalues and eigenvectors of matrix H
we need to solve the following 1-D second-order in-
terpolation equation:

um,n—l + (2 - Tm)um,n + um,n+1 = 07

(n=0,1, ..., N—-1),
(26)
with boundary conditions
Up,-1= " Un, o Up,N= ~Um,N-15 (27)

By the same method that we have just used for
finding the eigenvalues and eigenvectors for matrix A
we found that the orthonormal matrix that can di-
agonalize interpolation matrix H is the 1-D discrete
sine transform matrix. The 1-D discrete sine trans-
form and DCT matrices are not commutative, but
fortunately the 1-D DCT matrix can approximately
diagonalize matrix H.15 Applying orthonormal trans-
form matrix V in Eq. (11) to both sides of Eq. (24), we
obtain the spectrum matrix for system matrix W of
Fried geometry:

where the approximation exists because in the deri-
vation of relation (28) we used the following matrix as
an approximation of matrix H:
3 1
1 2 1
1 .
H DCT — Z . . (29)
1 2 1
1 3
The boundary condition included in matrix Hpcp is
the Neumann boundary condition in Eq. (15), and the
spectrum transform matrix of Hpcrp is the 1-D DCT
matrix. From the relation Hpcr = I — A/4 and from
eigenvalues \,,, we obtain eigenvalues T,, of matrix
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Hpor (Ref. 15):

m

_ 20 —
T, = COS (2N) (m=0,1, ...

Substituting Eq. (12) and relation (28) back into
Eq. (8), using eigenvalues \,, and 7,, and lexicograph-
ical index transformation \; ; = \, to the diagonals of
the spectral matrices and the identity matrix, we
obtain the following general inverse filters in the 2-D
DCT domain for inverse filtering matrix F when we
consider the Tikhonov and curvature regularizations,
respectively:

, N—1). (30)

Ym, n= (Sm,n + UZB)_ly

v, ~ls +160%|sin?( =)+ sin?( ™)1
m,n m,n 9N 9N ’

(32)

(31)

where regularization parameter 38 for these two types
of regularization method are determined by the
method described in Ref. 9 and S, ,, is the Hudgin or
Fried system filter in the 2-D DCT domain denoted,
respectively, by

2 ™) 4 in( ™
4[s1n <2N)+S1n <2N>]’

S . =4|sin® mm cos? ilds + sin? m cos? m
m, 1 2N 2N 2N 2N ||’

(34)

n
B
3
I

(33)

wherem,n =0,1,..., N — 1foran N X N solution
domain. Spatial spectrum value S, , = 0 for both
geometries corresponds to the piston mode that be-
longs to the null space of their inverse filtering matrix
F. For the Fried geometry, although the spatial spec-
trum value Sy_; y_; does not correspond to the null
space of its inverse filtering matrix F, this eigenvalue
is so close to zero that it is susceptible to high-
frequency noise during filtering, its corresponding
eigenvector has a checkerboard pattern, and it intro-
duces a waffle mode into the solution. We set y, , and
Yn-1,n-1 to zero to suppress these modes. Setting B to
zero in Eqgs. (31) and (32) yields the standard least-
squares Hudgin or Fried filter.

From the principle of separation of variables, the
2-D DCT of one image can be computed by use of two
1-D DCTs in its rows and columns sequentially. It can
also be computed directly by use of other types of 2-D
fast transform. Its efficiency depends on the details of
the implementation, but the computational cost can
be two times smaller than that of using the fast Fou-
rier transforms directly when the proper method is
used.2!
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C. Regularized Inverse Filters in the Discrete Fourier
Transform Domain

The solution of the finite-difference equation [Eq.
(14)] for every \,, with the following periodic bound-
ary conditions:

um, -1 Z’l'm,Nfla um,N = Z’l'm, 1 (35)

is equivalent to solution of the eigenvalue problem for
the following matrix:

2 -1 -1
-1 2 -1
Appr = . (36)
-1 2 -1
-1 -1 2

Matrix Appr is an approximation of matrix A. It is
also a circulant matrix, so it can be diagonalized by
the 1-D DFT transform matrix. Its eigenvalues were
found to be2

, N—1).
(37)

mar
fn=4 sinZ(N) (m=0,1, ...

