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ABSTRACT

A simple analytical model for flowing laser systems has been developed.
The lasing species is modeled as‘a two-state system with specified pumping
and relaxation rates. Threshold requirements and output efficiency are
expressed in the form of universal dimensionless functions, In terms of
these universal functions, the behavior of particular systems can be
studied in a parametric way. The analysis shows that flow would not improve

the performance of all laser systems. The transformation gi-+-v 2. allows

ax
one to predict the performance of flowing systems from the behavior of pulsed

systems.



INTRODUCT 10N

In many high speed gas lasers, it is found that the pumping rate is
approximately uncoupled from the lasing and the deactivation rates.
When this approximation is adequate, the analytical description of the
operation of the laser is reduced to the solution of two simultaneous
linear first-order differential equations.

This approach allows the laser to be studied quite generally with
respect to the various rates that affect it, without restricting the analy-
sis to a specific system. The performance of high speed lasers can then be
predicted to a fair approximation by merely substituting into general solu-
tions the particular values of the atomic constants, optical cavity para-
meters, and the pumping and deactivation rates (these are known or can be
determined by independent means).

The first part of this discussion deals with those lasing systems
whose local volume pumping rate can be considered constant throughout the
lasing region. Examples of such Tasers are premixed chemical and electri-
cal discharge lasers. The second part (which will follow) deals with the
interesting special case in which the pumping is the result of a chemical
reaction, or energy transfer, as limited by the rate.of turbulent mixing
of two streams of unequal velocities.

An effort has been made to render the main body of the discussion
complete in its description of the various aspects of the laser operation
in the hope that it can be read as one unit. To this end, the problems
and results of the optical considerations (in connection with the gain of
the amplifying medium and power extraction) are discussed in Appendix 1.
In the interest of preserving the contiguity of the discussion, most of
the algebra is deferred from the main body and included in Appendix 2.



RATE EQUATIONS

In the present model, lasing is assumed to take place between two
levels: the upper state U, and the lower state L. These are single states
(as defined by a complete set of quantum numbers) if the lasing occurs on
a single line, or composite "states" if the lasing occurs on many 1ines
simultaneously. The processes that are considered in this model are sum- -
marized in Fig. 1. The various quantities that appear are defined as

follows:
R - volume pumping rate into the upper lasing level (‘cm'3 . sec']),
nys nL - upper and lower lasing level populations (particles per cm3),
n* - photon density in the lasing mode (photons per cm3),

9ys 9 - degeneracies of the upper and lower lasing levels,

1 - transition rate from the upper lasing level to any final state
o other than the lower lasing level (sec-1),
. - transition rate from the upper lasing level to the lower lasing
TuL level by all mechanisms other than stimulated emission (sec™1),
?l - transition rate out of the lower lasing level (sec']),

L
k¥ - stimulated emission rate constant (cm3 . sec‘]).

We can define the linear gain coefficient (see Appendix 1) in the amplify-
ing medium o (cm']), as the product of an optical cross section, o* (cm2), and the
population inversion, an (particles per cm3).. That is

a = o*An
where ( )
2 glv - v
_ A 0
O*Z'g;r’ TY\ s (])
UL
Iy
An = (HU-'Q‘L“nL),



A = wavelength of the transition radiation,
g(v - vo) = normalized line shape function,
and
'%r' = spontaneous radiation rate (Einstein coefficient AUL).
T
UL

In terms of o*, «* is given by co* where ¢ is the speed of light. The
lasing condition on the population inversion can be expressed as a gain
equals 1oss condition (see Appendix 1), or

-€ - €
0 L 2ol _
rge - re e = 1 (2)
where 0 and r, are the mirror reflectivities, £q and e are the fractional
losses (diffraction, absorption, scattering, etc.) of the two mirrors, and

L is the length of the amplifying medium.

If we denote the solution of Eq. 2 by G then we have

ay = e+ §
th T
where
€ = EO + EL
and
' ]
§ =6, +68 = 1In-—+ 1n —
0 L rO L
Since % = c*Anth, we have
_e+ 8
Min = 206%
or
_C e+ 8
Anth - ?E—( k¥ )' (3)



We can write the rate equations for the populations of upper and
lower lasing levels from Fig. 1. 1In a frame at rest with respect to the
lasing medium, we have

dn n
"d—t"‘u‘z R - K*n*An-—g
T
U
dn n n
—$£-= —— + x*n*An - L
TuL L
where
1,1
s Tw Tu

In the discussions that follow, the assumption is made that the
various quantities of interest (nU, nL, and n*) depend only on x. The
dependence on z is small and is neglected. This assumption is valid
under very mild restrictions (see Appendix 1).

