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This paper derives the “membrane formalism” for black holes. The membrane formalism
rewrites the standard mathematical theory of black holes in a language and notation which (we
hope) will facilitate research in black-hole astrophysics: The horizon of a black hole is replaced by a
surrogate ‘“‘stretched horizon,” which is viewed as a 2-dimensional membrane that resides in 3-
dimensional space and evolves in response to driving forces from the external universe. This mem-
brane, following ideas of Damour and Znajek, is regarded as made from a 2-dimensional viscous
fluid that is electrically charged and electrically conducting and has finite entropy and temperature,
but cannot conduct heat. The interaction of the stretched horizon with the external universe is
described in terms of familiar laws for the horizon’s fluid, e.g., the Navier-Stokes equation, Ohm’s
law, a tidal-force equation, and the first and second laws of thermodynamics. Because these laws
have familiar forms, they are likely to help astrophysicists understand intuitively and compute
quantitatively the behaviors of black holes in complex external environments. Previous papers have
developed and elucidated electromagnetic aspects of the membrane formalism for time-independent
rotating holes. This paper derives the full formalism for dynamical, evolving holes, with one excep-
tion: In its present form the formalism is not equipped to handle horizon caustics, where new gen-

15 FEBRUARY 1986

erators attach themselves to the horizon.

I. INTRODUCTION

Previous papers in this series! ~* have introduced a new
viewpoint on black-hole physics, the ‘“membrane
viewpoint,” which treats the horizon of a black hole as a
physical, 2-dimensional membrane that lives in and
evolves in 3-dimensional space. This viewpoint was
developed by combining the Znajek*-Damour®~’ “bubble”
formalism for the hole’s horizon, viewed as a null 3-
surface in 4-dimensional spacetime, with a 3 + 1 split of
spacetime into space plus time.

The membrane viewpoint has the goal of providing as-
trophysicists with mental pictures, physical intuition,
computational techniques, and other research tools (i.e., a
“paradigm” in the sense of Kuhn®) which will facilitate
analyses of the interactions of black holes with complex
astrophysical environments.

The previous papers in this series'~® dealt, primarily,
with the interaction of a quasistationary (slowly evolving),
axisymmetric (Kerr) black hole with electromagnetic
fields. In this paper we extend the membrane formalism
to include (i) fully dynamical holes, (i) gravitational in-
teractions of the horizon with external matter and infal-
ling matter and fields, and (iii) a detailed, kinematical
description of the structure and evolution of the horizon.
However, we shall not attempt to deal with horizon caus-
tics (which occur only in extremely dynamical situations),
at which new generators attach themselves to the horizon.

The purpose of this paper is to derive the membrane
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formalism from the standard general relativistic theory of
black holes. As a result, this paper is written in the
language of mathematical relativity and will be easily ac-
cessible only to people who are fluent in that language.
The resulting formalism, however, is intended to be valu-
able to people who find mathematical relativity difficult
and alien. Such people can get a feeling for the formalism
by browsing Secs. I and VI of this paper; but for a full
understanding of the formalism they must await the com-
pletion of a long, pedagogical treatise that we and our col-
leagues are preparing.>!°

As preparation for our derivation of the membrane for-
malism, we shall present in the next two sections a quali-
tative overview of the 3 + 1 split and the “stretching of
the horizon,” which underly the formalism.

The notation in this paper generally follows that of
Misner, Thorne, and Wheeler!! (MTW); in particular ¢
and G are taken to be unity throughout, and the metric
signature — + + + is used. The index H will denote a
horizon quantity and will be placed for convenience as a
superscript or subscript with no difference in meaning.

A. The 3 + 1 split underlying
the membrane formalism

Figure 1 shows the 3 + 1 split that underlies the mem-
brane formalism, for the special case of a hole with negli-
gible rotation. If the hole were rotating, the diagram
would be qualitatively the same, except for an added
“barber-pole twist” of the dashed world lines and the hor-
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Slices of Constant t
("absolute space")

FIDO World Lines

Stretched Horizon, H®

True Horizon, H
and Generator

FIG. 1. A spacetime diagram showing the 3 + 1 split that
underlies the membrane viewpoint. For details see text.

izon generators (cf. p. 881 of MTW).

In the spacetime diagram of Fig. 1 the time coordinate
7 plotted vertically is an Eddington-Finkelstein type of
time; i.e., it is a time coordinate that gives the 3-
dimensional horizon #° (innermost solid line) a nearly
vertical slope, makes the light cones have the indicated
forms, and agrees with the proper time of static observers
far from the hole—cf. p. 829 of MTW. The hole’s hor-
izon & is created at the bottom of the diagram by the ra-
pid gravitational collapse of a star (not shown); and it
thereafter grows slowly, on a time scale z, >>(G/c?)
X (mass of hole), due to accretion of matter and to gravi-
tational and electromagnetic interactions with external
matter and fields (not shown).

The 3 + 1 split is based on a family of hypersurface-
orthogonal fiducial observers (FIDQ’s). The world lines
of several FIDO’s are shown dashed in Fig. 1, along with
two of the spacelike hypersurfaces, . ¢, and 5 +,» that are

orthogonal to the FIDO world lines. These hypersurfaces
are surfaces of constant “universal time” ¢ (not equal to ?);
and in the membrane viewpoint one thinks of them as a
single, time-evolving, 3-dimensional, “absolute space” in
which physics take place as time ¢ passes. Physics in this
absolute space is characterized by 3-dimensional tensor,
vector, and scalar fields which represent physical quanti-
ties measured by the FIDO’s—e.g., the FIDO-measured

electric and magnetic fields E and B (or E; and B; in
component notation).

The FIDO’s and universal time of the membrane
viewpoint are chosen in accord with the following rules:
(i) Far from the hole the FIDO’s are at rest in the hole’s
asymptotic rest frame and universal time ¢, FIDO proper
time 7, and Eddington-Finkelstein-type time 7 all agree;
(ii) wherever spacetime is nearly stationary and axisym-
metric (e.g., nearly Kerr), the FIDO’s are nearly “zero-
angular-momentum observers”!? (ZAMO’s) and universal
time ¢ is nearly Boyer-Lindquist-type time (e.g., Sec. 33.2
of MTW); (iii) very near the hole the FIDO’s “snuggle up
to” the horizon in such a way that (a) their world lines
cover the entire spacetime outside the true horizon, (b)
their world lines remain always timelike, and (c) their
world lines asymptotically approach the horizon’s null
generators as one asymptotically approaches the horizon.
(For the precise meaning of “asymptotic” in this context
see Sec. III, below.)

B. The stretched horizon

The above choice of FIDO’s has great advantages over
other possible choices: for example, the FIDO’s cover the
entire exterior of the hole and never fall in, and for a near-
ly stationary hole the FIDO’s are nearly stationary. But a
price is paid for these advantages: They require that the
FIDO world lines asymptote to the null horizon genera-
tors; and this in turn forces the FIDO’s orthogonal hyper-
surfaces of constant time %, (“absolute space”) to dip
deep down into the past near the hole and thereby asymp-
tote to the horizon (Fig. 1). For example, in a spacetime
region that is Schwarzschild (nonrotating, static hole of
mass M), the Eddington-Finkelstein time 7 at
Schwarzschild radial coordinate location r and universal
time ¢ is

T=t+2MIn(r/2M —1) (1.1)

(p. 829 of MTW); so 7— — 0 as r—2M at fixed univer-
sal time ¢.

This dip into the past has pathological consequences
that are nicely illustrated by the black hole of Fig. 1,
which distant observers today (at t=t,) see to be nonro-
tating, to have mass M =10°M_, (for example), and to be
slowly evolving with an astrophysically realistic mass-
doubling time r,~10% yr. Suppose that today (at fixed
universal time t=t¢, of Fig. 1) one mathematically ap-
proaches the hole’s horizon »=2M~3X 10® km by mov-
ing inward through absolute space (inward on the hyper-
surface % 1,) starting from some radius, say r=4M, at

which general relativistic effects are not too strong. (The
starting radius influences A7 below, but becomes less and
less important as one approaches closer and closer to the
horizon.) Then Eq. (1.1) implies that one will see,
plastered into the region between r —2M =100 microns
and r —2M =2 microns, the near-horizon structure of
fields and matter laid down there A7=10 to 11 hours ago.
Beneath this, at r —2M =2Xx10"!2 to 4x10~2 cm, one



33 MEMBRANE VIEWPOINT ON BLACK HOLES: PROPERTIES . .. 917

will see the structure characteristic of A7=20—21 hours
ago. These structures will be laid down one after another
like ancient sediment deposits on the bottom of the sea.
Ultimately, at » —2M ~exp( — 10'%) cm, one will be prob-
ing so far into the past, A7~t, /3~3X10"yr, that one
will see the hole’s mass to be significantly different from
that measured at larger radii.

This complex, multilayered, near-horizon structure can
have no significant influence on the future (¢ >¢,) evolu-
tion of matter and fields outside the hole. It is entirely
relic history, and we can ignore it with impunity in our
computations of future evolution.

The membrane viewpoint “sweeps under the rug” this
multilayered structure by “stretching the hole’s horizon”
to cover it up."> More specifically, in the membrane for-
malism one introduces a timelike “stretched horizon” (#*°
of Fig. 1) which lies just outside the true horizon—far
enough outside that the bulk of the irrelevant relic struc-
ture in absolute space %, is hidden beneath it, but near
enough to the true horizon that there is no significant evo-
lution of the infalling matter and fields, as seen by freely
falling observers, as they fall from the stretched horizon
to the true horizon. This stretched horizon acts as a sur-
rogate for the true horizon in the membrane formalism:
Its properties and the properties of fields at location £,
in Fig. 1 are nearly identical to those same properties on
the true horizon at the point 2, (which is connected to
&, by an ingoing null ray; dotted line of Fig. 1). As the
true horizon evolves in response to interactions with the
external universe, the stretched horizon evolves in almost
identically the same way. And whereas, in the usual ap-
proach to black-hole physics, the true horizon acts as the
boundary of the external universe, in the membrane ap-
proach the stretched horizon acts as the boundary. Thus
it is that throughout this paper the phrase “at the hor-
izon” is almost always equivalent to “at the stretched hor-
izon.”

Previous papers in this series! ~3 derived and studied the
boundary conditions which must be imposed on elec-
tromagnetic fields at the stretched horizon for the special
case of a black hole which, aside from tiny perturbations,
is stationary and axisymmetric. Those boundary condi-
tions are essentially identical to the boundary conditions
on the true horizon, as developed by Znajek* and
Damour;’ and they are most elegantly expressed in the
language of Znajek and Damour. The stretched horizon
is regarded as endowed with a surface charge that annuls
the normal component of electric field (Gauss’s law) and a
surface current that annuls the tangential magnetic field
(Ampere’s law); the surface current is proportional to the
tangential electric field (Ohm’s law with a surface resis-
tivity Ry =4m=377ohms per square); charge is con-
served at the stretched horizon, with any charge that falls
in from the external universe remaining always on the
stretched horizon (no penetration into the interior) until it
is annihilated by charge of opposite sign; current flowing
in the stretched horizon produces Ohmic dissipation (en-
tropy increase) and correspondingly, through the
horizon’s first law of thermodynamics, produces an in-
crease of the hole’s mass; and electromagnetic fields in-
teract with the charge and current of the stretched hor-

izon to produce a Lorentz force and a corresponding
change in the hole’s angular momentum of rotation.
These electromagnetic properties of the stretched horizon,
together with the 3 + 1 equations of plasma physics in the
absolute space outside the stretched horizon, produce an
elegant and physically simple description®!® of the
Blandford-Znajek process'* by which magnetized, rotat-
ing, supermassive black holes might power quasars and
active galactic nuclei.

C. Overview of this paper

This paper extends the membrane viewpoint to encom-
pass dynamical (i.e., non-Kerr) black holes, and to include
a detailed description of the stretched horizon’s kinematic
properties and their fluidlike evolution in response to the
driving forces of gravity and electromagnetism.

We begin in Sec. II with a review of the kinematics of
the true horizon, viewed as a 3-dimensional null surface in
4-dimensional spacetime, and a review of the equations
which govern the true horizon’s evolution. Then in Sec.
IIT we introduce a 3 + 1 split of spacetime in the vicinity
of the true horizon, we define the stretched horizon, and
we study the manner in which the kinematic properties of
the stretched horizon closely mirror those of the true hor-
izon. Sections II and III are couched in the language of
standard general relativity without introducing any mem-
branelike physical interpretations of the equations. In
Secs. IV and V we develop the membrane interpretation of
the formalism, i.e., the “membrane paradigm.” Section
IV deals with electromagnetic properties of the stretched
horizon, extending the formalism of previous papers to
dynamical holes. Section V deals with gravitational,
mechanical, and thermodynamic properties of the
stretched horizon. There we see how the stretched hor-
izon can be regarded as a membrane endowed not only
with electric charge and current, but also with the proper-
ties of a two-dimensional viscous fluid whose surface-
layer stress-energy tensor annuls the horizon’s extrinsic
curvature; and we see how this fluid intercepts and con-
serves all energy and momentum that enter the stretched
horizon from the outside universe. The stretched
horizon’s evolution is generated by its laws of momentum
conservation (Navier-Stokes equation) and energy conser-
vation (dissipation equation), together with a law describ-
ing how the fluid’s shear is driven by tidal gravity. This
fluid description of the stretched horizon mirrors and
augments an analogous description of the true horizon
due to Damour.®’ Section VI gives a concluding sum-
mary of the key equations of the membrane paradigm.

Appendixes A, B, and E present mathematical details
which, if left in the body of the paper, would get in the
way of the presentation. Appendixes C and D discuss im-
portant concepts and issues which are tied to specific
parts of the paper, but which cannot be understood fully
until later parts of the paper have been read: a canonical
Jform for the spacetime metric near the horizon (Appendix
C), and the slicing transformations that quantify the ele-
ments of nonuniqueness in the membrane formalism (Ap-
pendix D).
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II. THE MATHEMATICAL DESCRIPTION
OF THE HORIZON

A. Definitions and notation

Because spacetime will be sectioned in so many dif-
ferent ways in this article, we take the opportunity at the
outset to define the various notations that will help the
reader to identify what section is being considered. Dif-
ferent conventions for tensorial indices will be used self-
consistently for the different manifolds considered: space-
time, the horizon, horizon sections, spacelike and timelike
hypersurfaces in spacetime; see Table I.

The 3-dimensional, null, absolute event horizon will be
denoted #; and it will be endowed with a well-behaved
time coordinate 7. The choice of 7 (which, for the mo-
ment, will be arbitrary) is said to determine the “slicing”
of the horizon into 2-dimensional spatial manifolds 7 at
constant 7. The slices #% are coordinatized by spatial
coordinates x° (¢ =2,3). The full set of coordinates on
the horizon is denoted x4 (x9=7,x2,x?).