Similarly, the solution of interpolation Eq. (26) for
every T, with periodic boundary conditions is equiv-
alent to the solution of the eigenvalue problem for the
following matrix:

1 1

2 1

R (38)
1 2 1

1 1 2

From the relation Hypr = I — Appr/4, the eigenval-
ues h,, of Hppy can easily be found as

mm
h,, = cos2<N> (m=0,1, ...

, N—1). (39)
Spectrum matrix equation (12) and relation (28) that
we obtained for the Neumann boundary condition are
valid only approximately for periodic boundary con-
ditions. From these two expressions and from eigen-
values f,, and h,, we find the Hudgin and Fried
system filters, respectively, in the 2-D DFT domain:

wm T
S, = 4[sin2<N> + sinQ(N)],

mm mm ™™ mm
s = {5 o ) o

(41)

(40)



(d)
Fig. 1. (a), (b) Hudgin and Fried filters, respectively, in the DCT
domain; (c¢), (d) the corresponding filters in the DFT domain.

wherem,n =0,1,..., N — 1. The regularized filters
for the Tikhonov and curvature regularized least-
squares methods in the DFT domain can easily be
found and are denoted, respectively, by

L (42)
mm mn\12) 1
R iy
(43)

If these DFT filters are used directly in the wave-
front reconstruction without proper treatment of the
boundary, errors will occur, even when the solution is
made on a square aperture. To suppress the piston
mode in the DFT domain we set Y, o to zero.3 For the
Fried geometry we reset the inverse filter values to
zeros near (N/2,N/2) when N is even and (IN/2
- 1/2,N/2 — 1/2) when it is odd. These singular
values introduce a waffle mode into the solution. The
Hudgin and Fried filters in the DCT and DFT do-
mains for the standard least-squares method (B
= 0) are shown in Fig. 1 on a log scale for a 255
X 255 size domain. For all images we modified the
spectral value of the piston mode to 0.01 to show them

properly.

D. Filtering Procedures in the Spectral Domain

The procedures for the 2-D DCTDF method are de-
scribed as follows: First, the slope vector is mapped to
the residual error by b = P"s. Vector b is reordered
into an image B by the lexicographical index trans-
formation. Finally, 2-D DCTDF is performed on the
image B as follows:

X =IDCT[Y X DCT(B)], (44)

where DCT and IDCT represent the forward and in-
verse 2-D DCT transforms, respectively. In Eq. (44),

the symbol X is the componentwise multiplication
operator and Y is one of the spectrum filters in the
2-D DCT domain. Because complex numbers are in-
volved in the DFTDF method, we should take the real
part of the filtering result for this method:

X =real{IDFT|Y" X DFT(B)]}, (45)

where Y” is one of the spectrum filters in the 2-D DFT
domain.

E. Noise Propagator Coefficient

Assuming that the noise in the subapertures is white,
the noise propagation coefficient (NPC) of the recon-
structor in Eq. (5) can be computed by the trace op-
eration?

1
NPC = Y Trace(RR"). (46)

With proper treatment of the boundary condition the
NPC can be computed by use of the eigenvalue de-
composition through a theorem that equates the
trace of a matrix to the sum of its eigenvalues.2!
Because the DCTDF method treats the boundary
accurately by taking advantage of the Neumann
boundary condition, we can use the eigenvalue de-
composition method described in Subsection 3.B to
seek an analytical formula for computing the NPC for
the square-aperture wave-front reconstruction. The
result is

1 N1

NPCperpr = 7 2 Ym, n2Sm,n' (47)

m, n=0

Through Eq. (47) we calculate the NPC for N in the
range [10,1024]. Results show that the NPC fitting
equations for the Hudgin and Fried geometries in the
least-squares method (when B = 0) are, respectively,

NPCDCTDF =0.31481 + 0.08042 In NQ, (48)

NPCpcrpr = 0.15597 + 0.15925 In N°. (49)

Equation (49) is approximate because of the approx-
imation made in Eq. (29), but the error is within 3%
in this range of N values. We found that the NPC
fitting equations for the regularized least-squares
methods do not indicate a significant difference from
Egs. (48) and (49) for these two geometries. It is im-
possible to find an analytical NPC formula for an
annular aperture, but it might be possible to develop
a fast eigenvalue decomposition method and use Eq.
(47) to estimate the NPC at the cost of O(n*?).