The rate equations for a flowing system are obtained by performing
the transformation

where we have assumed that the velocity v is along the x-axis. At steady

state %E'= 0, and consequently
n
.g._ * ‘_"iz
vV sy nU + k*n*An + Ty R
n n
and v %i'nL - x*n* An + L. —y-.
o tu

(4a)

(4b)

(5)



The geometrical configuration is sketched in Fig. 2. The pumping
region fills the volume \

Oi< X < X3 5
0<y<b ,
0E< z <L

The pumping rate R is constant in this volume and zero outside. The
optical cavity forms a Fabry-Perot interferometer whose optical axis
is parallel to the z-axis.

We now assume that the initial conditions are given at x = 0 as

nU(O) 0

and
(0) = 0.

In other words, all of the lasing species that populate these two levels
result from the pumping mechanism. Initially the photon density n*(x) is
zero and remains Zero, in this approximation, until the population inver-
sion an(x) equals the threshold value Ay Thus in the build-up region,
0 <x < X1 (where n*(x) = 0), the system is described by the equations

an n
Vit R
U
an n n
V'§'—I:‘+‘_L‘="‘—"",
S

and
nU(O) = nL(O) =0 .

The solution of Eq. 7 is given by:

-x/vt

')

nU(X) =1y R (1 - e

(7a)

(7b)

(7c)



and Tt —X/VTL -X/VTU
o) = R (1 et 1) (8b)
. TuL R AT

From Eq. 8, we can calculate the population inversion at each station
X in the build-up region. If An(\x) is normalized by TLR, we obtain

sn(x) _ U :U__(?_ll)_ .T_U+ /T (ru )(.g,liﬂ e-X/VTU (%)
R e\ e T \tw/\9L

Equation 9 provides an implicit equation for X1 the end of the byild-up

region, since An(x]) = Anth'

For x > X], the population inversion is clamped to Mgy by the lasing
condition, and hence the equations become

_u,u * % =
el % + (k Anth)n R, (10a)
an n n
v 5_XL+ ;_L, - (k*an, In* = U (10b)
L UL
and
g
= )
ny = Ang + g, n - (10c)
The initial conditions for nU(x]) and nL(x]) are given by Eq. 8 with
X = Xqe Adding Eqs. 10a and 10b and substituting 10c yields
g an n An
<]+§£>V'5x—':+ L-r- Tth (11)
L t uo



where

v g )
1.1, 1 (%) (12)
T Tw \%
Therefore, for x > x]
X=X X=X
6 ) e T Dth T (13a)
n,(x) =n(xq) e + TR - 1-e 13a
L LY 0
and
X-X X=X
1 1
Iy "3 Mih TR
n.(x) =an, + — {n(x;) e + 1R - 1-e (13b)
where

The photon density n*(x) can now be calculated by substituting Eq. 13b
into Eq. 10a. This yields

X=X
n*(x) = (n; - n:) e b o4 n: . (15a)
If we make the substitution
=C(e+6)
S TR
* *
from Eq. 3, we can express n, and n_as follows:
Jan
* * g T VT An
o= ni(x) 2LR -+ LUt -e V)2 T (1sb)
cle + 5)(1 +-—)
, 9,



and

*# _ % LR v (Su\_ . “tn
oo gt [ 5(@) 5 ] e

* - .
Thus N is the photon density inside the cavity at the station where the
. laser turns on (x = x;) and n: is the photon density at infinity.

*
If n_> 0, Egs. 13a through 15c describe the operation of the
*
laser up to x = X3 where the pumping region ends. If.n_ < 0, then there
exists an x, such that n*(x,) = 0, or
1\ |
! *

=l L-+1]. (16)
-N

The las1ng then ends at Xy Or x3,wh1chever comes first. If x, < X3,
then n (x) = 0 for Xop < X < X3, and the populations are once more des-
cribed by Eqs. 7a and 7b (with initial conditions given by Egs. 8 and

9 evaluated at xz) The evolution of the solution in the three regions
is summar1zed in F1g 3 for a hypothet1ca] set. of parameters for which
'TU

L

< 1 and n < 0.