Because we do not attempt to deal with horizon caus-
tics, through each event Z on the horizon there passes
precisely one horizon generator (null geodesic). We nor-
malize the null tangent / to the generator at & by requir-
ing that

(dil)=1, 2.1)
so that the sections #% are Lie dragged by the [

congruence. As a consequence of Eq. (2.1) we can write

=9 a0 (2.2)

for some “velocity” v® which will not play a significant
role in this paper. The spatial coordinates x¢ can always
be chosen (except at caustics) to be constant on generators.
For this choice, which we will call “comoving x%”> we
have

v?=0 for comoving x° . (2.3)

The basis ey that spans the horizon will consist of
e;=1 and e, (a=2,3) where e, lie in #% and l-e,=0,
but e, are not necessarily 3/9x° (e.g., one might occasion-
all}' want to use an orthonormal e,). For the dual basis
" we note that @’=d 7 since (d7,]) =1 and since e, lies
in #% so (d7,e,)=0. The basis e; will not in general be
a coordinate basis, and in fact can be a coordinate basis
corresponding to x4 only if the spatial coordinates x° are
comoving [cf. Egs. (2.2) and (2.3)].

The 2-dimensional metric tensor in #% is denoted
Y5 =€4-€, and its inverse is y®2. Indices of tensors in o
(e.g., o2 to be introduced below) are raised and lowered
with this metric. Covariant differentiation with respect to
¥4 is denoted by ||, as in o "”b.

Lower case greek indices, a,83,7, ..., range over 0—3
and indicate spacetime coordinates and components. In
Sec. III we shall use a time coordinate x°=t=*“universal
time” (not equal to 7) to slice spacetime .% outside & into
3-dimensional slices .#, called absolute space. Indices in
absolute space are i,j,k, . . ., ranging over 1,2,3.

B. Kinematic horizon fields
and their evolution

The kinematics and evolution of the absolute event hor-
izon # were first elucidated by Hawking'>'¢ and by

TABLE 1. Manifolds and index conventions.

Covariant
Symbol Meaning Indices differentiation
S Spacetime (4-dimensional) a,B,v,...(=0,1,2,3) VV, V9
x Horizon (3-dimensional null) 4,B,C,...(=0,2,3) Vim
K5 Section of # at constant 7 a,b,c,...(=2,3) Ve
(2-dimensional spacelike)
&, Section of % at fixed ij,k,...(=1,2,3) Vi
universal time ¢; “absolute
space” (3-dimensional space-
like)
xS Stretched horizon (3- A,B,C,...(=0,2,3) VA s
dimensional timelike)
xS, Section of stretched horizon a,b,c,...(=2,3) &

(often simply “stretched
horizon”); N7, (2-
dimensional spacelike)
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Hawking and Hartle!” using the Newman-Penrose'® null-
tetrad formalism; and they were translated into tensorial
notation by Damour.%’ In this section we will review
Damour’s description of the kinematics and evolution, but
without reference to his membranelike interpretations of
the equations. The membrane viewpoint will be delayed
until Secs. IV and V.

Since I is tangent to a geodesic of spacetime, V;l <1
where V is the covariant derivative in 4-dimensional
spacetime .. The proportionality constant is called the
surface gravity of the horizon, gg:

Vil=gyl . (2.4)

The horizon expansion 6y and shear o are the trace and
trace-free parts of the projection of VI into #%, i.e.,

0n=0,"=7"0y , (2.5a)

05 =0 —3Yas00 » (2.5b)
where

O =(Vyl)-ep=ly)q - (2.5¢)

Note that 6,, is symmetric since the generator congruence
is rotation free. The “Hajicek field” QF describes the part
of V,1 given by

= (a0V,1) . (2.6)

Like surface gravity, shear, and expansion, this quantity
has played a role in the mathematical theory of black
holes in the past.!® Its primary importance lies in its con-
nection with the total angular momentum J of an axisym-
metric hole. If €4 lying in #%, is the Killing vector
which generates rotations about the symmetry axis and
dA is the area element on the horizon #%, then®

I= [, (~05/8mdd . 2.7)

The horizon fields gy, 0, 05, and QF are kinematic
in that they describe the nature of the ! congruence.
Moreover, they are all components of a singﬁ}e geometric
entity, the horizon’s extrinsic curvature Ky, which is
defined?! by

V] E-—KHBZeE . (2.8)

(Damour® uses the opposite sign for K H’; and calls it the
“Weingarten map.”) The components Ky =Ky% vanish
[cf. Eq. (2.4)] and the other components of Ky are

Kyly=—gu , (2.9a)
Kygl,=—04, (2.9b)
Ky =—o"% —16,8% , (2.9¢)
0n=—Kn’ , 0tp=—YaKps+5vaKp: . 2.99)

It is straightforward to verify that in comoving coordi-
nates, where I =(9/0%)_,,

KB =y, Kyy=—+0y, /3t (2.10a)

so that [cf. Eq. (2.9¢)]

aYGb
or

(2.10b)

d 1
Og=—Invy, ohh== —OnYab
of 2

The kinematic horizon fields are tensors in #%. We
can describe their evolution with passing time 7 using a
covariant time derivative D; defined with respect to
spacetime parallel transport. More specifically, if ¥, is a
tensor in #%, then D;V¥,, is also a tensor in &% which,
viewed as a 4-tensor in spacetime, is given by

Di\llaﬂE w#v;;‘lh‘}/pa‘yvﬂ . (21 1)
Here y“%g, the 2-metric y°, viewed as a 4-tensor, plays the
role of a projection operator, projecting into #%. In terms
of the time derivative D; the evolution of the horizon ex-

pansion is governed by the “focusing equation”

D0y =g0" — 304> —olholt — 87Ty , (2.12)

the evolution of the shear is governed by the “tidal-force
equation”

D;ot, +(0n —8w )0t = —C g5 » (2.13)

and the evolution of the Hajicek field is governed by the
Hajicek equation

DY (ol 4 185008 040

=(gH+%9H),a—of b||b+877'Tﬁa . (2.14)

Here C;p5zp and T3y are the components, along the
horizon’s basis vectors, of the Weyl curvature tensor of
spacetime and of the stress-energy tensor of matter and
fields falling through the horizon; and in Egs. (2.12) and
(2.14) the Einstein field equations have been assumed.
Equations (2.12)—(2.14) can be verified by straightforward
manipulation, but are most easily derived in the
Newman-Penrose formalism; see Appendix A. The focus-
ing equation (2.12) and tidal-force equation (2.13) are
Sachs’s optical scalar equations®? in tensorial notation.

C. Slicing transformations

For a stationary, axisymmetric black hole there is a pre-
ferred choice of the horizon time coordinate 7 [Egs. (2.22)
and (2.23) below]; but for a dynamical, nonaxisymmetric
hole the time slicing is somewhat arbitrary. It will be im-
portant later to understand how the horizon fields change
when one changes the time slicing. For simplicity we
shall use comoving coordinate bases throughout this sec-
tion.

Consider two different slicings of the horizon, 7and 7';
and for both slicings use the same comoving spatial coor-
dinates so that

T=17"x%), T'=7'(7,x%), (2.15a)
x%=x% are comoving coordinates
(constant on generators) .  (2.15b)
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If we define
y= |4L - -9:’—] , (2.16a)
dt along generator ar x?
g=L || _ |3} (2.16b)
Y atr’ %9 ot x@
w= |9 | ——y|3 |, (2.16¢)
ax? | ax? |5
1 |9W, 1| aYy
Aa=_ —— == |
Y| ar | Y |ox? |-
oW, 1|y
= == GW, |,
or l,,» Y |oxe 000
(2.16d)

then the relationships between the primed and unprimed
bases are

e6,=1‘= YI=Y36 ,

0% =df'=Y "Y'~ W,0% =Y~ Ndf— W,dx?) ,
; . , (2.17)
= r=e,+Wyl= +Wo—,
ax? + ax? ot

0% =dx? =0%=dx"? .

(<

The behavior of the horizon fields under slicing transfor-
mations can be derived from these equations and the defi-
nitions (2.4)—(2.6):

Yab=Vab > (2.18a)
0y =Y0y , (2.18b)
oLy=Yog, (2.18¢)
ga=Ygy+G, (2.18d)
QHE=Q —[of 4 (604 —gn)88IW,+4,, (2.18¢)
To5 =Y T55 (2.18f)
Ty =Y (Toa+WaTs5) » (2.18g)
Co55=Y*Coys - (2.18h)

The first three equations show that y,;,, 6y, and ol at
any point on the horizon are independent of the manner in
which & is sliced into sections #%, aside from a change
in scale (factor Y) due to the change in the ticking rate of
time 7. (For this reason Oy and oly, rewritten in
Newman-Penrose notation, have been called “optical sca-
lars.”??) The changes (2.18d) and (2.18¢) in gy and Q¥
are not so simple; but one can see their mathematical
naturalness when one combines them with (2.18b) and
(2.18¢) into a single geometric equation for the change in
the horizon’s extrinsic curvature:

K'=YK—I®dY . (2.18i)

We shall reach a deeper understanding of these slicing
transformation laws when we see them in the context of a

3 + 1 split of spacetime near the horizon (Appendix D).

Notice that by an appropriate choice of slicing one can
make the hole’s surface gravity gy take on any value one
wishes [Eq. (2.18d)], even zero. However, in practice we
will tie our horizon slicing to a natural slicing of space-
time outside the horizon, thereby constraining gy severe-
ly.

For the special case of a static, nonrotating black hole
(which need not be axisymmetric?®), spacetime outside the
horizon possesses a unique, timelike Killing vector field k
whose norm far from the hole is unity. In the limit as one
approaches the horizon #°, k becomes null and tangent to
the horizon generators. In this case it turns out (see Ap-
pendix B for a proof) that there exists a preferred horizon
slicing 7 (“canonical slicing”), unique up to a time transla-
tion

T'=T+const , (2.19)
for which

1=(8/07) .=k, (2.20a)

Q=00 =64=0, (2.20b)

gy =const , (2.20c¢)

0Yap /3t=0. (2.20d)

As an example, for a Schwarzschild black hole with mass
M and “horizon radius” ry =2M, the surface gravity and
the 2-metric in spherical polar coordinates (6,¢) are

gu=1/4M , yvoo=rg*,
(2.21)
Ve =ry’sin’@, yg=0.

For the special case of a stationary, rotating black hole
(which must be axisymmetric'®), spacetime possesses two
independent, commuting Killing vector fields:
k=(“generator of time translations”) which is timelike
with unit norm far from the hole, and £=(“generator of
rotations about axis of symmetry”), which is spacelike
with orbits that close on themselves after parameter
length 27r. In this case it turns out (see Appendix B for
proof) that there exists a preferred horizon slicing 7
(“canonical slicing”), unique up to a time translation

T'=7+const , (2.22)
for which?*
& lies in 7% , (2.23a)
I=k+Qy¢,
Qg =(horizon angular velocity)=const , (2.23b)
Qy is parallel to & with proportionality
factor independent of 7, (2.23c)
o =64=0, (2.23d)
gn =const , (2.23e)
0¥ qp/0t=0 . (2.23f)
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(Reluctantly we have adhered to past conventions and
have used the scalar Q4 to denote the horizon’s angular
velocity, and the vector Q or Qf to denote the horizon’s
Hajicek field; the reader should be wary and not confuse
them with each other.) As an example, for a Kerr
black hole with mass M, angular momentum J, rotation
parameter a=J/M, and “horizon radius”
ry=M+(M?—a?)'/?, described in polar coordinates
(6,4¢) with ranges 0<@<7m and 0<¢ <27 and with
£=09/0¢, it turns out that

rn—M g a (2.24a)
= oMry  HT My 242
. 2
0fl=0, Qf=— a sm49 lon*ra +M(rg*—a?cos?d)] ,
H
(2.24b)
(2Mry )?
Yoo=pu =rg*+a’cos’0, ys4= —;’ sin%0 ,
PH

It is straightforward to verify that the integral of
~Qf/8‘n' [Eq. (2.24b)] over the horizon’s area
dA =(y ey 44)"/°d0d¢ is equal to the hole’s total angular
momentum J=Ma, in accord with Eq. (2.7).

For fully dynamical holes none of the simplifications of
static or stationary holes apply. We have, however, the
possibility of specializing to slices with spatially constant
gy. We shall explore the constant-gy; slicing transforma-
tions and their generalization to slowly variable gz in Ap-
pendix D.

III. THE 3 + 1 SPLIT OF SPACETIME
NEAR THE HORIZON

We turn attention now from the hole’s 3-dimensional,
absolute event horizon # to 4-dimensional spacetime %
outside and near the horizon. In Sec. III A we introduce
a set of spacetime coordinates tied to our slicings 7 of the
horizon. Then in Sec. IIIB we use these coordinates to
perform the 3 + 1 split of spacetime & into “absolute
space” %, plus “universal time” f; and we define the
hole’s stretched horizon and relate its kinematic properties
and evolution to those of the true horizon. Section IIIB
focuses, for simplicity, on slicings for which the hole’s
surface gravity g is constant. In Sec. III C we repeat our
study of the stretched horizon and its properties for slic-
ings with slowly varying surface gravity; and in Appendix
C we present, for the slowly varying case, a canonical
form of the near-horizon spacetime metric—a form which
meshes nicely with our 3 + 1 split, and we exhibit this
metric’s relationship to the Boyer-Lindquist form of the
Kerr metric.

A. Carter coordinates

We introduce here a special class of coordinates for
spacetime outside and near the horizon, which are the
generalization to dynamical black holes of the coordinates

used by Carter? in his proof that surface gravity is con-
stant on stationary horizons.