4. Recursive Wave-Front Reconstruction Algorithm

In this section we describe the application of the RF
algorithm to an embedded aperture that is an annu-
lar solution domain inscribed in a square aperture.
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The wave-front reconstruction in the embedded ap-
erture can be performed by use of the equation

Cz=0, (50)

where b = G”s and s is the slope vector obtained in
the embedded aperture. Gradient matrix G is gener-
ated on the embedded aperture by use of the mask
operation and a gradient matrix on a square aper-
ture. Using the same derivation method for Eq. (5)
and (6) yields matrix C for the embedded aperture:

C=W,+o’BK'K, (51)

where W; = G"G and K is Laplacian matrix L or the
identity matrix for the curvature or Tikhonov regu-
larized least-squares methods. We note that Eq. (8) is
valid also for the wave-front reconstruction problem
described by Eq. (50), because matrix C is also a RSM.
However, we have to perform the eigenvalue decom-
position numerically if we wish to use this method
directly for wave-front reconstruction on the embed-
ded aperture, and the eigenvalue decomposition can
be computed at cost of O(n?) after the eigenvalues and
eigenvectors are obtained.

To permit the fast methods to be used for wave-
front reconstruction on the embedded aperture we
developed an iterative algorithm in which the wave-
front reconstruction is performed on the embedded
square aperture through fast methods. Then the
solution is multiplied by the telescope pupil mask to
update the residual error by a direct or CG updating
procedure. The solution of wave-front reconstruc-
tion by use of fast methods and the masking oper-
ation together in the embedded square aperture is
called the embedding step. The iterative solution
process continues recursively, using the embedding
and updating step, until the solution converges to
the correct value or the AO loop is closed.

Acceleration of the embedding step in the RF algo-
rithm can be explained by the philosophy used for the
PCG method. The equation CX = b is solved effi-
ciently through the preconditioning equation in the
embedding step:

F&=b. (52)

It is a good preconditioning equation, because F*
satisfies the following criteria: (a) matrix F! is an
approximation of matrix C; (b) FC is close to an iden-
tity matrix to some degree; (c) the condition number
of F'C can be reduced greatly if the masking operation
is used in the embedding step; and (d) precondition-
ing Eq. (562) can be computed efficiently by the
DCTDF, multigrid, and ADI methods.

The flow chart of the recursive algorithm for this
wave-front reconstruction study is the same as that
shown in Fig. 1 of Ref. 15, except that here we use
different methods to solve preconditioning Eq. (52)
and set s, = s,. We use only one PCG iteration for
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calculate s, and specity &

k=0, x,

C=G'G, ry=by-Cx,
v
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(1) using fast methods to solve
the preconditioning equation
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_ _aT,
=0,,by=G"3,

Flg,=r
(2) masking:
Py =Mg,
O
Yes
k=k+1
Pr =% v

ap = ("/;T—1¢/.-—1 )/(P/{(-'Pk) k=k+1
Xp =X T8 Py Xp =Xy + 8P
by =G's, by =GTs,

re =b; e = b

Stop and
get solution x;

Fig. 2. Flow chart of the RF algorithm for closed-loop AO simu-
lations.

updating the deformable mirror commands in the
PCG method, so this becomes a preconditioned steep-
est descent (PSD) method.’® The RF algorithm for
closed-loop reconstruction is shown in Fig. 2. In this
flow chart, o, is the zero vector of size n = N? Pa-
rameter g is set to be a positive constant in real-
time AO systems, and residual error r;, is updated by
use of the real-time measurement s;, which is emu-
lated in our simulations by the following equation:

s, = G(@p — xp) + M. (53)

Here ¢, is the phase profile at the kth temporal step
and is generated by translation of the original phase
screen; x;, is the reconstructed deformable mirror



command vector. The RF algorithm can be imple-
mented directly in the image domain, so it is suitable
for performing parallelization and multiplication
with a telescope mask pupil. For this study, solution
image X was simply mapped back to a vector and
then multiplied by mask matrix M, where M is the
diagonal matrix that we obtained by putting a pupil
mask image into a diagonal vector, using the lexico-
graphical index transformation.