Note that in the approximations of this analysis, the photon density
is discontinuous at X1 s i.e.,

n*(x;) =0
: * + _ *
and n (x1) = n;.

This is a consequence of neglecting spontaneous emission in the lasing mode,
any optical mode structure,and the photon dynamics as the intensity builds

up after x These approximations result from using the threshold condition

1°



as given by Eq. 3, instead of solving a third coupled rate equation for
the local photon density. Such a refinement would have introduced a "soft"

start of the lasing at X1 tending asymptotically to the expression for the

photon density as given by Eq. 15 for x > Xy and to zero for x < X

far:

Several interesting conclusions can be drawn from the analysis so

* ' ‘
a) n_ is the photon density at x - X; >> & or, equivalently, the

b)

photon density that would have resulted if the laser was operated
as a stationary laser. If n: is negative, the laser will not
operate as a stationary laser. From equation 15¢c. it can be seen
that for n: to be positive, the quantity

: __(E’y.)[L_J_(?gﬂ
WAL/ L i \SL/]

7/

must be positive (this is necessary, but not sufficient). This
result is intuitively appealing since it says that for a station-
ary laser the relaxation rate out of the Tower lasing level must
be high enough for the inversion to be maintainable.

The characteristic length %, which scales the lasing region, does

uL®
haps difficult to reconcile with the intuitive notion from station-

not depend on the rate « This rather surprising result is per-
ary laser performance that a high Tal rate would cause a lower
level bottleneck and terminate the lasing. In fact, this inde-
pendence*from UL suggests that the criteria for a good stationary
laser (noo as high as possible) and for an efficient flowing laser
(2 as large as possible) might even be conflicting. A large n:

requires a large T rate. Since

[ gU 7 gU . _‘l
2 ={1+ —])vt <{1 4+ —=]}vr,, a high 1, rate would give a very
9. 9 /L L

short lasing region.



c)

Even neglecting the possibility that & might be too small, it
should be noted that not all lasers would benefit by being
flowed. There exist combinations of the parameters, for which
nT < n:. Such lasing systems would work better as stationary
lasers (v = 0) and should not be flowed. This point will be
discussed later in the context of minimum pumping rate required
for laser operation. |

The Galilean transformation x/v ~ t in Eqs. 8 through 13 des-
cribes the transient response of a stationary laser. All the
results of the present analysis carry over to time-dependent
pulsed Taser performance. The equivalence being one-to-one, we
can predict the behavior of CW flowing systems from the pulsed
behavior of the same system (and vice-versa) to the extent that
we can duplicate the various relaxation rates when the system
js stationary.

10



THRESHOLD PUMPING RATE

Using Eq. 9, we can ca]cu]afe Xy for a given pumping rate R, threshold
population inversion Anth’ deactivation rates T Ty and Tuo? and spectro-
scopic constants. We can then ask for the minimum pumping rate that would
‘be required for the*laser to turn on at any Xy - This can be calculated
by requiring that n, (the Tasing mode photon density at xT) be non-negative.
If we denote the minimum or threshold pumping rate that satisfies this

condition by Rth’ we have from Eq. 15b

g T - X, /vt
U U o th’ " U (17)

where x,, s equal to x for R = R,. Note that A"(Xth) =ang, and

therefore x_, satisfies Eq. 9 with R=R_, i.e.,

th th

Mn _Tu oMU (39)..[f!.+ v (TU ). Sy e{'xth/VTU] (18)
TR L otor \&%/ L T \tw/ A

L ?.U.)e' e/ VL
TuL \9L T/t

Egs. 17 and 18 are simultaneous equations for Rth and Xipe To
facilitate their solution, we make the following substitutions:

0, = T Reh (19a)
an ’
th
W (). WA
we (L) L (19b)
o\ / o, Tu
Tuo

1



-~ Xo./VT
and Qp = € th” =U

After some algebra, the transformed equations become

o6 =(1-5s+w) Ath

and

= ¥ s _ S -
= 75 g - 705 (1 - s +w) gy,

where

1
- S+ W .
o

¢

From Eq. 17', we‘have

where we note that since 0 <Ay < 1, the sign of ¢ must be the sign

of (1 - s +w).