We begin by introducing on the horizon 2 a specific
time 7 and a specific set of spatial coordinates x¢ which
comove with the horizon’s generators. At each point on
# we introduce a future-directed ingoing null vector n
which is orthogonal to the slice #% and has unit inner
product with the horizon generator I:

n-e, =0, nl=—1. (3.1)
We then construct the unique congruence of ingoing null
geodesics (“ingoing rays”) which at the horizon # are
tangent to n (Fig. 2); and we carry the coordinates (7,x°)
outward on these rays into the surrounding spacetime. As
our fourth spacetime coordinate we use the affine parame-
ter A of the null-geodesic rays, with A=0 and d /dA=—n
on . Note that this construction corresponds to

—ax ] is tangent to ingoing null-geodesic ray ,
x%7
(3.2a)
the horizon #° is at A=0, (3.2b)

FIG. 2. Equivalence of horizon generators and fiducion
world lines. In the horizon limit aU—/ along an ingoing ray.
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)

2 3.2
m (3.2¢)

=—nat A=0.

x24T

In this coordinate system the metric coefficients g,
(with x*=T7,A,x°) are independent of A. This follows
from the facts that 8/9A and d/0x* commute, and that
d/9A is null and satisfies the geodesic equation

o= |2 | |lp, 2 _y 3 |- |2 |.y,2
BREYN Aaxk T Har oA | *oxk
3 )
*wa“‘ax,, ank
agky
== (3.3)

where we have used the shorthand notation V,=Vja;,
V=V, aeu The A-independent values of g,,, can be read
off Egs. (3.1) and (3.2¢): gar=81.=0, g,;=1. We
denote g™ by £, g by ¢, and the inverse of ¥ by
Y- [Note that y,, will be the same as the horizon metric
plus terms of O(A).] We further define b%=—g™ and
b, =v4b® With these notations the covariant and con-
travariant metric coefficients are

b —fF 1 b,
8uv= 1 o 0|,
b, 0 Yab
0 1 0 (3.4)
g=11 7 —b°
0 —be y

The horizon’s extrinsic curvature [Eq. (2.8)] has com-
ponents

Kplz=—(dT,V41)=—T%;=—T\57=7857 ;

which, together with K H%: —8H, KH6,, =—0% and the
vanishing of b,=gg, and f = —gg5+b%, on the hor-
izon (A=0), tells us that

F=28aA+0AY), b,=—-20EA+0(1?). (3.5)

Thus, accurate to first order in A the spacetime metric is
dst=—(2ggANd > +2d TdA

+7ap(dx—2Q4Ad T)(dx?—2Q4\d T)

+0(A?) . (3.6)
|

1 d a Qg

U= |+ 40() |2 +00h)-2 3
g T | H0@) 5+ |~ —at0la)
1 Qp°
= Li0@ |2 102 4 |2 4i0@)
a ot da 8H

In this spacetime metric the values of gy(7,x?) and

¢.(7,x° depend, of course, on the original choice 7 of
horizon slicing. By performing a change of 7 slicing be-
fore constructing the coordinate system, one obtains a
metric (3.6) whose gy and Q% are changed in accord with
the slicing transformations (2.18).

B. 3 + 1 split and stretched horizon
for slicings with constant gy

1. The 3+1 split, the stretched horizon,
and FIDO’s

We now specialize, for simplicity of analysis, to a slic-
ing for which the surface gravity gy is constant, i.e., is in-
dependent both of time 7 and spatial location x® on the
horizon .

The foundation for our 3 + 1 split of spacetime is a
choice of “universal time” ¢ and corresponding “absolute
space” %, =(3-surface of constant ?) outside the horizon
#. We must not choose =7 because the 3-surfaces of
constant 7 are everywhere null. Instead, our choice for ¢
must be one such that %, is spacelike and the congruence
of timelike curves orthogonal to ., (the FIDO world
lines) “snuggle up to the horizon” in the manner described
in Sec. I A and Fig. 1.

A suitable such choice, and the one we shall make, is

t=T— — In(2ggA)+O(M) . (3.7)
28y

Since the FIDO world lines are orthogonal to ., the
FIDO 4-velocity U, viewed as a 1-form U, is given by

U=—adt, (3.8)

where a is the “lapse function” for the 3 + 1 slicing and
relates FIDO proper time 7 to universal time ¢ along a
FIDO world line by

dr/dt=a . (3.9

From U?= —1, expression (3.8) for U, and the form (3.4),
(3.5) of the metric it is straightforward to show that

a=(2ggM)2+0(A3"?) . (3.10)

It is convenient for many purposes to use a rather than A
as our radial coordinate; for example, the 4-velocity U
corresponding to (3.8) is written

(3.11)
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As discussed in Sec. IB, it is important in the mem-
brane formalism to stretch the horizon so as to get rid of
irrelevant layers of matter and fields which are relics of
past history. We shall choose our instantaneous stretched
horizon #7 , at some initial moment of universal time ¢,

to be at a=ap, where ap,<<1 is a constant; and by car-
rying this éffo forward in time along FIDO world lines

we shall generate the 3-dimensional stretched horizon #75.
We shall denote by ay(x?t) the value of the lapse func-
tion a at location (x%¢) on the stretched horizon #°.
Thus, FIDO world lines are generators of #S; and, by
Egs. (3.9) and (3.11), the derivative of the lapse function
with respect to universal time along these generators is
dag/dt=0(ay3), which means that, aside from frac-
tional errors of O(ag?) which we shall typically neglect,
the stretched horizon is a 3-surface of constant lapse func-
tion, ay=const+O(ay>). (If, after a long time, ay
evolves to become significantly spatially nonconstant, we
shall readjust the location of the stretched horizon to
make it constant again.)

Our spacetime is now sectioned by ¢ into the 3-space
&, of constant universal time ¢ (“absolute space”) with
coordinates x° and A (or a); and it is also sectioned by
a=ay into the stretched horizon #%, coordinatized by
x® and t. The 2-dimensional spatial intersection #7 of
&, and #° (the “instantaneous stretched horizon”) is
coordinatized by x°.

Although ¢ and a are fundamental in establishing the
sectioning of spacetime, the spatial Carter coordinates x?,
which comove with the horizon generators, are not funda-
mental; and for astrophysical applications it often is more
convenient to use noncomoving spatial coordinates x®
[e.g., the Boyer-Lindquist angular coordinates 6" and qSJr
of Egs. (C7); Appendix C]. Such a change of x°¢ will
cause at most a transformation among themselves of the
basis vectors e, lying in ;. The key equations derived
in the remainder of this paper will be tensorial in # and
hence will not refer specifically to Carter coordinates x%
but many of our derivations of key equations will rely on
Carter coordinates. In practice the Carter x“ are useful
for deriving relationships, while other coordinates x% are
used in applications. Similarly, the full Carter-type space-
time coordinat&s,('t',k,x") are useful in deriving relation-
ships but (#,a,x® ) mesh more nicely with the 3 + 1 split
and are more useful for astrophysical calculations; see
Appendix C.

2. Fiducions in the stretched horizon

It will be conceptually useful to introduce in the
stretched horizon 5 a family of timelike curves that are
more tightly locked to the generators of the true horizon
2 than are the FIDO world lines, and to imagine that
these generator-locked curves are the world lines of a fam-
ily of fiducial particles (“fiducions”). Since the Carter
spatial coordinates x° in #* are locked by null rays to the
generators of 7, it is natural to choose the fiducions to be
at rest in these coordinates. This will, in fact, be our
choice for the case of a stationary or static black hole:

(dx®/dt)pn=0 for a stationary or static hole , (3.12a)

where x° are Carter coordinates and “FN” means “fidu-
cion.” Notice [cf. Eq. (3.11)] that the FIDO’s in #° see
the fiducions move with physical velocity

e dt dx*® dx*®
FN= |5 -
dr dt Jen | 9t |Eo
Qa
-— g;’ ay . (3.12b)

In the case of a dynamical hole it turns out to be best to
lock the fiducions of #° to the generators of # using a
different family of null rays than were used in locking the
Carter coordinates x°. By an appropriate choice of lock-
ing rays, we obtain a fiducion physical velocity (relative to
FIDO?’s), vy, which satisfies the following equation valid
in any e, basis (not necessarily Carter):

(g —305)8% —0f%, Wy =—ayQ% in general .

(3.13)

(The required locking rays are outward, past-directed null
geodesics such that the ray which starts at a point 2 on a
given generator of # emerges from 2 orthogonal to a
very special 2-flat 5 C; this ¥ 5 is defined by the
demand that, if £ is a vector in F 3 then V¢l is also in
F . At any point Z on the horizon a slicing 7 can be
found such that 5 is tangent to 7%, but in general a
single slicing cannot be made which agrees with % 3 at all
points Z in a finite patch of the horizon. One can prove
these statements using the slicing-transformation formal-
ism of Sec. IIC and Appendix D.) This choice of fidu-
cions is actually possible and unique if and only if Eq.
(3.13) can be inverted to give vEy, i.€., if and only if

1 HbHa:O

(gn—10n)— 504 b0} (3.14)

Condition (3.13) is never violated for weakly perturbed
holes, since they have gy >>( |6y | or |05, |). If a hole
is so strongly perturbed from equilibrium that (3.14) is
violated somewhere, then the focusing equation (2.12) for
0y is likely to drive 6y to infinity, producing caustics in
the horizon which the membrane formalism in its present
state of development is not prepared to handle. If,
nevertheless, one wishes to apply the formalism to situa-
tions where (3.14) is violated, one can switch from the def-
inition (3.13) of fiducions to (3.12a). The resulting for-
malism will be totally unchanged except for the conceptu-
ally attractive description, in Eq. (5.20c) below, of the
physical origin of the horizon’s momentum.

3. Kinematics of the fiducions
and FIDO’s in the stretched horizon

The FIDO’s in the stretched horizon use as a natural
set of spacetime basis vectors

e’(‘)EUFIDO y €4 N. (3.15)
Here N is the outward unit normal to S, and the e, are
a pair of basis vectors lying in 23, which are obtained by
smoothly transporting an arbitrary basis e, in #% along
the coordinate-locking rays of constant Carter (7,x“). (In
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mathematical derivations one might want to specialize to
e, =0/3x°) Note that N and e, lie in absolute space .7,
while e; is orthogonal to it; € and e, lie in the stretched

horizon # while N is orthogonal to it; e, lie in the in-
stantaneous, 2-dimensional stretched horizon ﬁ’}g
=#°N.#, while N and e, are orthogonal to it; and the

spacetime metric in this basis is

8p=—1, 8w=+1, 8b=Yab ; (3.16)
all others vanish. It will be important below to relate this
basis to the true horizon’s null basis I, n, e,. We shall
describe the relationship of the two bases in terms of a
limiting process — defined as “in the limit ay —0 with a
chosen point of #° moving inward along the coordinate-
locking ray (7,x®)=const until it reaches the correspond-
ing point of #°.” It is straightforward to verify from the
definitions of U, N, and e, that in this limit

1
aHed—»I , agN—I, &;‘(%—N)—»ﬂ s
(3.17)

(e )in ;,A‘S'_"(ea Jin x;

Note that in the limit — the world lines of the
stretched-horizon fiducions and FIDO’s both coalesce into
coincidence with the horizon’s generators

ayUgpo—! , agUsn—1 . (3.18)

As. a result, aside from fractional errors of order ag?,
the FIDO’s and fiducions in #° have the same expan-
sion 0, shear &, and gravitational acceleration g= —(4-
acceleration); and when renormalized with ay to make
them finite, these coalesce into the horizon’s expansion,
shear, and surface gravity:

aHBEaHU"M=6H[1+O(aH2)]—>9H , (3.19a)

apos=ay(Uqg s — 1Y) =0m[1+0(ay?)]—0ok ,
(3.19b)
ag’g=—ay’VyU
=gu(—agN)[1+0(ag?)]+0(ay*)e,— —gyl ,
(3.19¢)

ang=gul1+0(ag?)]—gy . (3.19d)

Here g= | g|; and the index notation of Table I is being
used: | denotes covariant derivative in #5 and the index
A denotes components of a vector that lies in # [i.e., 4
ranges over 0, 2, 3 if the basis of Eq. (3.195) is used, or over
0, 2, 3 if the coordinate basis (#,x°?) is used]. Equations
(3.19) are equally valid for the FIDO’s and the fiducions.

The stretched-horizon equivalent of the Hajicek field
involves the gradient of N in a spatial direction:

U-V,N=U!N,,=—QJ[1+0(ax)]—>—-0QF .  (3.20)

A rather different appearance can be given to the
correspondence between quantities on # and on ¥ if we
introduce the extrinsic curvature K2, of the stretched
horizon:

V,N=—K2,e5 . (3.21)

The field differentiated is the unit normal N, not the
FIDO 4-velocity, so [by contrast with the horizon’s ex-
trinsic curvature (2.8)] there is no immediate relationship
to characteristic properties (acceleration, expansion, shear)
of the FIDO and fiducion congruence. Nevertheless, be-
cause aN—1, one can show that

aHKaaEaHU.VUN=KH66[1+O(aH2)]—’K25=—-gH ’
(3.22a)
K% =U-V,N=K,[1+0(ay))]—K}=—0f , (3.22b)
auKp=—ape,VyN=KZ[1+0(ay?)]
—Ka=—(00+7TYa0n) ,
(3.22¢)

and that in comoving coordinates the time derivatives of
the stretched-horizon metric coefficients are

a
—g—?-—»—ZKg =2(0’£{,+‘;“}/0b011)
[cf. Egs. (2.10)].

The FIDO’s of our membrane formalism are not
unique. Each different choice of the horizon-slicing time
function 7 will produce, by the constructions of Secs. III A
and III B, a different universal time ¢ and a different fam-
ily of FIDQ’s. This arbitrariness is greatly reduced when
7 is much larger (in units of gz ') than the time at which
the last generators join the horizon. See Appendix D for
details.

(3.22d)

C. 3 + 1 split and stretched horizon
for slicings with slowly variable gy

The choice made above of constant-gy slicing gives the
simplest introduction to the concept of the stretched hor-
izon. It is not, however, ideally suited to problems of as-
trophysical interest. Astrophysical problems typically in-
volve a stationary Schwarzschild or Kerr hole in the dis-
tant past, with a well-defined value of gy [Eq. (2.21) or
(2.24a)]. The hole undergoes perturbations due to stress-
energy penetrating the horizon or due to the tidal fields of
far-off bodies; and as a result the mass and angular
momentum of the hole change, but on a time scale usually
much longer than the characteristic time gz ' for the hole.
A long time ( >>gj7!) after the perturbations act the hole
again becomes stationary, but with a new (well-defined)
value of gy. To describe such a situation most aestheti-
cally, we clearly need to make a slicing with a time-
dependent gy which agrees with the initial and final
values of gy and which “tracks” the hole’s evolution dur-
ing the era of perturbations in a physically reasonable
way. [Less pleasing, but acceptable, would be a constant-
gy slicing during the evolution, followed by a slicing
transformation with constant gy (Sec. II C and Appendix
D) after the evolution is finished.]

Not only must a fully pleasing “tracking” gy be time
dependent, it must also be spatially variable (a function of
x%. Otherwise the final horizon slicing 7 will differ from
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the canonical slicing of Egs. (2.22)—(2.24) by
T=T anonical + P(x?); and, as a result, the final Hajicek
field will not have the canonical Kerr form [cf. Egs.
(2.24b) and (2.18e)].

It turns out that the membrane formalism gets into
severe difficulties if one tries to evolve with a rapidly vari-
able gy; but for a slowly variable gy the results of the last
section are valid except for trivial changes and negligible
errors. (For a discussion of the allowed slicing transfor-
mations in this case see Appendix D.)

