CaltechAUTHORS
  A Caltech Library Service

Shock induced formation of MgAl_2O_4 spinel from oxides

Potter, David K. and Ahrens, Thomas J. (1994) Shock induced formation of MgAl_2O_4 spinel from oxides. Geophysical Research Letters, 21 (8). pp. 721-724. ISSN 0094-8276. https://resolver.caltech.edu/CaltechAUTHORS:20141024-151913992

[img]
Preview
PDF - Published Version
See Usage Policy.

483Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20141024-151913992

Abstract

The physics of mineral grain sliding, which occurs upon dynamic compression of rocks, is investigated by shock loading single crystals of corundum (Al_2O_3) and periclase (MgO) in contact obliquely in impact experiments. Energy dispersive X-ray analysis and X-ray diffraction studies of samples recovered from 26–36 GPa, 800 ns experiments indicated that under certain conditions a spinel phase of composition MgAl_2O_4 and thickness ≤20 µm was produced at the interface between the two crystals. Although the computed shock (continuum) temperatures were below those necessary to melt the initial oxides, the spinel nonetheless appears to have formed as a result of localised melting, via grain boundary sliding friction, followed by rapid quenching. Scanning electron microscopy (SEM) revealed some evidence for such melting. Moreover, the timescale of the experiments is too short for solid state diffusion (during the shock state) to explain the observed spinel thickness, although defect enhanced solid state diffusion, subsequent to loading and unloading, remains a possibility. The results also reinforce other recent observations and theories of heterogeneous deformation in minerals.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1029/94GL00079 DOIArticle
http://onlinelibrary.wiley.com/doi/10.1029/94GL00079/abstractPublisherArticle
Alternate Title:Shock induced formation of MgAl2O4 spinel from oxides
Additional Information:© 1994 by the American Geophysical Union. Paper number 94GL00079. Received August 24, 1993; revised November 30, 1993; accepted January 11, 1994. We appreciate the help of Drs. John Armstrong, Cheryl Brigham and Yuntai Sheng with the energy dispersive X-ray analysis. The constructive comments of two reviewers is greatly appreciated. Contribution #5296, Division of Geological and Planetary Sciences.
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Caltech Division of Geological and Planetary Sciences5296
Issue or Number:8
Record Number:CaltechAUTHORS:20141024-151913992
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20141024-151913992
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:50811
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:24 Oct 2014 22:38
Last Modified:03 Oct 2019 07:26

Repository Staff Only: item control page