Substituting Eq, 20 into 18', we have

S .
—t ) -
¢-W(]—S+W) O'

For 1 - s +w > 0, Eq. 21 has two solutions given by

6= 0

12
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(19d)

(17*)

(18')

(19e)

(20)

(21)



w

‘ S
and 1o T T-s
d=will + — .

It can be verified that in this case the minimum pumping rate corresponds
to the latter. For 1 - s + w < 0, however, only the ¢ = 0 solution is
possible. Thus, depending on the sign of

1 1 (% ,
1-s+wzl-1|—-—— (22)

we have two types of lasers whose threshold behavior is summarized in
the following table.

TYPE I TYPE II

1-s+w>0 1-s+w<0

+s -w Los oy
W ‘ N

Qg = O

It can be seen from the expression for Aepy that a type II laser reaches
the threshold condition at Xth/VTU = o when pumped by the minimum pumping

rate R Thus, for a type II laser, the optimum threshold behavior is

th’
realized when v = 0. In other words, a type II laser should not be flowed.

For type I lasers,

' -5 :
]e——=w(1+l'—'-§) +5 - wW. (23a)

13
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For this type of laser s < 1 + w; in fact, it is frequently true that
s << 1. It is useful, therefore, to examine the behavior of Eq. 23a
for small s. Making a Taylor expansion about s = 0 yields:

'%.-&s[l—wln(1+]w)] | (23b)

If we define

T, R
oy(sw) = o th . 56, (24)
~th
we have, for small s,
1 1
6——%] - w In (1 +W) (25a)
u
It can be verified that, for s < 0.1, Eq. 25a is good to about 2%.
From Eq. 25a, we find that
1, forw < 0.1,
eU(O,w) v ‘ (25b)
2w + %-,for w > 0.1,
The function eU(O,w) and the two asymptotic expressions for small and
large w are plotted in Fig. 4. From Eq. 23a, the entire function
eU(s,w) is given by: '
- 15_
W, W 1-s =S :
] ]—ET;(]TT> s fors(]'l"w.
; - (26)

s fors >1+w,

14



g
(Note that 0 < w < ag .} This function is tabulated in Table I and plotted
L

in Fig. 5; Xth/VTU is tabulated in Table.II and plotted in Fig. 6.

15



LASER OUTPUT AND EFFICIENCY

From the photon density of the lasing mode, as given by Eq. 15, we
can calculate the lasing intensity inside the cavity at each station x
(see Appendix 1):

I(x) = chvn*(x)

where v
I = lasing intensity
h = Planck's constant
c = speed of light
v = lasing frequency.

Let us now assume that the laser has one-sided output optics. In
other words, the z > L mirror is 100% reflecting (GL ~ 0) and loss-less
(eL ~ 0). The output intensity from the z < 0 mirror is then given by
(see Appendix 1)

1
1. e'ao -(60 + eo) e?'(so B Eo)
Tout¥) = ——— T J6. F € 1)
2 sinh (.9___2
2
and the total power output of the laser by
*2.3
Pout =b f Iout(x) dx,
X
where
X5 1f Xy < x3,

16
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(28)

(29)



and b is the width of the pumping (and the lasing) region in the y-direction
(see Fig. 2). Substituting for Iout(x)’ we have

]
: 5 ((S - € ) X
-4
ot (s re) e o 07
Pout = chvb 5 —— n*(x) dx, (30)
2sinh (,&._q)

where

*2,3

- -£ *

f n*(x) dx = g [(1 -e )(n] - nw)+ £ nw]

X1
and

Xn o - X
L. 237"
- )
The power supplied to the upper lasing level is given by
Py = (Energy per upper level particle)

x (Upper level particles generated per second per cm3)

x (Pumping volume)
or _

Py = Ey R {x3 b L). | (31)

3

In terms of R .and Pout’ we can define the lasing efficiency n > 8S

- out .