By “slowly variable g5’ we mean a slicing 7 of the hor-
izon # such that there exists a time scale ¢, for which

gute >>1, (3.23a)
g -
‘ H,x' <_1_ ,
8H T la
y 1 (3.23b)
| 8maguo7® | 1
8H i~ '

We shall refer to ¢, as the “evolution time scale for gg.”
We now assume that a horizon slicing 7 has been chosen
for which gy satisfies conditions (3.23); and from that
slicing we construct Carter-type spacetime coordinates
(7,A,x9) in the manner of Sec. III A. We then face the is-
sue of choosing a universal time function ¢(7,A,x%) which
meshes properly with the horizon slicing 7. The key
meshing properties that we need, in order to make the
stretched-horizon kinematics track the true-horizon
kinematics in the manner of Eqs.(3.18)—(3.22), are

aUgpo—1 , (3.24a)
1l da da
;?—TEC’#U%IDO_’O ’ (3.24b)
where a and Ugpg are defined by
UFIDOE —avt N I UFIDO l El . (3.240)

[Condition (3.24c) says that the FIDO world lines are
orthogonal to the slices ., of constant time ¢, and that
a=dr/dt is the FIDO lapse function; condition (3.24a)
says that the FIDO congruence coalesces into the genera-
tor congruence as the stretched horizon approaches the
true horizon; and condition (3.24b) says that the FIDO’s
near the stretched horizon move in surfaces of constant
al

ln(gHt )
amsH’ =28nAvsH= “‘““—gH ; -
*

~1x 107! if hole and slicing have M =10My , gy~1/4M , t,=10%yr .

We shall refer to the location a=apusy as the
“minimally stretched horizon” and shall insist that the
stretched horizon always be chosen at

Qg > aMsH - (3.29)

Then a repetition of the constant-gy analysis of Sec. III B
for the case of slowly variable gy shows that the

Unfortunately, it seems impossible to achieve condi-
tions (3.24a) and (3.24b) simultaneously if the horizon’s 7
slicing has variable gy. On the other hand, if we make
(as we shall) the same choice of universal time as in the
constant-gy case

T— -1 In(2gpn)+0N)

t
28y

I

(3.25)

the conditions (3.24) can “almost” be achieved, in the fol-
lowing sense: The FIDO 4-velocity and lapse function as
defined by (3.24¢) will then be

1 d d
_—— -_ A, -
+29.H7»+0(5)gg7ke€ , (3.26a)
172
28u 32
=|130) l +O0(A77), (3.26b)

where e, are unit basis vectors in the 2-space spanned by
9/9x? and 3/3x?, and

In(gyzA)
L (3.26¢)
8Hls
and they will satisfy
da _ 2 _8
ar =0(a’gy)+0 1+8gH (3.26d)

[The notation in the second term of (3.26d) indicates that
the time variation leads to da/dr=0(gy) if & is not
small; and in Eq. (3.26a) there are §-independent, higher-
order corrections which one can read off Eq. (3.11).] Note
that in the — limit, as A—0, 8 becomes logarithmically
infinite causing a violation of conditions (3.24a) and
(3.24b). However, the blow up of 8 becomes a problem
only exceedingly close to the true horizon: As long as we
restrict attention to A > Aysy, where

In(gyt,) 1
MSH= ", 5~

(3.27)
8uts 28u

a? will be >0, and the effects of & will be negligible.
Note that Aygy corresponds to

(3.28)

T
stretched-horizon kinematics still closely approximate

those of the true horizon; i.e., Egs. (3.19)—(3.22) remain
valid in the form
ag6=0y[14+0(ay?],

apos=0m[14+0(ay?)],

(3.30a)
(3.30b)
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(3.30¢)
(3.30d)

ayg=gy[1+0(ay?],
U-V,N=—-0f[1+0(ap?],
anK%=K35[1+0(ay?)]=—gul1+0(ayM], (3.300
ayKd =K% [14+0(ag))]=—0f[1+0(ay?], (330
apKa=Kg[1+0(ay?)]

=—(08 +1y0D[1+0(ay)], (3.30g)
ag:,, — —2KH[140(ap?)]
=200 + 37,0 1+0(ay?)]
in comoving coordinates .  (3.30h)

These relations will be a key foundation for the construc-
tion of gravitational aspects of the membrane paradigm in
Sec. V.

IV. THE MEMBRANE PARADIGM
FOR ELECTROMAGNETIC FIELDS

Now that the mathematical foundations for the mem-
brane paradigm have been laid, we can proceed with
developing the paradigm itself. As a first step, we digress
from our study of horizon kinematics and focus attention,
temporarily, on the structure and evolution of electromag-
netic fields near a black-hole horizon. We do this because
there are close similarities between the membrane treat-
ments of electromagnetic fields and of gravitational fields;
and we will want to highlight those similarities when
translating into membrane language the horizon kinemat-
ics of Secs. II and III.

The membrane formalism for electromagnetic fields
around a Schwarzschild or Kerr black hole has been
developed and discussed in previous papers in this
series.. ™3 The extension of that formalism to the more
general context of a dynamical hole with slowly varying
surface gravity follows directly from the ideas presented
in Sec. III above, together with the general 3 + 1 split of
Maxwell’s equations as developed in Ref. 1.

In our 3+ 1 viewpoint the electromagnetic field is
described by the electric field and magnetic field that a
FIDO measures. In terms of the electromagnetic field
tensor F*¥ and the FIDO 4-velocity U* these are

EF=FPU, ,
Bt=7e"FopU, ,

(4.1a)
(4.1b)

where €% is the Levi-Civita tensor in spacetime. Since
E-U=B-U=0, we can regard E and B as 3-vectors in ab-
solute space ;. Similarly, we split the electromagnetic
4-current J* into the charge density p, and current densi-
ty j measured by a FIDO
p.=—J*U, , j*=Jt—p, U*, (4.1¢)

which are a scalar and vector residing in absolute space
;. Maxwell’s equations are then written and studied as

3-dimensional vector equations (B';;=0, E'/;=4mp,,
etc.) in absolute 3-dimensional space; cf. Sec. 3.2 of Ref. 1.

Because the FIDO 4-velocity U is singular near the
horizon [Eq. (3.18)], the FIDO-measured fields E and B
are typically also singular. In order to study the behaviors
of these fields near the horizon it is useful to introduce
the tetrad of an observer with nonsingular motion near
the horizon. The prototype of such an observer is one
who falls freely and radially into a Schwarzschild hole
from rest at spatial infinity. It is straightforward to show
that this observer is seen by FIDO’s to move inward with
a Lorentz factor y given by y=a~'=(1—-2M /r)~1/2, In
a more general spacetime we shall take our freely falling
observer (FFO) to have a 4-velocity near the horizon of
the form

Ugro=A43/3F—C3/d\ , 4.2)

so that the FFO passes through the stretched horizon in
the normal direction —N, and through the true horizon
with motion normal to #7%. The condition that this
motion be well behaved at the horizon is that 4 and C be
positive and of order unity as a—0. Consequently, near
the horizon this FFO will be observed by FIDO’s to move
with a Lorentz y factor

¥ =—Ufrro'Urpo=C/a (4.3)

which, as in the Schwarzschild case, diverges as a™ L

Because the FFO is physically well behaved, it must
measure well-behaved electric and magnetic fields Eggo
and Bggg as it falls through the horizon; and the singular-
ity in the FIDO-measured E and B at the horizon are re-
lated to the divergence of the y factor between the FIDO
and the FFO motion. We can study the singular behavior
of the FIDO-measured fields by decomposing them into
pieces normal to and parallel to the stretched horizon.
The decomposition into normal and parallel pieces is done
using the projection tensor

Y=y%,0¢e,="F—N&N, 4.4)

where g is the metric of absolute space, (N,e,) are the
absolute-space basis vectors of Eq. (3.15), and v is the

metric in #°. More specifically, we define on #7
Ey=E‘N, By=B'N, (4.5a)
E|=V-E, B =V'B ata=ay, (4.5b)

and in terms of these the relationship of E and B to Eggg
and Bggg is given by a standard Lorentz boost with velo-
city BN and y factor y=(1—B*"12=0(ag™"):

FFO FFO
Ey=Ey -, By=By -,

E =y(Eff°+BNxB[F?),

(4.6a)

(4.6b)
B =y(B["®—BNXE[F°) .

Since EFF® and BFF© are nonsingular, Egs. (4.6) show
that the normal components of E and B are well behaved
as ay—amsh but the transverse components diverge as
ayg .

It is straightforward to show, by analogy with the
kinematic equations (3.30), that
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agEf =ESp[1+0(ag?)], Ey=E%p[1+0(ag?],

(4.7a)
ayBf=B%p[1+0(ay?)], By=Bip[1+0(ay?)],
(4.7b)
where
E?p EF% , BgD =1 ﬁzaﬂFaﬁ evaluated on # (4.8)

are the (nonsingular) horizon electric and magnetic fields
defined by Znajek* and Damour®~’ and used in their hor-
izon formalisms for black holes.

In the membrane formalism we abandon all attempts to
study the electric and magnetic fields beneath the
stretched horizon, and as a result we_abandon_ any
pretense at knowing precisely the fields E4p and B7p on
the true horizon. Instead we content ourselves with an
approximate knowledge of the horizon fields—a
knowledge with fractional errors of O(ag?). In this spir-
it, we define “stretched-horizon fields” Ey, By [Eqgs.
(4.5a)] and

EHEaHE” , BH E(ZHB” ’ (4.9)

which approximate the Znajek-Damour fields (4.8) to
within O(ag?) and which thus also obey the equations of
Damour’s horizon formalism to within errors of O (ay?);
and we use Damour’s horizon equations as stretched-
horizon boundary conditions on the electromagnetic field
of the external universe.

For comparison with the gravitational analysis of the
next section, we shall sketch here a derivation of
Damour’s electromagnetic horizon equations in the con-
text of the stretched horizon.

The inverse of the Lorentz boost equations (4.6) (i.e.,
Egro, Brro in terms of E, B) gives
E”—NXB”=O((1H) s BH+NXE||=O(C¢H) ’
where we have used B=1—0(ag?).
fields these relations read

(4.10)

In terms of horizon

Ey=NXBg+0(ag?), Bgy=—NXEyg+0(ag?) .
(4.11)

These equations have the simple physical interpretation
that to FIDQ’s at the stretched horizon, moving outward
at nearly the speed of light, the parallel components of the
electromagnetic field have the form of ingoing plane
waves. Thus, the membrane is a perfect absorber of elec-
tromagnetic radiation.

In the membrane formalism the interaction of the hor-
izon with external electromagnetic fields is understood by
the artifice of attributing to the stretched horizon the elec-
trical properties of a physical membrane. Specifically, the
membrane is regarded as having a charge density oy
which terminates the normal component of the electric

field in accord with Gauss’s law:
og=Ey /41 . (4.12)

The membrane is also regarded as electrically conductive:

it possesses a horizon surface current density £ 4, a vec-
tor in #° which measures the charge that flows across a
unit length per unit universal time. This surface current
density is defined by the demand that it terminate the
tangential component of the magnetic field in accord with
Ampere’s law:

AT f y XN=By .

The stretched-horizon Gauss law (4.12) and Ampere law
(4.13) are merely definitions of the (fictitious but concep-
tually useful) surface densities of charge oy and current
X - The payoff of these definitions is the beautiful
forms that they give to the stretched-horizon electromag-
netic boundary conditions. In particular, (i) the “ingoing
plane-wave condition” (4.11), by virtue of the horizon’s
Ampere law (4.13), is equivalent to Ohm’s law for the
stretched horizon:

Ey=Ryfu,

Ry =4m~377 ohms per square ;

(4.13)

(4.14a)
(4.14b)

i.e., the stretched horizon behaves as though it had a sur-
face electrical resistivity Ry. Also, (ii) the normal com-
ponent of the 3-dimensional Faraday law just above the
stretched horizon [Eqgs. (3.4¢c) of Ref. 1], by virtue of the
horizon’s Gauss and Ampere laws (4.12) and (4.13), is
equivalent to the law of charge conservation for the
stretched horizon

30y /3t + £ e+ =0 .

Here

(4.15)

—ji=—ayjN (4.16)
is the rate per unit universal time ¢ and per unit area that
charge (falling inward with the FIDO-measured speed of
light) flows into the stretched horizon from the external
universe. [Note that, by virtue of Egs. (3.17) and (3.18),
j'N=J-N and —p,=J-U are equal and diverge as 1/ay
at the stretched horizon; thus jy is well behaved.] Equa-
tion (4.15) says that all charge flowing into the membrane
from outside remains forever in the membrane; i.e., the
stretched-horizon membrane is impermeable to the pas-
sage of charge.

If one asks about the implications of the membrane
paradigm for the region of absolute space immediately
below the stretched horizon, one encounters a certain
awkwardness. The paradigm would have EV and By ter-
minate at the membrane and thus vanish below it, but
would leave BY and Ej continuous and nonzero. But the
vanishing of By in the interior implies (incorrectly), via
Maxwell’s laws, the vanishing of Ey.

This awkwardness can be resolved in a number of ways.
Perhaps the best is to confess that the membrane para-
digm makes no pretense whatsoever to give any account
of the region below the stretched horizon. It gives neither
a correct account of the layer-upon-layer of fine-scale
structure contained there, nor even an account of a ficti-
tious interior that at least satisfies Maxwell’s equations.
Rather, it confines attention solely to the membrane’s ex-
terior and uses the membrane’s properties (laws of Gauss,
Ampere, Ohm, and charge conservation) to give a heurist-
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ically powerful description of the exterior’s boundary con-
ditions.

If, despite this confession, one seeks to treat the region
below the membrane in a Maxwell-equation-correct way
(while admitting that one’s description has nothing to do
with the real-world layers of structure there), perhaps the
best way to do so is that developed by Znajek.* Znajek’s
version of the formalism (which was developed indepen-
dently of and simultaneously with Damour’s) endows the
horizon not only with electric charge and current, but also
with magnetic charge and current; and these charges and
currents live in a thin boundary layer rather than being
confined to a precisely two-dimensional membrane. In
this variant Maxwell’s equations are valid above, inside,
and below the boundary layer; and below they drive all
electric and magnetic fields to zero. This nice feature is
bought, however, at a price which we have chosen not to
pay: that of introducing on the horizon magnetic surface
charges and currents which fail to mesh nicely with one’s
elementary physics experience.

Interior fields are irrelevant to the paradigm, and their
nature constitutes an irrelevant point of principle except
for one consequence: In a real conducting membrane
Ohm’s law relates current flow to the electric field in the
material of the membrane. If there is ambiguity about
E; inside the membrane, this has no meaning; we must
thus take “Ohm’s law” in Eq. (4.14) to relate £ 5 to Ey
just above the membrane. This does not detract in any
way from the usefulness of the membrane viewpoint and
in fact has been ignored or overlooked in previous papers
in this series. It is made explicit here in order to help
clarify related issues in the gravitational formalism of the
following section (see end of Appendix E).

V. THE MEMBRANE PARADIGM
FOR GRAVITATIONAL FIELDS

A. The 3 + 1 split of gravitational fields

We now turn attention from electromagnetic fields
around a black hole to gravitational fields.