5. Simulations and Performance Evaluation

For wave-front reconstruction in an AO system, we
performed Monte Carlo simulations to compare the
performance of the DFTDF, DCTDF, multigrid, and
ADI methods when they were used in the embedding
step of the RF algorithm.

We used the same condition in all these simula-
tions as was done previously.1> A telescope with a
17-m annular aperture and the configuration of the
Shack-Hartmann wave-front sensor and the same
deformable mirror as in the Fried geometry were
assumed. The annular aperture with 48,816 deform-
able mirror actuators was embedded in a square ap-
erture with 255 X 255 grids. The subaperture size of
the wave-front sensor was r,/3 when rescaled back to
the telescope pupil plane. Fried coherence length r,
was set to be 0.2 m at 500-nm wavelength. The phase
screens were generated by the subharmonic meth-
0d,22 and the von Karman power spectrum was as-
sumed for atmospheric turbulence. The translation of
these screens was simulated by use of the phase shift
in the DFT domain, assuming the Tyler frozen flow
hypothesis holds. A wind velocity of 20 m/s was as-
sumed. The AO system update rate was assumed to
be 1 kHz. The random white-noise sources for differ-
ent signal-to-noise ratios (SNRs) of the wave-front
sensor were added to the slope signals to simulate
slope measurement results on the wave-front sensor.

We used the relative total root-mean-square
(rTRMS) phase residual error (PRE) defined in Ref.
15 as the performance metric with which to quantify
the performance of all these methods for all simula-
tions. However, for the closed-loop AO simulations,
phase error vector e used in those definitions is rede-
fined ase = x;, — ¢,, where x}, is the deformable mirror
command vector.

A. Discrete Cosine Transform Domain Filtering and
Discrete Fourier Transform Domain Filtering Methods

Using the DCTDF with filter Y in Egs. (31) or (32) to
get the wave-front reconstruction solution is equiva-
lent to performing the DFTDF in the double-sized
expansion domain using the filter Y* in Eq. (42) or
(43). This double-sized domain is obtained from the
mirror reflection with respect to the midgrid points
about two boundaries of the original domain.23 The
solution obtained by DCTDF is equal to one quarter
of the solution obtained by DFTDF in this double-
sized domain. Therefore to get the same result as that
obtained by the DCTDF method requires that the
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Fig. 3. rTRMS PRE curves of the DFTDF and DCTDF methods

used with the CG residual error updating procedure.

DFTDF method be used in a double-sized domain
generated in this way.

Recall that using DFTDF and DCTDF methods is
equivalent to applying periodic and Neumann bound-
ary conditions, respectively, to the wave-front recon-
struction on a square aperture. So we compared their
performance in the RF algorithm. Each filtering
method adopts the nonregularized Hudgin filter re-
construction (3 = 0) in its own domain as shown at
the left in Fig. 1. The results are shown in Figs. 3 and
4. From these figures we found that the DCTDF
method performs much better than the DFTDF
method for both the direct and the CG updating pro-
cedures.

B. Regularization and Masking Effect

To study the effect of regularization on wave-front
reconstruction we used the DCTDF method and the
Fried filters obtained through Egs. (31), (32), and (34)
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Fig. 4. rTRMS PRE curves of the DFTDF and DCTDF methods

used with the direct residual error updating procedure.
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Fig.5. rTRMS PRE curves of the DCTDF method when the Fried
filters are used with the direct residual error updating procedure.
The curvature and Tikhonov regularized Fried filters are com-
pared with filters with no regularization.

in the RF algorithm. The simulation results when the
masking operation was used in the embedding step
and a direct updating procedure was also used are
shown in Fig. 5. From this figure we can see that the
curvature and Tikhonov regularization methods have
a negligible effect when they are implemented in the
RF algorithm. This phenomenon might be due to the
fact that the linear system of equations for single-
conjugate wave-front reconstruction is an overdeter-
mined system. In such a system, if the null space has
been properly dealt with just as we did in Section 3,
the minimum-variance and the least-squares meth-
ods are equivalent. The difference should stem from
the boundary effect, which we dealt with by using the
masking operation in the RF algorithm.