We then find that the lasing efficiency can be written as the product

of three parts

T s ‘ (33)

17



where " is the quantum efficiency given by

=T s . : (34)

n

0 is the "optical efficiency” and is given by

1
-5 (5. -¢)
_ (‘l - e 0) e2 0 0 5
no— 7S T e ’ (3 )
2sinh (_9___9.)
2
and ng is the "system efficiency” given by
2 [ (,.% ™ RS TARTANNG
ne = 1-(1+__.-_)(1-e . —th
ST (1 + gU/gL) X3 3 [ LT 7R
9 g An |
+ (] + .ﬂ)(l___l}. -1+ th)] (1 - e-g) (36)
W /\u % Ty (R

gU T gU T Anth
TECERE o]
9. /\%y 9 u L

It is interesting to study the system efficiency in the limit of
R

—%ﬂﬂz. Let
- X]/VTU
q=e s
then from Eq. 9 we have
a3 -sen-q=1s L (1Los) t (37)
q W -9 o, W R

18



It can be shown that the solution that corresponds to the beginning
of the lasing region is given by

' 2
R R
1 h
9=1- ?(‘E—h)‘f 0(‘%‘)
] .
Rth a
In other words as-—ﬁ—-+ 0 the laser "starts" at X > 0. Therefore, in

the 1imit of R >> Rth’ we have

where

Y
"
N
—
+
re e
SN
TN
cr-l I:—x
S
1
——t
N’
33}
TN
el
R
"
[la]
(o
=
1
v

' X
_(ﬁote that Xy + 0 as R » = and hence T1im {E }'= —%éi).
R-sc0

Several interesting cases described by Eq. 39 are worth examining.

a) £ << 1, (X2,3 = x3). This corresponds to a flowing laser system

in which the pumping terminates just after the laser turns on.
See Fig. 7a. Then

19
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b)

£E> 1, (x2 3 = x3). This corresponds to a pumping region extend-

ing far downstream of 2. See Fig. 7b. Note that such a pumping

*
scheme would only make sense if n_ > 0. In this case

.]glf {nSw (E;c)} = g, (w;c} . T

or
ot -2 (1) [ 2L ()]
i TU gl_ TL TUL gL

It should be noted, however, that in this case we should prob-
ably not be flowing at all since the same limiting efficiency
would be extractable from a stationary system (to the extent
that the values of the other parameters could be maintained
as v > 0).

1

£=1n (Z-+ 1), (x2,3 = x3). This corresponds to the case

*
where n_ < 0 and the end of the pumping region coincides with

the end of the lasing region (i.e., x, = x3). See Fig. 7c.
In this case

R
but for —%h-+ 0

©w
=
LAl

Therefore, for this case

- 1
j E—]n(z'*'])

20

(41)



and shbstituting in Eq. 39%a
1 1 1
n In{—-+1)3z| = -z
o[ (5 ) 5] 9{ T }
% b (z+7)

It is useful to observe that the expression in the brackets

has an asympotic behavior for large positive ¢ given by

1

= " 1
];rzr“—'“FB - ¢ = ()

-1t o(?__),

N}

1+~
4

Hmme,fm*gil

1 T
’%m[]"(3+1) ’C] 20T+ 9,797 -

The function f(z) is plotted in Fig. 8.

_ Since gU/gL ~ 1 and ¢ is often of the ord?r of 1 or]greater, an engi-
neering estimate for the system efficiency of TS Mg E-cou]d be a good
approximation. The upper 1imit is attained when the pumping region is
terminated soon after the laser turns on, whereas the lower 1imit is
attained when the pumping region persists to the end of the lasing region.
Thus, we could write for the lasing efficiency, if RE“

(see Eq. 39b),

<< 1 and if ¢ 2 1

15 L1 _
im { . 7 "Q"o-

R

Fig. 9 presents a plot of o versus 50 and €0

It should be emphasized that the lasing efficiency ny is defined with
respect to the power supplied to the upper lasing level. This power may

(42)

(43)

(42')

or may not be equal to the input power to the laser Pine depending on whether

21



there exist intermediate pumping steps, alternative competing processes,
branching ratios, etc. Thus if pumping the upper lasing level is an |

indirect process, the overall efficiency n, defined with respect to the
total input power to the laser is given by

P
n = P?Ut ' (45)
in -
or _
n =g Mg Mg Mp (4§)
where p is the pumping efficiency defined by
P
U
Np = 5 . (47)
P Pin

22



CALCULATION OF PUMPING RATE

It is interesting to calculate the pumping rate R and the pumping
efficiency p for some of the common ways that are used in pumping the
lasing species to the upper lasing level.

a)

Chemical Pumping (premixed reactants) .