The Weyl tensor C,,,, is a gravitational analog of the
electromagnetic field tensor; and just as the 3 + 1 split of
spacetime induces a split of F,, into the 3-dimensional
electric field E and magnetlc ﬁeld B, so also it induces a
spht of Cy,,, into a “gravitoelectric” tidal field &, and a

“gravitomagnetic” tidal field #. These tidal fields are
second-rank tensors defined in terms of C,,,, and the
FIDO 4-velocity U* by?¢

gaBECa“B‘,U“UV N
B CP g, UFU”

(5.1a)

8= T €uapo (5.1b)
[cf. Egs. (4.1)]. From the symmetries of the Weyl tensor
it is straightforward to verify that (i) &, and % ,g are
orthogonal to U and thus can be regarded as 3-tensors
&, A that reside in absolute space ., (ii) % and F
are symmetnc and trace free,

Ex=8r, ;=0, Byu=RBy, #;=0, (52)

and thus have five independent components each, and (iii)
the purely spatial components of C,,,, (i.e., the projec-
tion into .%,) can be expressed as

Cipjg=8ij& pg +8pq&ij —8ig & pj —8pj &g » (5.3)

where g;; is the 3-metric in absolute space. It follows that
all of the information in the Weyl tensor is contained in

# and #. The names gravitoelectric and gravitomagnet-
ic are justified by the fact that, as measured by FIDO’s &
governs the velocity-independent part, and # the
velocity-dependent part, of geodesic deviation.

Just as the study of the electric and magnetic fields E
and B near the stretched horizon is facilitated by decom-
posing them into normal and tangential parts [Egs. (4.5)],
so our near-horizon study of &3 and % ; will be facili-
tated by a similar decomposition. For the tidal fields the
decomposition produces three parts: a ‘“normal-normal”
component

Exy=N-&N=N'& N (5.42)
and similarly for # ; a ‘“normal-transverse” part (two
components)

gT=y-&N, ie., 8T, =8, N/ (5.4b)

and similarly for 4; and a “transverse-traceless” tensor in
the transverse plane (two independent components)

g ggﬁgab'f'%?’abgmv

(5.4¢)

=V‘5;"7+%’77$1VN , i.e.,

and similarly for #. Note that tracelessness of & T fol-
lows from

THE ™) =y™E yy+ &y =878 ;=0 . (5.5)

This decomposition of & and 4 is intimately related to
the Newman-Penrose description of the Weyl tensor (cf.
Appendix A). It should be noted in particular that it is
FTT and # 7 that carry gravitational-wave energy in the
+N direction and that are encoded in the Newman-
Penrose Weyl scalars ¥y and V.

Following the prescription of Sec. IV, we require that
the Weyl tensor be nonsingular as observed by FFO’s.
The relationship to FIDO measurements is given by the

Lorentz boost with velocity SN and y=(1—p3%)"!/2
< ay ! from the FFO frame to the FIDO frame:
Exv=8Nn , Baw=BNx (5.6a)
$T=’}’( ggFo-f‘BNXQ;Fo) ’
(5.6b)
B"=7(B fro—BNX &fro) ,
ETT =y (1+BIE Fo+2BNX F Lol , (5.6¢)
B T=y[(1+B)F Ho—2BNXE ol . (5.6d)
Here we are using the notation
(NX &Vi=eN, &,/ , (5.7)

where € is the 3-dimensional Levi-Civita tensor in abso-
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lute space ;. It follows from Egs. (5.6) that physically
acceptable tidal fields (i.e., fields for which the FFO com-
ponents are finite) must satisfy (i) & yy finite, (i) & T and
BT of Oay™"), and (i) &7 and # ™" of Olay 2.
This motivates us to define, by analogy with Egs. (4.9) for
By and By, a set of “stretched-horizon tidal fields”

E=a, &7, Bi=ayB7,
(5.8)
F=ay?8™, Bi=ay’?# ™.

The inverses of Egs. (5.6b) give &ro, # Iro in terms of
&7, #7; and the condition that the former pair be finite
imposes constraints on the latter. In terms of the horizon
fields these constraints are

Ey=NXBy+0ayg?), By=—NX&Ey+0(ay?) .
(5.9)

The same considerations applied to Egs. (5.6c) and (5.6d)
give

Fy=NXFy+0lay*), Bg=—NX&Ey+0(ag" .
(5.10)

Equations (5.10) have the physical interpretation, in anal-
ogy with that of Egs. (4.11), that to FIDO’s at the
stretched horizon the transverse-traceless tidal fields have
the form of ingoing plane gravitational waves. Thus, the
horizon acts as a perfect absorber of gravitational radia-
tion. Similarly, Eq. (5.9) is identical to the ingoing-wave
electromagnetic boundary condition (4.10), but it applies
to the “subradiative” tidal fields &y and # 5. :_I:he rila-
tionship of the stretched-horizon tidal fields &y, #y,
&y, By, €ny, and B yy to the Newman-Penrose fields
W, W, and ¥, is spelled out in Appendix A [Egs.
(A7) —(A9)].

Tidal gravity in general relativity is fully characterized

i

FH= —ay’SN=(red-shifted energy entering the stretched horizon per unit universal time) ,

9H=_ayT,"=(a component of momentum entering the stretched horizon per unit universal time) .

For the relationship of these quantities to Newman-
Penrose quantities see Egs. (A10) and (A11) of Appendix
A. Notice that the relations

e[1+0(ag?)]=T"[1+0(ay?)]
— —SN'——‘?HGH_Z ,

Sal1+0(ap?)]=—T, " =Fay ™!

(5.14a)
(5.14b)

have the physical interpretation that the FIDO’s see the
dominant part of the stress energy as that of a medium
crossing the stretched horizon almost (but not quite) pre-
cisely inward and at almost the speed of light.

by the Riemann curvature tensor, of which the Weyl ten-
sor is only one part. The other part is the Ricci curvature
tensor R,g, which by virtue of the Einstein field equa-
tions is equivalent to the stress-energy tensor T,g. The
3 + 1 split of spacetime induces a split of T,g into an en-
ergy density €, a momentum density (energy flux) S’, and
a stress TY, which are, respectively, a scalar, a vector, and
a second-rank symmetric tensor in absolute space. In
terms of T%f and the FIDO 4-velocity U these are given
by

e=TPU, Uy, S°=—-TPUgz—eU”,
(5.11)
(T%)grese = TP —USP—UBS—_eUUP .

At the stretched horizon the components of S* and T are
further decomposed into normal (N) and transverse (e;)
components. The Lorentz boost from the FFO to the
FIDO frame produces the following relationship between
the FFO-measured and FIDO-measured fields:

e=y*erro—2BStro +BTEFo) » (5.12a)
SN=y’[—Berro+(1+B))Sfro—BTt0],  (5.12b)
T™ =y Bepro—2BStro + Tiro) » (5.12¢)
S°=y(Stro —BTHo) » (5.12d)
T*N=y(—BStro+ THo) » (5.12€)
T=THo . (5.12f)
From these transformations with B=1—-0(ay?),

y=0(ay™"), and from the finiteness of the FFO fields
we infer that €, —S¥, and T are divergent as ay ~? and
are equal to within fractional errors of O(ag?); that S°
and — T°Y are divergent as ay ~! and are equal to within
fractional errors of O(ay?); and that T9 is finite. This
motivates us to define, by analogy with the normal charge
flux j¥ of Eq. (4.16),

(5.13a)

(5.13b)

B. Mechanical properties of the membrane

The electromagnetic paradigm has the following central
features: (i) The membrane at #° is endowed with elec-
trical properties, specifically charge and current density;
(ii) all external current flows terminate at the membrane
in accord with the membrane’s law of charge conserva-
tion; (iii) the normal E field and transverse B field are ter-
minated at the membrane in accord with the membrane’s
Gauss and Ampere laws; (iv) current in the membrane is
viewed as driven by the transverse E field just above the
membrane in accord with the membrane’s Ohm’s law.
These features give a physical and intuitively appealing
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way of understanding the electrical properties of the hole
in terms of electrical properties of a membrane.

We wish now to develop a paradigm for gravitational
interactions of the hole, and therefore for mechanical
properties of the hole, in terms of mechanical properties
of a membrane. In the electromagnetic case the elec-
tromagnetic field, its sources, and its evolution could be
considered distinct from the dynamics of the horizon it-
self. For the gravitational paradigm that is no longer the
case; the dynamical properties of the membrane must
describe the dynamics of the horizon itself, and the para-
digm will consequently be rather more intricate than the
electromagnetic paradigm. One part of the paradigm will
be a way of understanding the radiative boundary condi-
tions in Eq. (5.10), but the membrane paradigm must go
further; to represent horizon dynamics the paradigm must
lead to a physical representation of the dynamical equa-
tic;?s (2.12)—(2.14) for the horizon quantities 6%, o, and
Q-

1. The membrane’s stress-energy tensor
and laws of energy and momentum conservation

The analog of the membrane’s surface densities of
charge and current will be membrane surface densities of
energy, momentum, and stress, embodied in a surface
stress-energy tensor S“5. The equations of motion of
S4p (the analog of Maxwell’s equations for the elec-
tromagnetic field) are

S8 s+[T"]1=0, (5.15a)

where [T ,V] is the discontinuity in the tangential-normal
component of the external stress-energy tensor [MTW Eq.
(21.170)].

By analogy with the electromagnetic case we would like
to choose S4p so that no energy or momentum flows
through the membrane [cf. Eq. (4.15)] and therefore so
that

[ T, N] =(T,4 N)just above membrane * (5.15b)

Following the analogy further, we would like to require
that certain components of & and & be terminated at the
membrane by S5 and that, with the addition of an ana-
log of Ohm’s law, the radiative boundary conditions (5.10)
follow. Unlike the electromagnetic case we have the fur-
ther requirement that Eqgs. (5.15) represent the dynamical
evolution of the horizon.

It turns out that all these requirements can be met in a
mathematically consistent way: The Einstein field equa-
tions dictate that the surface stress-energy tensor S4p
generate a discontinuity [K“z] in the extrinsic curvature
of our membrane at # according to

[K45]1—8%5[KCc]=8mS"p (5.16a)
[Israel’s?’ junction condition; see MTW Eq. (21.168b)].
The requirements of the paradigm will turn out to follow

if we take the extrinsic curvature K“z to vanish on the
bottom face of the membrane, so that

[KAB ] =(KAB Jon top face of membrane * (5.16b)

By combining Egs. (5.16), (3.30), and (3.19) we see that,
aside from fractional errors of O(ag?) which we ignore,

00_ _¢0 _ - ga __ 1
sP= 5=k, =—2-0, (5.17a)
~ 1 -~
so - Lgdb__ Lon (5.17b)
87 87
§9 = - [K% —8% (K%, + K<,)]
8w 0
% . lg 6
__ % . 5.17
gr T2 [5r  l6n (5.17¢)

Here 0%, 0, and g can be regarded equally well [to within
negligible fractional corrections of O(ay?)] as the shear,
expansion, and acceleration of the stretched-horizon fidu-
cions or FIDO’s.

Equations (5.17) have a remarkable interpretation: The
stretched-horizon fiducions can be regarded as a 2-
dimensional viscous fluid with surface energy density Z,
surface pressure P, shear and bulk viscosities 7 and §, and
velocity v§n, all as measured by the FIDO’s, given by

__6 ,_g 1 . 1
2= PER T e T T Ten

vENn =[expression (3.13)]=0(ay) .

(5.18)

(5.19)

In terms of these quantities the stress-energy tensor as
measured by FIDO’s [Eq. (5.17)], is given by the standard
expressions for a viscous fluid with low velocity [low be-
cause vEn=0(ay)]:

sP_3 (5.20a)
Sab =(P——§0)8ab—27]0'ab N (520b)
§%, =TI, =[(S+P—£0)8% —270% Jopne - (5.20c)

[Note that our definition (3.13) of fiducion velocity was
carefully chosen so as to make Eq. (5.20c) come out right,
i.e., to make the fiducions comove with the fluid ele-
ments.] The fact that the bulk viscosity & is negative is in-
timately connected with the acausal, teleological nature of
a black-hole horizon [cf. Eq. (5.34) below].

Because the fiducions’ shear ¢, expansion 6, and ac-
celeration g are divergently large, i.e., <1/ay, the fluid’s
3, P S® and S9 are also divergently large; but
S9, =I1,, being the product of an O(ay~!) stress energy
with an Of(ay) velocity [Eq. (5.20c)], is finite.
Throughout the membrane paradigm we seek to avoid all
O(ay™!) divergences by renormalizing the divergent
quantities. In this spirit, and with the aid of Egs. (3.30),
we henceforth abandon =, P, 1, £, S*45, and work, in-
stead, in terms of renormalized “horizon” (H) quantities



33 MEMBRANE VIEWPOINT ON BLACK HOLES: PROPERTIES. .. 931

1

3y =ay2=(red-shifted energy per unit area)= — Py

Py =ay P=(horizon surface pressure)

. . . . . 1
=(momentum crossing a unit length per unit universal time)= 8—gH ,
T

Ny =n=(coefficient of shear viscosity)= # )

¢y =E&=(coefficient of bulk viscosity)= — Tor

I14 =I1°=(momentum per unit area)= — —S—LQZ ,
T

S =ayS5%=horizon stress tensor)

Oy ,

(5.21a)

(5.21b)

(5.21¢c)

(5.21d)

(5.21e)

=(a component of momentum crossing a unit length with normal in b direction, per unit universal time)

=(Py—LuOu)y™®—2ny0% .

(5.211)

The physical interpretation of the changes in these quantities under a slicing transformation is discussed at the end of

Appendix D.

Note that the renormalization factor ay in (5.21a) can be regarded as converting from locally measured energy to red-
shifted energy, while the factors ay in (5.21b) and (5.21f) convert from per unit FIDO-measured time to per unit univer-
sal time. Note further, in this spirit, that I1° regarded as a momentum density is finite and requires no renormalization;

but that its relation to energy flux is

(red-shifted energy crossing a unit length normal to @ direction per unit universal time)=ay2[1°~0 .

Thus, our membrane cannot support a tangential flux of
red-shifted energy, even when it has a tangential gradient
in its surface temperature (Sec. V C below); i.e., our mem-
brane has vanishing thermal conductivity.

Although the fiducion velocity vEy is useful in helping
us to understand the physical origin of the fiducions’
momentum, we shall not keep it as a key concept in the
paradigm. Instead we will work directly with the momen-
tum density I1%.

Turn attention, now, to the membrane’s law of energy-
momentum conservation S,% 5+7,Y=0 [Eq. (5.15),
which follows from Israel’s junction condition (5.16) and
the Einstein field equations; cf. Sec. 21.13 of MT\X].
When split separately into energy conservation (A4 =0)
and momentum conservation (A4 =a) and reexpressed in
terms of the renormalized horizon quantities (5.21) and
(5.13), this law becomes (see Appendix E)

D2y +0y3y=—PyOy+Lu0y"+ 2050008 +F n ,
(5.22)
DI +(0f P+ 5058,0)I1] + 6,107
=—Pys+8uOn,q +271110£{b”b+9f. (5.23)

Here D, is the covariant derivative with respect to univer-
sal time moving with the fiducions [or, equivalently to
within negligible errors of O(agy?), moving with the
FIDO’s]:

D,EH EEH,“(C!H U#) ’
DI =M (ag U ;
of. Eq. (2.11).