If we do not use the making operation in the em-
bedding step, we can see from the simulation results
in Figs. 6 and 7 that the performance of the RF algo-
rithm is degraded when either the direct or the CG
updating procedure is used. Therefore the masking
operation has the effect of boundary regularization in
the iterative solution process. From these figures it
seems that for a low SNR the wave-front reconstruc-
tion that uses the curvature regularization performs
a little bit better than those with Tikhonov regular-
ization or no regularization; but there is no difference
for high SNR, probably because, when the SNR in-
creases, the regularized least-squares method is re-
duced to the standard least-squares method.

C. Hudgin and Fried Filters

The performance of the Hudgin and Fried filters in
the DCT domain with no regularization (3 = 0)
when the filters are used in the embedding step of
the RF algorithm was studied. The rTRMS error
curves when these two filters were used are shown
in Fig. 8 and 9, respectively, for the CG and direct
updating procedures. We can find from these two
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Fig. 6. rTRMS PRE curves of the DCTDF method when the Fried
filters are used with the direct residual error updating procedure
and with no masking operation used in the embedding step. The
curvature and Tikhonov regularized Fried filters are compared
with filters with no regularization.

figures that the rTRMS error curves are similar for
these two filters with a SNR below 32 but that the
curves obtained by the Fried filter converge faster
with SNRs higher than 100. The rTRMS error is
lower when the Hudgin filter with a SNR below 32
is used, but the reverse is true with SNR larger
than 100, and this phenomenon can be explained
from the properties of these two filters in the DCT
domain. From Fig. 1 we can see that the Hudgin
filter can suppress the high-frequency noise compo-
nents but that the Fried filter is easily influenced by
these noises, and waffle modes can be brought into
the reconstruction process.
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Fig. 7. rTRMS PRE curves of the DCTDF method when the Fried
filters are used with the CG residual updating procedure and with
no masking operation used in the embedding step. The curvature
and Tikhonov regularized Fried filters are compared with the fil-
ters with no regularization.
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Fig. 8. rTRMS PRE curves of the DCTDF method when the non-
regularized Hudgin and Fried filters are used with the CG residual
error updating procedure.

D. Multigrid and Discrete Cosine Transform Domain
Filtering Methods

In this simulation we use the Hudgin system equa-
tion in the embedding step of the RF to solve the
Fried-geometry wave-front reconstruction. The Hud-
gin filter in the DCT domain with no regularization
(B = 0) is used for the DCTDF method. The multigrid
method is also implemented by use of the V-cycle
scheme?3 for the Hudgin geometry in the embedding
step. To reduce the influence of the boundary effect on
the multigrid method we extend the embedded aper-
ture to a double-sized square aperture with a 513
X 513 sampling grid through zero padding. We use
the weighted Jacobi smoothing function in the mul-
tigrid method, and the number of levels in the V-cycle
scheme is nine.
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Fig. 9. rTRMS PRE curves of the DCTDF method when the non-
regularized Hudgin and Fried filters are used with the direct re-
sidual error updating procedure.

0
10 % : . : :
b O DCTDF, SNR=2
i ¥ Muiltigrid, SNR = 2
{> DCTDF,SNR=8
X Multigrid, SNR = 8
/\ DCTDF, SNR =32
* + Multigrid, SNR = 32
10 \/ DCTDF,SNR=128 ||
@) +_Muitigrid, SNR = 128 |
5 TEeR0eereteReReReReeRRRRE
0]
g
2 P2660000000000000062000¢
Ak :
Ak
Ve, ROSADDDRLLBDBRLS
Ve
Vvé .
-3 NAVAVivee: _—
10 VAvAvAA AR
0 5 10 15 20 25
lteration
Fig. 10. rTRMS PRE curves of the DCTDF and multigrid meth-

ods when they are used with the CG residual error updating pro-
cedure. The nonregularized Hudgin filter is used in the DCTDF
method.