Reactants A and B, with concentrations Na and g, are assumed to
react with a reaction constant k (T) depending on temperature.
The upper lasing level appears as one of the products with a

certain branching ratio a. The excitation energy EU is part"
of the available heat of reaction -AH. That is,
k
or
A+B—N,+C -AH.
The pumping rate is then given by
R = ayk nang (46)

while the pumping efficiéncy is given by

_ E
np = aU ____A% (47a)
with respect to an input power
Pin = KaNg (-aH)(b L x3) Lo (47b)

In this:case,where the chemicals are premixed, the concentra-
tions of the reactants will actually decrease as the lasing
proceeds. Some average value for ny and ng can then be used
for the purpose of obtaining estimates.

23



1

b) Collisional Energy Transfer from Metastable Excited (Premixed)
Species

A species ‘M is assumed to be created at a rate Rm in an excited
metastable state (see Fig. 10). The metastable excited state can
then transfer its excitation to the lasing species with a trans-
fer reaction constant kt(T) or it can be deactivated at a rate Ta]
due to all other possible mechanisms. The rate equation for the
excited metastable is then

d _ 1

where m, is the excited metastable density (particles per cm3) and
n is the ground state density (particles per cm3) of the lasing
species. If we make the transformation

0 mu
Vg oyt — = Rm : (48a)
m
where /
1oy, (48b)
T 4 t

24



c)

Therefore

=
1o

4 ktn_Tm R

k.n t
t d_q (49)

or R aU 1+ ktn Td m

te

where ay is the branching ratio to the upper lasing level. The
pumping efficiency is then given by

ktn 4 E
"=y TEEA T E ' (50a)

with respect to an input power given by

P, = E R (bLxy) | ~ (50b)

where Em is the energy of.the excited metastable, In this
calculation, as in the previous case, we have ignored the
reverse reaction process.

Electric Discharge Excitation

The pumping region is assumed to be filled with a uniform dis-
charge characterized by an electric field ﬁ; a current density
J, and an electron density n,. The upper Tasing level is then
excited from the ground state by electron impact. For a wide
class of discharges it is found that the excitation rate can be

written as proportional to n_, with a constant of proportionality

e
conventionally denoted by vy

R=wvn_ . (51a)

For a small degree of ionization and an electron mean free path
much smaller than the characteristic dimensijons of the apparatus,



one can show by similarity arguments that Vy (when normalized
by the ground state density) is only a function of the ratio
of the electric field to the ground state density. That is

v .

x_ €

e F(n)' (51b)
The pumping efficiency for this process is given by

AR EU

T E T (622)

with respect to an input power given by

= « i v ) COK
P =& 3bLlxy). (52b)
These methods are often combined to provide composite pumping

methods. For example, one can dissociate SF,. in a discharge by electron

6
impact to liberate F atoms which in turn react with H2 molecules to

chemically pump an HF laser.
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RELAXATION RATES

The relaxation rates ra] L and T were introduced phenomeno-

0°* U

logically into the rate equations for the upper and lower lasing levels.

These rates can be the result of several different processes that can
remove an atom (or molecule) of the lasing species from the correspond-
ing level. To the extent that these processes act independently on the
corresponding level, we can assign a rate due to each one separately.
The total rate is then the sum of these independent rates (insofar as
the transition probabilities per unit time add). For example

1 1 1 1 -1

— + * e &

L Tr TC+Td+TD+

L L L L
where

"lF = radiative decay rate of the lower lasing level,
L
—lE-= inelastic collision deactivation rate of the
g lower lasing level,
;la = dissociation rate (of the molecule, in this case)

L in the lower lasing level,

—lﬁ-= diffusion rate out of the lasing volume.

In turn, each of these can be composite rates. The radiative decay
rate,-—lF » will be the sum of the rates to all the possible final states

T
L
that are radiatively connected with the lower lasing level. Hence

1
;“F‘Z A
L3

27
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where the ALi are the radiative Einstein coefficients to go from the

lower lasing level to the ith final state. The inelastic collision

deactivation rate, le
T

with each of the possible deactivators present. That is

1
___Z k_ons | (53b)
i

C
L

, can be due to a sum of the collision frequencies

where the kLi is the collision rate constant of the lasing species in
the Tower lasing level with the ith deactivator and n, is the number
density of the 1th deactivator. The dissociation rate, ”J?T , can be
T
L
due to radiative dissociation or collisional dissociation.
The diffusion rate out of the lower lasing level, —}71 , is usually
T
L
not important in a transverse flow geometry, but with the advent of
waveguide lasers, the possibility might arise to consider such a loss.