(5.24a)
(5.24b)

(5.21g)

f

The membrane’s law of energy conservation (5.22) has
the standard form for a viscous fluid. The 652y term
accounts for the decrease in energy density due to fluid
expansion Oy =(1/area)(d area/dt) with total energy
conserved; — Py 0y is the energy loss due to work done by
the fluid’s pressure (analog of PdV work for a 3-
dimensional fluid); {5652 and 217”05,0‘1’}’ are the energy
increases due to viscous dissipation; and .¥ j is the rate at
which energy flows into the membrane from the outside
universe.

Similarly, the law of momentum conservation (5.23) has
the standard form for a viscous fluid; it is, in fact, the
standard Navier-Stokes equation for a low-velocity fluid
[recall: |vgpn|=O(ay)<<1] as viewed in a reference
frame (that of the FIDO’s) which is expanding and shear-
ing. The terms (0%,%+ 3 658,%II on the left-hand side,
which may be unfamiliar to the reader, account for the
expansion and shear of the FIDQ’s reference frame, with
respect to which our 3 + 1 split has been made; 6511 ac-
counts for the decrease of momentum density due to fluid
expansion with total momentum conserved; — Py , is the
force due to pressure gradients; {6y , and 27 ab||b are
the viscous forces; and ¥ ¥ is the force due to momentum
being deposited in the membrane from the external
universe.

The membrane’s law of energy conservation (5.22) and
Navier-Stokes equation (5.23) are stretched-horizon
equivalents of the true-horizon focusing equation (2.12)
and Hajicek equation (2.14). One can verify this by insert-
ing expressions (5.21) into (5.22) and (5.23), and by noting
that because a; U=09/37+O(ay?) [Eq. (3.11)],

D=V, y=V,,5+0(ag’)=D;4+0(ag?) .  (5.25)
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In fact, the interpretation of a black-hole horizon as en-
dowed with a viscous-fluid stress tensor was originally
developed by Damour®’ largely on the basis of the resem-
blance of the focusing and Hajicek equations to viscous-
fluid equations.

2. Termination of tidal fields,
and tidal-force equation

Not only does the stretched horizon’s membrane ter-
minate the external universe’s energy flow, momentum
flow, and extrinsic curvature, it also terminates some, but
not all of the tidal fields.

In particular, the Gauss-Codazzi equations?®

(5.26a)
(5.26b)

Ryapc=Kuc|13—Kun|c >

R 4pcp=""R 4pcp —K 4cKpp +K 4pKc

for the Riemann curvature R ,g,5 of spacetime in terms of
the stretched horizon’s 3-dimensional Riemann
curvature®’R 45cp and extrinsic curvature K g, together
with the termination of the extrinsic curvature [Israel’s
junction condition (5.16)] imply that Ry 4pc is terminated,
but R 4pcp typically is not. It is straightforward to show
that Ry,pc decomposes into the spacetime Ricci tensor,
which terminates by virtue of the Einstein field equations
and the horizon laws of energy and momentum conserva-
tion (5.15), plus B =RBE /ay?, E.n=E"/ay, and
% nn; and that these tidal ﬁelds must therefore terminate:

BE &1 B yy are terminated by the membrane’s

surface layer of stress energy . (5.27a)

On the other hand, R ABCD,, decomposes into Ricci plus
Ex=85 jay?, Bow=BY/ay, and &yy; and since
R 4pcp typically does not terminate [cf. Eq. (5.26b)],

&8 BH &yy are typically not terminated . (5.27b)

Note the similarity to electromagnetism: The Gauss-
Codazzi equation (5.26a) with (5.16) is a gravitational ana-
log of the horizon’s Ampeére and Gauss laws (4.13) and
(4.12). Just as Ampere and Gauss dictate the termination
of By and Ey by the membrane’s surface current and
charge, so Gauss-Codazzi dictates the termination of Z, H>
&y, and & yy by the membrane’s surface stress energy.
It is straightforward to derive from a “2 + 1 4+ 1”’ decom-
position of the Gauss-Codazzi equation (5.26a) plus
Israel’s junction condition (5.16) for K ,p, the following
explicit forms of the Gauss-Codazzi tidal-field termina-
tion laws (see Appendix E):

(NX«@H ab—STr[ anDtUab+(2H+PH)aab] N (5 288.)
& =8n[(2npgoy®s+32r0%))s

+(og— 3058+ L FHY (5.28b)
A nyy =(a quantity not simply expressible
in terms of membrane properties) . (5.28¢)

We have now met the gravitational analogs of three of
the four electromagnetic membrane laws: Gauss,

Ampere, and charge conservation. The analog of the

fourth electromagnetic law, Ohm’s law Eyz =Ry £y, is
the tidal-force equation (2.13). Since D —D,+O(aH2)
[Eq. (5.25)] and C, 5,,0—.?,,,, [Egs. (5. la) (5.8), and
(3.26a)], the tidal-force equation says

Dol + (0 —gr)osy=—8L (5.29)

Just as Ohm’s law does not follow directly from any of
the Maxwell equations on the timelike stretched horizon
&5, so this tidal-force equation does not follow directly
from any of the Gauss-Codazzi equations on #5. And
just as Ohm and Ampere together guarantee that the ingo-
ing plane-wave boundary condition Ey =N X By, is satis-
fied, so the tidal-force equation (5.29) and the Gauss-
Codazzi termination law (5.28a) together guarantee that
the _ingoing plane-wave boundary condition &, H=
XH u [Eq. (5.10)] is satisfied. (The reader can construct
for himself or herself an analog of the tidal-force equation
(5.29) which, together with the Gauss-Codazzi termina-
tion law (5.28b), will guarantee that the ‘“subradiative”
boundary condition & =NX % 5 [Eq. (5.9)] is satisfied.
We have not found that equation to be particularly useful,
so we do not bother to write it down.)

The tidal-force equation (5.29) has a simple p gsmal in-
terpretation: It says that the tidal field &, drives
changes in the fiducions’ shear. Such tidally induced
shears are familiar from Newtonian physics. Consider,
for example, a 2-dimensional inviscid pressureless fluid
driven by a Newtonian gravitational potential ®, for
which the force equation in Cartesian coordinates reads

Dy, =v,, —+—v"va,,, =—o,, (5.30a)
and the shear is 04, =V(4,5) — %Sabvc,c. By computing the
symmetric trace-free (STF) part of the spatial gradient of
this equation and noting that in two dimensions

(0g,c0 p STF =90, , we obtain

D0gy +004=—8L (5.30b)
where

gab '—q),ab_-;‘sab(b,cc (5300)

is the Newtoman limit of general relativity’s tidal-field
Bap =&ry /oy,

NOthC that the Newtonian tidal-force equation (5.30b)
is identical in form to that for our fiducions, Eq. (5.29),
with one exception: the absence of a surface-gravity term.
This similarity may seem surprising, since the inviscid,
pressureless fluid in Eq. (5.30a) is influenced only by tidal
forces, while our fiducion fluid might be expected to have
its shear driven by pressure and viscous forces. Indeed, if
the shear in question were that of the ﬁducmn velocity
relative to the FIDO’s, o5} —v(a”b, — Y™ “|le» its evo-
lution could be computed by taking the symmetric trace-
free part of the spatial gradient of the Navier-Stokes equa-
tion (5.23) and (5.20c); and the result would contain pres-
sure and viscous shear-driving terms. However, the hor-
izon shear o, in Eq. (5.29) and elsewhere is not that of
the fiducions relative to the FIDO’s, but rather that of
fiducions relative to a local nondeforming frame. If the
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FIDO’s motion were shear free, as it is far from the hole,
then the fiducions’ motion relative to FIDO’s would show
the same shear as their motion relative to a local nonde-
forming frame; i.e., we would have azol) =ayo,, =k,
However, the irresistible dragging of inertial frames by
the hole’s rotation nearly locks the FIDO’s motion to that
of the fiducions and generators, thereby giving the
FIDO’s motion the same shear o as the fiducions’
motion and as the generators’ motion, aside from fraction-
al differences of O(ay?). In other words, frame dragging
causes the ayofy, whose evolution is computable from
the horizon Navier-Stokes equation, to be a tiny, O(ay?)
correction to crf,,; and it thereby decouples the horizon’s
tidal-force equation (5.29) from its Navier-Stokes equation
(5.23), forcing the tidal-force equation like Ohm’s law to
be posed independently of the other horizon equations.
Moreover, since the nearly identical fiducion and FIDO
motions are locked to the motions of massless free parti-
cles (the horizon generators), it is evident that the
horizon’s tidal-force equation (5.29) should be free of
pressure and viscous forces and, in fact, should be similar
to the inviscid, pressureless Newtonian equation (5.30b).

There is but one difference in form between the
horizon’s tidal-force equation (5.29) and the inviscid, pres-
sureless Newtonian equation (5.30b): the presence of a sur-
face gravity term in (5.29). This surface gravity term has
a simple origin: it results from our use on the horizon of
a time parameter 7 which is not analogous to Newtonian
time, and correspondingly our use on the stretched hor-
izon of a non-Newtonian-like ¢=7+const [Eq. (3.25)].
The analog of Newtonian time is, in fact, any affine pa-
rameter along the horizon’s generators; and by making a
slicing transformation that changes 7 to affine time, we
cause gy to become zero, thereby annulling the surface-
gravity term and making the horizon’s tidal-force equa-
tion assume an identical form to that of an inviscid, pres-
sureless Newtonian fluid (5.30b).

C. Thermodynamics of the membrane
and discussion of its evolution

Hawking?® has shown that a stationary black hole with
surface gravity gy and surface area 4y behaves as though
its horizon were endowed with a surface temperature Ty
and entropy Sy given by

Ty=-Tgu , Su=-—-4y . (5.31)

B 2k 4%
Here 7 and k are Planck’s constant and Boltzmann’s con-
stant. Correspondingly, we shall regard a small bundle of
fiducions occupying an area A4 on the stretched horizon
as endowed with a temperature Ty and entropy AS given
by

ﬁ k
H—z kgHa _4ﬁ

(5.32)
It is a remarkable fact that the horizon’s law of energy
conservation (5.22), when rewritten using equations (5.21),
(5.32), and 0y =D,(InAA), becomes the “dissipation equa-
tion”

Ty

D,AS— —D,2AS ]
8H

=0’ +2ngol o+ Fy)AA . (5.33)

The right-hand side of this equation is familiar from ordi-
nary fluid mechanics: the terms {4052 and ZnHafba?,b
produce viscous dissipation (viscous entropy increase), and
F y is the agent that feeds entropy into the horizon from
the external universe. The term (— Ty /gy )3*AS /3t? on
the left-hand side, however, is absent in ordinary fluid
mechanics; it is peculiar to black-hole horizons. In special
circumstances at special locations on the horizon it may
be locally important—e.g., when a compact lump of mass
falls into the hole. However, in locations where the local
horizon evolution occurs on the same slow time scale ¢,
as we have required for the hole’s surface gravity, this
peculiar term gives fractional contributions of O(1/gyt,)
and thus can be ignored.*®

In order to solve the evolution equations for an ordi-
nary fluid, one must pose initial conditions at some initial
moment of time and then integrate forward in time. Not
so for the horizon of a black hole, and similarly not so for
the stretched horizon. Because of the “teleological” defi-
nition of the horizon as the boundary of the region that
cannot send outgoing null rays to future null infinity,'
for the stretched horizon one must pose final conditions
on some quantities and then integrate backward in time to
find out the initial conditions. The final conditions are
the demands!*!® (which follow from the definition of a
horizon) that in its final, stationary state the hole must
have

o =0y =3y =0AS/3t=0 att—o . (5.34)

(This, of course, ignores the effects of Hawking radia-
tion,? which are negligible for macroscopic holes and
thus have been omitted from the above equations.) These
teleological boundary conditions, together with the law of
energy conservation (5.22) or equivalently the dissipation
equation (5.33) imply that!*!®

6y >0, D,AS>0, Z5<0 always. (5.35)

In words, (i) the horizon can expand but can never con-
tract, (i) the entropy of a bundle of fiducions can increase
but can never decrease, and (iii) [cf. Eq. (5.22) with
Py=gy/8m and Oy =—8n3y] at a time At~gy ! be-
fore energy is deposited on the stretched horizon by the
external universe, the horizon’s pressure Py causes it to
begin to expand, the work done in that expansion drives
its energy density 2y negative, and then the deposited en-
ergy & g drives 2y back to its steady-state zero value.

Our presentation of the membrane formalism is now
complete, with one exception: We have not given a
prescription for computing the evolution of the hole’s
mass. That prescription has been known for a long time
for any evolution that takes the hole (slowly or rapidly)
from one nearly stationary, axisymmetric configuration to
another slightly different one; it is the hole’s first law of
thermodynamics:>!

dM =TydSH 4+ QydT . (5.36)
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Here Ty is the spatially constant temperature of the hor-
izon, computed from gy via Eq. (5.32); dS¥ is the change
of the hole’s total entropy, computed by integrating the
dissipation equation (5.33) over the stretched horizon and
over time; Qp is the angular velocity of the stretched
horizon’s fiducions as measured by distant observers [Eq.
(2.23b); not to be confused with the Hajicek vector Q%];
and dJ is the change of angular momentum, computed
from the Navier-Stokes equation (5.23) for D, Hf (where ¢
denotes a component along the axial Killing vector
£=0/0¢), and from the surface integral

H
J=[ 1164 (5.37)

for J [cf. Egs. (2.7) and (5.21¢)].

VI. CONCLUSION

This paper has focused on the derivation of the mem-
brane formalism for black holes. Because the derivation
makes extensive use of four-dimensional spacetime argu-
ments, it obscures the spirit of the membrane paradigm.

In the membrane paradigm one abandons four-
dimensional language, and works instead entirely in the
three-dimensional physical language of absolute space and
universal time. Similarly, one abandons the true horizon
of the hole and deals instead with its surrogate, the
stretched horizon, which one regards as a membrane with
a variety of simple physical properties. The laws of struc-
ture and evolution of the stretched-horizon membrane
then become boundary conditions on the physics of the
external universe—boundary conditions that permit com-
plex astrophysical interactions to be studied with the aid
of elementary physical intuition.

The laws of structure and evolution of the stretched-
horizon membrane include electromagnetic laws and grav-
itational laws. The electromagnetic laws are the defini-
tions of the membrane’s electric and magnetic fields in
terms of the fields measured by FIDO’s there [Egs. (4.5)
and (4.9)], Gauss’s law (4.12), which defines the
membrane’s surface charge density so as to annihilate the
normal electric field, Ampere’s law (4.13), which defines
the membrane’s surface current density so as to annihilate
the tangential magnetic field, Ohm’s law (4.14), which de-
scribes how the tangential electric field drives the
membrane’s surface current, and the law of charge conser-
vation (4.15), which describes how the membrane acquires
and conserves all charge that enters it from the external
universe.