The rTRMS error curves of these two methods are
shown in Figs. 10 and 11, respectively, for the CG and
the direct updating procedures. We found that the
convergence rate of the rTRMS error curves for the
multigrid method with the direct updating procedure
is far slower than for the DCTDF method, and the
convergence rate of the rTRMS error curve is slower
when the SNR is higher for both updating proce-
dures. The rTRMS error curves for the 2-D DCTDF
and multigrid methods are similar when the SNR is
below 32, and the convergence rate of the rTRMS
error curves for the DCTDF method is faster than for
the multigrid method with a SNR greater than 32.
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Fig. 11. rTRMS PRE curves of the DCTDF and multigrid meth-

ods when they are used with the direct residual error updating

procedure. The nonregularized Hudgin filter is used in the DCTDF

method.
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Fig. 12. rTRMS PRE curves of the DFTDF, DCTDF, multigrid,
and ADI methods when they are used in the embedding step of the
closed-loop RF algorithm and the residual error updating step is
implemented by the PSD method.

E. Closed-Loop Simulations

We used the DFTDF, DCTDF, multigrid, and ADI
methods in a closed-loop AO simulation with the RF
algorithm shown in Fig. 2 with the PSD and direct
updating procedures. The simulation results are
shown in Figs. 12 and 13. Parameter g is set to be 0.5
and 1 when the SNR is 2 and 20, respectively. These
results indicate that the DCTDF, multigrid, and ADI
methods have similar performance for both updating
procedures but that the convergence rate of the
DFTDF method is slowest for both updating proce-
dures and that the performance of the RF algorithm
with the PSD updating procedure is better than that
of a direct updating procedure for high SNR.
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Fig. 13. rTRMS PRE curves of the DFTDF, DCTDF, multigrid,
and ADI methods when they are used in the embedding step of the
closed-loop RF algorithm and the residual error updating step is
implemented by the direct updating procedure.
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6. Conclusions

Using the spectrum theorem for a real symmetric
matrix, we have derived a general, regularized spec-
trum matrix filter equation for a regularized least-
squares wave-front reconstructor. From this general
filter equation we derived the regularized Hudgin
and Fried filter formulas in the discrete cosine trans-
form and discrete Fourier transform domains. The
filters for the standard least-squares and the curva-
ture or Tikhonov regularized least-squares recon-
structors are only special cases of this regularized
filter. We obtained the noise propagation coefficient
formula for the discrete cosine transform domain fil-
tering method by use of the trace property of the
matrices. We related the discussions of the square-
aperture wave-front reconstruction to the boundary
conditions of second-order difference and interpola-
tion equations. We tested our algorithm by using
Monte Carlo simulations. We compared the precon-
ditioning performance of the DCTDF and DFTDF
methods and found that the former is better than the
latter. We studied the effects of Tikhonov and curva-
ture regularizations on wave-front reconstruction
when they are used in the RF algorithm with the
DCTDF method, and we found that the results of the
regularized least-squares method are not much dif-
ferent from those of the standard least-squares
method. However, we found that the masking oper-
ation can reduce the reconstruction error signifi-
cantly in the simulations. We also found that, when
the slope’s SNR is below a threshold value of ~30, the
Hudgin filter is better than the Fried filter from the
perspective of noise suppression, and that when the
SNR exceeds 100, however, the Fried filter is better.
Using simulations for a closed-loop AO system, we
investigated the DFTDF, DCTDF, multigrid, and
ADI methods used with direct and PSD residual error
updating procedures in the RF algorithm. We found
that the DCTDF, multigrid, and ADI methods yield
similar performance in these simulations. These
methods can be parallelized to increase speed and
reduce delay latency when they are used in real-time
closed-loop wave-front reconstruction and control ap-
plications.
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been supported in full by the National Science Foun-
dation Science and Technology Center for Adaptive
Optics, managed by the University of California at
Santa Cruz under cooperative agreement
AST-9876783.

References

1. R. Dekany, J. E. Nelson, and B. Bauman, “Design consider-
ations for CELT adaptive optics,” in Optical Design, Materials,
Fabrication, and Maintenance, P. Dierickx, ed., Proc. SPIE
4003, 212-225 (2000).