The other rates, 168 and T-]

L are defined similarly.
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CONCLUS IONS

The results of this analysis can be summarized as follows:

1)

2)

3)

4)

There exist two types of lasers:

. (1 1 (2]
Type I: 1 - Ty B - -—-(—-) >0,

Ty \9 /]
1 1 ()]

Type II: 1 -1, }|— - ——-(~—) < 0.
| S EEETRCYA

The performance of a type I lasing system is improved by flow.
A type II laser works better as a stationary laser and, in
general, should not be flowed.

The effects of flow on lasing are confined to a region scaled

g
(] + —y—) vt
QL-

1 _1+J_(Eg)
T Ty \9L /'

Thus, for an upper state deactivation time of 10 usec and a

by 2, where

o)
]

and

flow velocity of 105 cm/sec, we would have a lasing region
(gU/gL ~ 1) of the order of

pa2x 100

x 107> = 2 cm.
The minimum pumping rate for lasing to occur is given by

Anth

Rl

R

>
th &
for a wide range of conditions.

For a pumping rate R such that R >> Ry, the efficiency (with
respect to the power supplied to the upper lasing Tevel) is
approximately given by

29



1

where " is the quantum efficiency, and n, is the optical
efficiency (of the order of 1).

30



APPENDIX 1

Radiation that results from a transition between an upper and a
lower state of an atomic or molecular species can be amplified or
absorbed. In particular, it is found that the intensity of a beam of
frequency v in the z direction is given by

\

‘3’5 I(2) = a(v) I (2) N

where a(v) is the gain per unit length (gain coefficient). The gain
coefficient is given by '

2 glv -v) g
_ A 0 U
Ol.(\)) = “8—11'— -——-—F——'—' (nu - 'é["nl_) (A].Z)
| TuL |
where
A = wavelength of the transition
g(v-vo) = normalized line-shape function
1-e93
f glv = vg) dv =1 (A1.3)

-1
(;UL> = spontaneous radiation transition rate from the upper
to the lower level '

ngs N F densities of particles in the upper and Tower states,
respectively

9ys 9~ spectroscopic degeneracies of upper and lower level,
respectively.
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The gain coefficient can be written as the product of the optical
cross section o*(v - vo) and the population inversion.an, i.e.,

a(v) = o* (v - vo) An : (A1.4)

where )

2 g{v-wv '

- A 0

0*(\) - \)0) = -8"_}- v (A].S)
TuL
and

= ! 1.6
An—nu-é-[nl_. (A1.6)

If the intensity of the radiation is considered as a flux of part-
icles of velocity ¢ (the speed of 1light) and energy hv (where h is
Plénck‘s constant and v is the frequency of the radiatioh) then we can
define the photon density n:, at the frequency v, by '

*
I = chwn . (A1.7)
v Vv

The stimulated transition rate from the upper to the lower lasing
Tlevel can then be written as the emission rate minus the absorption
rate or,

. _ % * gU )
ny = =N = -kng (nU - EE-nL) (A1.8)

*
where ¢« is the stimulated transition rate given by

K* (v - vo) = Cc* (v - vo) . . (A1.9)

*
It is instructive to compare « (v - vo), as given by Eq. Al.9,

with a classical collision rate coefficient, given by

. k =.}f o(v) v f(v) dv = va(Vv]. (A1.10)
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Consider now an amplifying medium between 0 < z < L (in which a(v)
can be considered constant) with a pair of mirrors facing each other at
z < 0 and at z > L forming an optical resonator. See Fig. Al.l.
the mirrors have reflectivities s and rs respectively, and total losses
(absorption, diffraction, optical imperfections, etc.) given by e %0 and
e (L. If I; is the incident intensity on the mirror at z < 0, then

the reflected intensity would be given by

~while the transmitted intensity would be given by

. -€
I.={(1-r)e OIQe
t * [N 1

It is assumed here that the losses are due to mirror surface imperfections
and edge diffraction losses as opposed to transition losses.