The stretched horizon’s gravitational laws are the defi-
nitions of its tidal fields in terms of the fields measured
by FIDO’s there [Egs. (5.4) and (5.8)], the law of metric
change (3.30h), which describes how the kinematic prop-
erties (expansion and shear) of the membrane’s fiducions
are related to the time evolution of the membrane’s
metric, the law of vanishing extrinsic curvature on the
bottom face of the membrane and the resulting expres-
sions (5.20), (5.21) for the membrane’s surface stress-
energy tensor in terms of the fiducions’ kinematic proper-
ties, the Gauss-Codazzi laws (5.27), (5.28) by which the
horizon’s stress-energy tensor annihilates half of the tidal

fields, the tidal-force equation (5.29), which describes how
the gravitoelectric tidal field produces fiducion shear, the
law of energy conservation (5.22), which describes how
the membrane acquires and conserves all energy that
enters it from the external universe, the law of momentum
conservation (5.23) (Navier-Stokes equation), which de-
scribes how the membrane acquires and conserves all
tangential momentum that enters it from the external
universe, Hawking’s laws (5.31), (5.32), expressing the
membrane’s surface temperature and entropy in terms of
its surface gravity and area, the dissipation equation
(5.33), which describes how the membrane’s entropy in-
creases due to the fiducions’ viscous dissipation and due
to energy flowing into the membrane from the external
universe, the teleological boundary conditions (5.34) on
the fiducions’ kinematic properties and entropy changes,
the expression (5.37) for the hole’s total angular momen-
tum in terms of an integral over the membrane’s surface
density of momentum, and the hole’s first law of thermo-
dynamics (5.36) for changes of its mass in terms of
changes of its entropy and angular momentum.

In applying these laws, the user of the membrane for-
malism must select (wisely) the location of the stretched
horizon ay and the constant or slowly varying surface
gravity gy. The laws will then fully determine the evolu-
tion of the stretched horizon in response to the external
universe’s driving forces—i.e. the electric, magnetic, and
tidal fields at the stretched horizon, and the flow of
charge, energy, and momentum into the stretched hor-
izon.

Examples of such applications, as given elsewhere, are a
variety of idealized electromagnetic model problems in
Refs. 3, 9, and 10, a variety of idealized gravitational
model problems in Refs. 32 and 9, and models for power
generation in quasars and active galactic nuclei in Refs. 2,
13, and 9.
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APPENDIX A: THE NEWMAN-PENROSE
FORMALISM ON THE HORIZON

We outline here the explicit connection between the
description of the horizon given in this paper, especially
in Sec. II, and the Newman-Penrose formalism for the
horizon, which is often convenient for calculations. In
this outline we shall refer to the classic 1962 paper by
Newman and Penrose'® and shall cite equations from that
paper by NP. The equations in that paper, unfortunately,
are based on the metric signature + — — —. To make the
comparison with our formalism tractable we shall intro-
duce a “rationalized” NP formalism based on our choice
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of signature (—+ ++) and the conventions for the
Riemann, Weyl, and Ricci tensors as given in MTW. The
signs in the “rationalized” NP formalism are given by the
following rules. (i) The null tetrad I, n, m, m* have all
inner products vanishing except

I'n=—1, mm*=1. (A1)

(ii) The definitions of the spin coefficients, of the Weyl
projections ¥;, and of the Ricci projections ®; and A are
taken to be precisely those given by NP Eqgs. (4.1a) and
(4.3). (iii) In NP Egs. (4.2), the equations needed here,
the only signs that must be reversed are the sign of A and
the signs of terms quadratic in the spin coefficients.

On the horizon we choose I as given by Eq. (2.1), we
take m, m* to lie in the horizon section #% (i.e., the
space spanned by e,), and n then coincides with the n of
Eq. (3.1). For simplicity we choose the m, m* legs to
propagate along the generators according to

m-Vym*=m*-Vym=0. (A2)

This can always be done by an appropriate rotation of
m, m* at each point of the horizon. With this tetrad the
spin coefficients have, on the horizon, the following sim-
plifications and relations to our notation:

p=pt=16", e=g"=—1g",
k=0, #=a+B*=-m*-Qf, (A3)
g=g*, &=m°mbol

Here an asterisk denotes complex conjugation and a tilde
has been used over spin coefficients to avoid confusion.
The reality of g (i.e., p=p*) follows from the fact that the
generators (trajectories of I) are hypersurface orthogonal;
the reality of 7 (i.e., @= *) follows from the fact that the
commutator [m,m*] lies in the m Am* 2-flat; the equa-
tion #=a+ B* follows from the fact that horizon sections
are Lie transported along I [Eq. (2.1)]; all other relations
in Eq. (A3) follow directly from the definitions of af,,, 64,
g, QF the definitions in NP Eq. (4.1a), and the special
properties of the tetrad.
Equation NP (4.2a) with “rationalized” signs reads
Dp=— (> +55*)— 25+ - (A4)
With the relations in Eq. (A3) and with
®o= — 3Ry = —4nTg5 [from NP Eq. (4.3b) and the Ein-
stein field equations] this becomes the focusing equation
(2.12). Similarly NP Eq. (4.2b),

D= —2p6—2e6+Y¥,, (AS5)

becomes the tidal-force equation (2.13), and the sum of
NP Egs. (4.2¢) and (4.2k) and the complex conjugate of

NP Eq. (4.2d),
D7* 4 85—28€=(8" +2&—2B* )6 —G7
—3p7" +29, , (A6)

becomes the Hajicek equation (2.14).
In connection with the description in Sec. V of the
Weyl tensor and stress-energy tensor, we note that W, the

NP field which satisfies the Teukolsky equation for per-
turbations of the Kerr geometry, is related to the gravi-
toelectric and gravitomagnetic tidal fields on the stretched
horizon [Egs. (5.8)] by
Vo= —mm®Ciy
=—m°mbay’® ,[1+0(ay?)]

=—mm*&E[1+0(ay?)]

=—mmbNX #H),[1+0(ag))], (A7)
and similarly
V,=m-&y[1+0(ag?)]
=m-(NX#y)[1+0(ag?], (A8)
V= — By tiB yy)[1+0(agd)], (A9)
DOpo=—47F y[1+0(ag?)], (A10)
G =D  =4mm-F z[1+0(ay?)] . (A11)

Here the sign of the imaginary part of ¥, depends on the
choice of m; setting m,,., =mJ;4 reverses the sign.

APPENDIX B: STATIC
AND STATIONARY HORIZONS

We justify here the claims made in Sec. II about pre-
ferred choices of slicing for static and stationary horizons.

For a stationary black hole there is a unique Killing
vector k with normalization k-k=—1 at spatial infinity,
which generates “time translations.” If the horizon is
static, k must be tangent to the horizon generators** and
we normalize 7 such that I=k. If the hole is rotating, it
must be axisymmetric'> and we denote £ as the axial Kil-
ling vector and fix its norm by requiring £=0/9¢ with ¢
having the usual range O to 2. In this case / can be taken
to be k+Qyz& where Qy, the horizon’s angular velocity,
is constant by the “rigidity theorem.”**

With / uniquely fixed in this manner, and with the re-
quirement I=3/4d7, the slicing function 7 is fixed up to
transformations of the form

=T+ f(x% . (B1)

The surface gravity gy is then fixed [Eq. (2.4)] and, by
the “zeroth law of black-hole mechanics,”? is constant
over the horizon. Since I =09/07 generates an isometry on
the horizon, the metric y,, must be independent of 7 in
comoving coordinates and [cf. Eq. (2.10b)] both 8% and
aﬁf, must vanish.

The arbitrariness inherent in Eq. (B1) can now be ex-
ploited to constrain the Hajicek field as claimed in Egs.
(2.20b) and (2.23c). To do this we introduce comoving
spatial coordinates x°=0,¢ with ¢, in the rotating case,
the ignorable cyclic coordinate. In terms of the spacetime
Carter coordinates of Eq. (3.4), Carter?® shows that under
very general conditions there exists a function G(A,x¢)
well behaved at the horizon such that, in the static case

(B2a)
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oG

—b%,)—=b, . (B2b)
(£ —b%,;) 36 ¢
In the horizon limit [Eqgs. (3.5)] these relations give
G H aG H
——=— —=— . B3)
8H 39 Qg , 8n ) Qg (
With the specialization to stationary horizons

(6% =6H=0) and for the restricted slicing transforma-
tions of Eq. (B1) the Hajicek field transforms as [cf. Eq.
(2.18¢)]

o' =08 _g,(8f/3x°) . (B4)

By choosing the transformation function f to be minus
Carter’s G function (at A=0) we see that, in the static
case, the slicing may be chosen so that Q4 vanishes, and
this slicing is unique up to time translation.

If the hole is rotating Eq. (B2b) is no longer valid; it is
replaced by the requirement G /3¢ =0. Equation (B2a),
however, still applies and shows that with the choice
f(8)=—G(A=0,0) the 6 component of QH is set to zero,
and O is parallel to £ for this slicing, which is unique up
to time translation.

APPENDIX C: SPACETIME METRIC
NEAR THE HORIZON

In this appendix we develop a canonical form for the
spacetime metric near the horizon of a slowly evolving
black hole. This canonical form uses universal time ¢ as
its time coordinate, lapse function a as its radial coordi-
nate, and transverse coordinates x2 and x* which differ
from Carter coordinates x? by a term chosen to suppress
the radial-transverse metric coefficient g4,

t=F— L In(2ggA) ,

22 (Cla)

H

a=(2gg M2+ 013, (C1b)

x=xio—H g xa 1 2i06h  (Clo)
8H 2 gy

[cf. Egs. (3.7) and (3.10)].

The specific slow-evolution requirements that we shall
need are (i) the constraints on gy discussed in Sec. IIIC
[Eqgs. (3.23) plus A > Apsy SO a228], and (ii)

| Qg% Q0" Y as | '

< —tl—max(gy, Q). (€2
*

By inserting the coordinate transformation (Cl1) into the

Carter metric (3.6) and invoking these slow-evolution con-

ditions, we find the following canonical form for the

spacetime metric at § <a’<<1:

2
ds’= —a%dt*+ iq?
8H
. Qy° . Qg°
+Vap |dx® — a*dt | |dx® — a’dt
8gH 8H
+ (higher-order corrections) , (C3)

where
o ax© ox?
Ya'o'=Ved 3x® ax?
=VYap+ %gH-—zaz(chQc,a +Yacﬂc,b ) +O(a4) ’

(C4)
and the magnitudes of the corrections are

AZoa=0(a%), Agy~NAgey=0(a’),

Agy ~Dgiw~Bgay=01(a*) .

(C5)

Note that the canonical transverse spatial coordinates
x%', like those of Carter x°, are tied to the horizon genera-
tors. It is often convenient in applications of the mem-
brane formalism to tie one’s spatial coordinates to the
hole’s asymptotic rest frame at infinity. The resulting
“infinity-tied” coordinates are obtainable from x° by a
time-dependent (rotating) coordinate transformation. As
an example consider a Kerr black hole, begin in standard
Boyer-Lindquist coordinates (r,07,¢*) which are tied to
infinity, and choose Boyer-Lindquist time ¢ to play the
role of universal time. Then the spacetime metric is

ds®= —a’dt*+ gy (dx/+ Pldt)dx* 4 Bdt) ; (C6)

the metric of absolute space is

ds?=gjdx/dx*

=(p2/A)dr*+p%d6" +(Zsin6'/pde™ ;  (CTa)
and a and B/ are given by
a=pAl?/3 (CTb)
B=p"=0, p*'= —w=—2Mar/3?, (C7e)
where
A=r2+a?—2Mr, p25r2«}-azcos29)r ,
(C7d)

32=(r24a??—a%Asin?0" .

The canonical, horizon-tied angular coordinates are relat-
ed to the above infinity-tied coordinates by

2
PH g o

6 =6"—
pu' 4gn’

’ ¢’=¢f—'QHt ’

(C8a)

where (g and gy are the hole’s angular velocity and sur-
face gravity, and py is the value of p on the horizon:

Oy =limo=a/2Mry , ra=M+(M?—a?)'?,  (C8b)
a—
gu=(ry—M)/2Mry , pg=rg*+a’cos’6’ . (C8¢)

By inserting the change of coordinates (C8a) into the
spacetime metric (C6) and expanding in powers of a in
the neighborhood of the horizon, we obtain the canonical
form (C3) for the near-horizon metric, with the Hajicek
field Q4% given by the index-raised version of Eq. (2.24b)
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. . 8H a
Qf=0, 0f=lim>(0—Qy)=————
H f am0g? | H (2Mrg)py

and with the horizon metric ¥, given by Eq. (2.24c) plus
O(a?) corrections. [Note that in Egs. (C.8b)—(C.8d),
which refer to the horizon a=0, we can set 9*=0’; cf.
Eq. (C.8a).]

APPENDIX D: SLICING TRANSFORMATIONS

In this appendix we discuss the effects of slicing
transformations (Sec. IIC) on universal time, on the
FIDO congruence, and on properties of the stretched hor-
izon; i.e., we study the arbitrariness inherent in these
quantities. Throughout this appendix, as in Sec. IIC, we
use comoving coordinates x° on the horizon.

1. Slicings with constant surface gravity
and with 3*7'/372=0

We begin by confining attention to slicing functions 7
and 7' which give constant surface gravity, and hence to
solutions of Eq. (2.18d) for which both gy and gy’ are
constants.

The simplest solution to Eq. (2.18d) is that for which
[cf. Egs. (2.16)]

Y=gy'/gg=const, G=0 (D1
so that
gu(T—To)=gy'(T'—T4) , To=To(x?), To=To(x?),
(D2a)
Wo=T%0a—YT0a, Aa=0. (D2b)

By the construction of Sec. III A one can show that the
radial Carter coordinates A’ and A of the two slicings are
related by

A=YA+O0(A?) (D3a)
corresponding to
a'=Ya+0(? . (D3b)

From this result and (D2a) it is straightforward to find
the relation of universal times ¢ and ¢’ in the two systems,

(D4)

and to show that the FIDO 4-velocities Ugpo= —aV?
and Ugpo= —a’Vt’ are related (aside from corrections of
order a?) by

gult—To)=gn(t'—T4)+In(gy /gy ) +0(a?) ,

UF1D0=Ui:IDO—aW , (D5a)
where
W=W33/3x%),,=W33/3x% )y, +0(a)U",
(D5b)

WaEyabWb .

