Nikzad, Shouleh and Smith, Aimée L. and Elliott, S. Tom and Jones, Todd J. and Tombrello, T. A. and Yu, Q. (1997) Low-energy electron detection with delta-doped CCDs. In: Solid State Sensor Arrays: Development and Applications. Proceedings of the SPIE. No.3019. SPIE , Bellingham, WA, pp. 241-248. ISBN 0-8194-2430-7. https://resolver.caltech.edu/CaltechAUTHORS:20141028-144338061
|
PDF
- Published Version
See Usage Policy. 497kB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20141028-144338061
Abstract
Delta-doped CCDs have achieved stable quantum efficiency, at the theoretical limit imposed by reflection from the Si surface in the near UV and visible. In this approach, an epitaxial silicon layer is grown on a fully-processed CCD using molecular beam epitaxy. During the silicon growth on the CCD, 30 percent of a monolayer of boron atoms are deposited nominally within a single atomic layer, resulting in the effective elimination of the backside potential well. In this paper, we will briefly discuss delta-doped CCDs and their application of low-energy electron detection. We show that modification of the surface this way can greatly improve sensitivity to low-energy detection. We show that modification of the surface this way can greatly improve sensitivity to low-energy electrons. Measurements comparing the response of delta-doped CCDs with untreated CCDs were made in the 50 eV-1.5 keV energy range.For electrons with energies below 300 eV, the signal from untreated CCDs was below the detection limit for our apparatus, and data are presented only for the response of delta-doped CCDs at these energies. The effects of multiple electron hole pair production and backscattering on the observed signals are discussed.
Item Type: | Book Section | ||||||
---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||
Additional Information: | © 1997 SPIE. The authors gratefully acknowledge the invaluable assistance of Ors., L. Douglas Bell, Michael Hoenk, Steve Manion, Tom Van Zandt, Mr. Walter Proniawicz, and Professor L.C. Kimerling. The work presented in this paper was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was jointly funded by the Caltech President's fund and the NASA Office of Space Science. | ||||||
Funders: |
| ||||||
Series Name: | Proceedings of the SPIE | ||||||
Issue or Number: | 3019 | ||||||
DOI: | 10.1117/12.275183 | ||||||
Record Number: | CaltechAUTHORS:20141028-144338061 | ||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20141028-144338061 | ||||||
Official Citation: | Shouleh Nikzad ; Aimee Smith ; Tom S. Elliott ; Todd J. Jones ; T. A. Tombrello, et al. "Low-energy electron detection with delta-doped CCDs", Proc. SPIE 3019, Solid State Sensor Arrays: Development and Applications, 241 (April 25, 1997); doi:10.1117/12.275183; http://dx.doi.org/10.1117/12.275183 | ||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||
ID Code: | 50955 | ||||||
Collection: | CaltechAUTHORS | ||||||
Deposited By: | Ruth Sustaita | ||||||
Deposited On: | 28 Oct 2014 22:10 | ||||||
Last Modified: | 10 Nov 2021 19:03 |
Repository Staff Only: item control page