2. K. R. Freischlad and C. L. Koliopoulos, “Modal estimation of a
wave font from difference measurements using the discrete
Fourier transform,” J. Opt. Soc. Am. A 3, 1852-1861 (1986).

3. L. A. Poyneer, D. T. Gavel, and J. M. Base, “Fast wavefront



10.

11.

12.

reconstruction in large adaptive optics systems using the Fou-
rier transform,” J. Opt. Soc. Am. A 19, 2100-2111 (2002).

. L. A. Poyneer, M. Troy, B. Macintosh, and D. T. Gavel, “Ex-

perimental validation of Fourier-transform wavefront recon-
struction at the Palomar Observatory,” Opt. Lett. 28, 798—-800
(2003).

. F. Roddier and C. Roddier, “Wavefront reconstruction using

iterative Fourier transforms,” Appl. Opt. 30, 1325-1327
(1991).

. R. J. Noll, “Phase estimates from slope-type wavefront sen-

sors,” J. Opt. Soc. Am. 68, 139-140 (1978).

. D. L. Fried, “Least-squares fitting a wave-front distortion es-

timate to an array of phase-difference measurements,” J. Opt.
Soc. Am. 67, 370-375 (1977).

. L. Gilles, C. R. Vogel, and B. L. Ellerbroek, “A multigrid pre-

conditioned conjugate gradient method for large-scale wave-
front reconstruction,” J. Opt. Soc. Am. A 19, 1817-1822 (2002).

. L. Gilles, “Order-N sparse minimum-variance open-loop recon-

structor for extreme adaptive optics,” Opt. Lett. 28, 1927-1929
(2003).

D. G. MacMartin, “Local, hierachic, and iterative reconstruc-
tors for adaptive optics,” J. Opt. Soc. Am. A 20, 1084-1093
(2003).

F. Shi, D. G. MacMartin, M. Troy, G. L. Brack, R. S. Burruss,
and R. G. Dekany, “Sparse matrix wavefront reconstruction:
simulations and experiments,” in Adaptive Optical System
Technologies II, P. Wizinowich, ed., Proc. SPIE 4839, 1035—
1044 (2002).

D. C. Ghiglia and L. A. Romero, “Direct phase estimation from
phase differences using fast elliptic partial differential equa-
tion solvers,” Opt. Lett. 14, 1107-1109 (1989).

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. R. H. Hudgin, “Wave-front reconstruction for compensated im-
aging,” J. Opt. Soc. Am. 67, 375-378 (1977).

D. C. Ghiglia and L. A. Romero, “Robust two-dimensional
weighted and unweighted phase unwrapping that uses fast
transforms and iterative methods,” J. Opt. Soc. Am. A 11,
107-117 (1994).

H. Ren and R. Dekany, “Fast wavefront reconstruction by
solving the Sylvester equation with the alternating direction
implicit method,” Opt. Express 12, 3279-3296 (2004), http:
/lwww .opticsexpress.org.

R. J. Sasiela and J. G. Mooney, “An optical phase reconstructor
based on using a multiplier-accumulator approach,” in Adap-
tive Optics, dJ. E. Ludman, ed., Proc. SPIE 551, 170-176 (1985).
G. Rousset, “Wavefront sensors,” in Adaptive Optics in Astron-
omy, F. Roddier, ed. (Cambridge U. Press, Cambridge, 1999).
B. L. Ellerbroek, “Efficient computation of minimum-variance
wave-front reconstructors with sparse matrix techniques,” J.
Opt. Soc. Am. A 19, 1802-1816 (2002).

D. S. Watkins, Fundamentals of Matrix Computations, 2nd ed.
(Wiley, New York, 2002).

G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.
(Johns Hopkins U. Press, Baltimore, Md., 1996).

K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithm,
Advantages, Applications (Academic, San Diego, Calif., 1990).
R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a
Kolmogorov phase screen,” Waves Random Media 2, 209-224
(1992).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Un-
wrapping: Theory, Algorithms, and Software (Wiley, New
York, 1998).

1 May 2005 / Vol. 44, No. 13 / APPLIED OPTICS 2637