Correspondingly, the primed FIDO’s see the unprimed
FIDO’s move with physical velocity —aW tangential to

2 log’ry+M(rg*—a*cos?0' )],

(C8d)

[

the stretched horizon; the unprimed FIDO’s see the
primed FIDO’s move with physical velocity aW; and the
stretched horizons for the two slicings can be chosen to be
the same with [cf. (D3)]

ay=(gy/gh)ay on FS5=57"". (D6)

2. Slicings with constant surface gravity
and with 3?7’ /97 2£0

For gy and gy constant the general slicing transforma-
tion [i.e., the general solution to Eq. (2.18d)] follows from
a simple observation: If on a generator 7 is a time param-

eter for which gy is constant, then e*#' is an affine pa-
rameter. The general relationship between 7 and 7' can
then be inferred from the fact that any two affine parame-
ters are linear functions of each other with constant coef-
ficients:

A 1 B=Ce® 4D . (D7)

Although the coefficients are constant on generators, they
may differ from generator to generator, i.e.,, 4, B, C, and
D are functions of x% We will constrain 7 and 7'’ both to
increase to the future so that 4 and C must have the same
sign, which we will take to be positive. If B=D, Eq. (D7)
reduces to (D2a). For patches of the horizon with D > B
we can write Eq. (D7) as

8y (T—1,) (T —74)
e 0 eZH 0

+1, T=7%(x%, To=74(x?),
(D8)

(with To=—ggz'In[4/(D —B)] and Ty=—gy 'In[C/
(D —B)]). The case of B> D is equivalent to reversing
the primed and unprimed quantities, so there is no loss of
generality in confining attention to (D8).

The explicit relation of 7and 7’ in (D8) is given by
il (D%a)

from which we calculate the horizon functions of Egs.
(2.16)

T—To=T(F'—7})=g; 'In(e 41,

o L/
Y=Y{@-Tp=—0n/8
1+e‘gH(t ——to)
G=G(I'~Tp)=——— (D9b)
5 T Ly

W, =T0,a - YTi),a , Ag= "GTE),a .

It should be noted that at times 7'—7(>>gy ! the
transformation (D9a) asymptotes to that of the last sec-
tion [Eq. (D2a)] and the horizon functions in (D9b) ap-
proach those in (D1) and (D2b).

From the constructions of Secs. III A and III B one can
derive, aside from corrections of O(a?), the following re-
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lations between these two slicings’ universal times ¢ and
t', and between their lapse functions a and o:

t=To+T(t'+gy 'Ina’ —=7y)—gy ~'Ina , (D10a)
172
a= _g'___ a', where Y=Y(t'+gy 'Ina’'—7p) .
gnY

(D10b)

The functions 7 and Y appearing here are those of Egs.
(D9b). From these relations we infer that the 4-velocities
of the two FIDO’s at the same location in spacetime are
related by

Ugpo=%(Ufipo+v¥N'+a'w) , (D11a)
where
o X2 _1X2
N —xs2 Viex '
X= l(?' ) = 1' (t'=75)
188 Tho 14are® 0
=—‘3,—_7—,‘ , (D11b)
aeft' Tl

w=(y%/Y)onT o5 — Wp e, -

Note that, as gg(7'—T7) ranges from <<—1to > +1,
gu(T—T,) ranges from 0 to >>+1, Y ranges from O to
gr/8H, vy ranges from 1 to 0, and y ranges from oo to 1.
From this, the physical situation as seen by the unprimed
FIDO’s should be clear.

Prior to time T=t+gy ~'lna=7, only the unprimed
FIDO’s are in the vicinity of the horizon. At 7=7%, the
primed FIDO’s descend toward the horizon at very nearly
the speed of light, blasting their rockets with near infinite
acceleration g’ =gy /a’ to slow their descent; and at time

|

T=7(1",x%,

Y

T4 variable in space and time on scales >1?, ,

W,=T7, variable in time on scales > ¢, but rapidly variable in space ,

G=Y"'Y; implying |G| <1/1,
A, =YY =W, implying |A|<1/1, .

When inserted into the kinematic transformation laws
(2.18) the “acceleration functions” G and 4, have no sig-
nificant effect: They produce fractional changes of gy
and QF that are generally <1/ggts, and that in turn
cause no significant long-term secular effects in the evolu-
tion equations (2.12)—(2.14) and (2.15). By contrast, the
weak spatial and temporal dependence in Y produces cor-
responding dependences in gy which (i) can be used to
make gy track the hole’s evolving mass and angular
momentum in the standard Kerr manner, and (ii) through
the gy , term in the Hajicek equation (2.14) can be used
to influence the evolution of the Hajicek field so as to

T—To>>gn ! they come to rest slightly above the hor-
izon, at locations a=(gy /gy )a’. Superimposed on these
(initially) high-speed inward motions are infinitesimal-
speed [O(a')] motions parallel to the horizon.

Because of their relative inward motions, the two fami-
lies of FIDO’s possess different stretched horizons at ear-
ly times; but at 7—7,>>gy~' (corresponding to
T'—To>>gh "), when their radial motions coincide, their
stretched horizons also coincide.

Of all choices of FIDO’s which one might make, the
obviously correct one is that choice in which the FIDO’s
are attached to the horizon, i.e., not descending,
throughout the horizon’s history—or, more precisely,
throughout the history of that patch of horizon to which
the FIDO’s belong. We can make this choice by requiring
that the affine parameter A(x%)e®’ [cf. Eq. (D7)] vanish
(i.e., T=— o) on each generator at the point at which the
generator attaches to the horizon. With this constraint
the slicing transformations (D7) are limited to those with
B=D=0, i.., to those of Sec. 1 [Eq. (D2)] with the
FIDO’s fixed except for their (relatively unimportant)
small [O(a)] motions parallel to their common stretched
horizon.

3. Slicings with slowly variable
surface gravity gy

We next consider the case of a surface gravity gy with
slow temporal and spatial variations, the choice made in
Sec. ITI C for the description of the evolution of a typical
astrophysical hole. For this case we assume that the am-
biguity in the 7= — o point on each generator has been
resolved as discussed at the end of Sec. 2, thereby special-
izing to slicing transformations analogous to those of Sec.
1. However, since gy is now slowly variable, we must
broaden the class of admissible transformations discussed

in Sec. 1 by using Egs. (2.15) and (2.16) with Y slowly
variable:

(D12a)
(D12b)
(D12c)
(D124d)
(D12e)

f

keep it in canonical or near-canonical Kerr form.

The fact that the acceleration functions G and 4, have
negligible effects in the slicing transformations permits us
to approximate them as zero:

G=0, A,=0. (D12f)

Then the universal times ¢ and ¢’ are related by Egs.
(D12a), (3.25), and (3.26b):

t+gy  na=77"x%), T’Et’—{-g},“’lna’ , (D13a)
where [by Egs. (2.18d) and (D12b)]
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T S
or' |ya 8H

and the lapse functions and four-velocities of the primed
and unprimed FIDO’s are related by Egs. (D3b) and (D5a)

(D13c¢)
(D13d)

(D13b)

ot'

a'\x?

[it.

a'=Ya=(gy/gnla,
Uripo=Ufrmpo—aW .

[Throughout Egs. (D13) we neglect negligible fractional
errors of O(1/gyt,).] Thus, as in the constant-gy case
so also in this slowly-variable-gy case: (i) the primed and
unprimed FIDQO’s share a common stretched horizon xS,
and (ii) the primed FIDO’s see the unprimed FIDO’s
move with physical velocity —aW tangential to the
stretched horizon.

4. Effect of slicing transformations
with slowly variable gy on the stress-energy
tensor of the stretched horizon

Since the surface stress-energy tensor S5 of Sec. V is
an intrinsic property of the stretched horizon, it will be
the same for the primed and unprimed FIDO’s of Sec. 3
of this appendix. But the two families of FIDO’s move
differently in the stretched horizon and hence will slice
S4p into different temporal and spatial pieces: From
Eqgs. (2.18) and (5.21) we see that

Sy=Y3y; ST b=vsH,
nd'=n?_s#w,—s,w, .

(D14a)
(D14b)

The changes in 5 and S¥,° are the obvious ones which
go along with their physical interpretations as red-shifted
energy and as momentum flow per unit length per unit
universal time: the change Y =23t/d¢’ in the ticking rate
of universal time, and the accompanying change in the
red-shift factor, produce the factors of Y in Iy and Si2.
Similarly, the change in I1Z is the obvious one that ac-
companies a Galilean change of reference frame. [To
understand why it is a Galilean change that is relevant
and why there are no velocity-change effects in 4 or
SH % reexamine Egs. (D14) in terms of the unrenormal-
ized, FIDO-measured energy =2y /ay, momentum
M,=M4 stress S,°=S%,%/ay, and relative velocity
v, =aygW,. The transformation must be Lorentz in
terms of these physically measured quantities; but since
|v'| =0(ag) <<, it is actually the Galilean limit of a
Lorentz transformation; and since II,=O0(1) but
3=0(ag™ "), S,=0(ay™"), this Galilean transforma-
tiOII’l affects IT but has only a negligible effect on X and
Sa°.]

APPENDIX E: SOME DETAILS
OF THE GRAVITATIONAL PARADIGM

We present here some of the details of the calculations
leading to the gravitational paradigm equations in Sec. V.
The basis vectors for the stretched horizon #7° are
e  (A=0,2,3) consisting of the fiducion 4-velocity %=U

and an arbitrary pair e, (a=2,3) that are orthogonal to U
and thus span the section #5. The connection coeffi-

cients for the stretched horizon’s 3-geometry are comput-
ed from

FABC=<COA,VCeB> . (E1)

Here w* is the basis dual (in the 3-geometry) to e, and V
is covariant differentiation with respect to the 4-geometry
(equivalent to covariant differentiation with respect to the
3-geometry since w* projects into #5). We denote by N
the unit outward normal (e -N={(w*N)=0). In this
basis we have, for example

I ={a"V,U) =(b[(0,°+ 38,°0)e. + UV, ,N])
=0,"+38,%
=ay 0B+ 18,%") . (E2)

Here we have used the fact that the rotation of the
congruence vanishes since U is hypersurface orthogonal;
& and 6 are the standard shear and expansion for a 2-
dimensional congruence, while & H and 0¥ are these
kinematic quantities, reexpressed on a per-unit-universal
time basis [Egs. (3.30)]. By similar calculations we obtain
for the other connection coefficients for small ay:
r’ =0, Iy =y*r’.=0(ay",

A~

L =Yal%, =an (776" +03) , (E3)
I“’b6=(a quantity depending on the
unspecified time evolution of e;) ,

together with I'%,., which are the same as those computed
for the 2-geometry of #°5, and depend on the unspecified
details of the basis e,. [In Egs. (E2), (E3), and throughout
this appendix we ignore fractional corrections of O(ag?)
or smaller.]

With these connection coefficients, with

aHSm=EH N SabIHHb )
H -H H (E4)
aySa=(PH—E#0")y 4 —2ng0os, |

and with Egs. (5.11) and (5.14), the law of energy conser-
vation (5.22) and Navier-Stokes equation (5.23) follow
directly from the law of energy-momentum conservation
(5.15).

The derivation of the tidal-field termination law (5.28a)
starts with Eq. (5.1b) in the form

. .
‘@abz_feajkcjkbb‘:eacNCCNba 5 (ES)
rewritten in terms of the Riemann and Ricci tensors
— N, 1
B gy =6, (Rcha—-z-yb,RNa) . (E6)

The Riemann tensor is then written via the Gauss-
Codazzi equation (5.26a) in terms of the extrinsic curva-
ture K 45 as

R K

eNBO Vb |6_Kc6|b : (E7)

The conditions that #,,, R v and K 4p terminate at the
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membrane, together with the Einstein field equation
R N6=817TN6 and Israel’s junction conditions (5.16), bring

(E6) and (E7) into the form

. N 1 4 -1 "
B o =87€,° (Scb 16~ 7YebS 4 [G_Scalb 2 y""TNO) ’

(E8)

where #,, is now the tidal field immediately above the
membrane. The right-hand side is of order ay~? and
(aside from corrections higher order in ay) is traceless,
and therefore represents ay 25 By taking the cross
product with N we therefore obtain

(X’Xﬁ”)abzeaNc-gz

=81raHZ(Sab Ia—%YCbSAA |6
1
"Saﬁgb_'TY“b T - (E9)

When Egs. (E3), (E4), (5.13a), and the law of energy con-
servation (5.22) are used, the tidal-field termination law
(5.28a) follows.

The tidal-field termination law (5.28b) can be derived in
a similar manner:

1
=aH(K%|a_K6016+7RaN)
:81raH(S66’a+%SAA|a ~S5, 3T,n)
=8x[D, 14, +(PH 4+ %2”-;”9” )a

+6 o yan¥, ot — 3 951, (E10)

Here the third equality, which shows that & H terminates,
follows from the Gauss-Codazzi equation (5.26a), the
fourth from Israel’s junction conditions, and the fifth
from Egs. (E3), (E4), and (5.13b). By combining (E10)
with the Navier-Stokes equation (5.23) we obtain (5.28b).
The termination of 4 yy is proved following the above
pattern. From Egs. (5.1b), (5.26a), and (5.16) we have

ab __L ab
Bun=1 ONabC NO— 2€N RNOab
— ab ab
=€y KO,’| =€y S0b|a’ (E11)

which shows that %,y terminates at the membrane.
When one tries to proceed further and express the nght-
hand side of (E11) in terms of ¥, PH, 6%, of and I¥
[as was done in (E9) and (E10)], one finds that it depends
on O(agy?) corrections to these properties—corrections
not incorporated into our membrane formalism. More
specifically, it depends on the symmetric, trace-free part
of n,., where n is the ingoing null vector of Eq. (3.1);
equivalently, it depends on the Newman-Penrose spin
coefficient A, which has not been included in our mem-
brane formalism.

In the electromagnetic paradigm there is awkwardness
about the tangential E field interior to the membrane (see
the discussion at the end of Sec. IV). This awkwardness is
present also for the gravitoelectric field &,,. The rela-
tionship of the Weyl, Riemann, and Ricci tensors and the
Ricci scalar gives

Ea=R 55+ 7R —YasRiz)— c¥asR (E12)
and hence
Fop=ag (Eu— 3V &)
=an(R 5 060 _;_Y“bRcacG)
+7an*(Rep— 7Y R%) - (E13)
The Riemann terms are related to the Riemann

tensor>’R 4pcp and extrinsic curvature K 45 of #° by the
Gauss-Codazzi equation (5.26b):

aHZRa6b6=aH2((3)RA 5K K5~ KszKab) -

060 a0 b0 (E14)

These terms are finite as ay—0 (though they are discon-
tinuous, at any finite ay, across the membrane). The Ric-
ci terms ay’R,, have contributions from the surface
stress tensor S,, (of order ay ~!), which is infinite at any
ay, in the surface itself. The contribution of these terms
to & fb is of order ay, but infinite in the surface. Thus, as
with the electric fields, we cannot ask what the gravi-
toelectric tidal field is in the surface; rather, the tidal
force equation (5.29) must be taken as relatlng the
stretched horizon’s shear to the value of &% 2b just above
the membrane.
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