Let us now start at z = 0 with an intensity 17 (0) directed to the
right. Integrating Eq. Al.1, we find at z = L the intensity has increased

(« > 0) to
L) = e 1%(0).

Part of the radiation is transmitted to the right as output radiation,

+ EL 4
IOut = (1 - rL)e I (L)

and part of it is reflected back

1l
-
[$2]
D
|

—
—
~—

I(L)

]
-~
[¢>)
1
™M
, [
(¢]
—
+
—~
(]
T
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This is further amplified on its way back, and at z = 0, we have

17(0) = rLe-EL e 17(0).

Part of this is transmitted to the left as output,

- _ 0 -
Iout = (1 - ro) e I (0)
' -€ -g, 2ol
- 0 L +
= (1 - ro) e r.e e 1°(0)
and part of it is reflected back,
=€ -€ 2oL
I+(O) = re 0 ree Lo 17(0).

We can consider the sequence of steps for a complete round trip
inside the cavity, starting from z = 0, as a sequence in time. Then

it is clear that unless

2al

the laser intensity cannot maintain itséTf at a constant level in time.
It must necessarily increase or decrease corresponding to whether the
product of the loss and gain factors, on the left hand side of Egq.
A1.12, is greater than or less than unity. Thus, Eq. A1.12 is a con-
dition on o for the steady state operation of the laser. " As this is

- also the threshold value of o, below which lasing cannot be sustained,

we denote the solution of Eq. Al1.12 by Ap where
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(Al1.11e)

(A1.17e")

(A1.11F)

(A1.12)

(A1.13a)



and

(=<
]
. On
+
(o]

"
©
=

Pama ¥
w——

——-)+ n (l—)
Yo N

The intensity in the interior of the cavity will be given by

(z) = 1(2) + I7(2),

where

1'(2) = 17(0) e®
and _

1" (z) = 17(0) e”*,
Now, since

(o) = roe-go 1"(0)
we have

-20 ¥4 -aZ _
I(z) = (roe e +e )I,(O).
If.we define the total loss factor for the mirror at z < 0 by
Yo < %0t S

we have

or
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where

YL" +60

LT
Thus, in the 1imit of a Toss-less cavity, the intensity inside the cavity
approaches a constant: b

lim . {I(z)} = 217(0).

YO’YL "* 0 ..

For reflectivities which differ appreciably from unity, a situation
often encountered in high power lasers, we can see from Eq. Al.14 that
I(z) can deviate somewhat from being a constant. In that case, the
assumption that the stimulated transition rate, as given by Eg. Al1.8
and as used in the rate equations, is only a function of x should be
considered as an approximation. The corresponding photon density n*
is acpual]y meant in an average sense, i.e.,

where -

L
Ly = ¢ f 1(2) ¢z ~ (1.15)
-

Substituting Eq. Al1.14 for I(z), we then obtain

o 4 - %Yo sinh%g+ sinh%L o
Iav =e YO + YL ") I (O)s (A].]G) |
and therefore,
1 Yo F Y \ .
I(Z)“z(sinh;g ¥ sinﬁ%:) cosh [3; ¥ - xo) Iy (A1.17)
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The unsymmetric looking argument of the hyperbolic cosine is an artifact
of the choice of the origin on the side of the z < 0 mirror.

I(z)/Iav is plotted in F1:g. A1.2 versus z, for various values of Yo
for the commonly encountered casg of a one-sided output (YL N 0). As can
be seen from Fig. Al.2, the approximation I{z) ~ constant is a very good
one (note displaced origin).

- From Eq. Al.16, we have

v
(Yo“'YL) A 0I

(o) = 4(sinh¥e + sinh¥) € av’®
= 2

and from Eq. Al.11e, for a one-sided output, we can express the output
~ intensity from the laser in terms of the input intensity and the mirror
characteristics. That is (recall ry = e'so),

1
— % (8, + ;) Z (8 - )
I =—~11 -e e I_.
out . stmk 60 + €y av
| 2

. The quantity in the brackets approaches unity as &, and e, go to zero.

In particular

(s, + ¢,) > (6 -¢) _
06 ~ S R ;— (s, - e,) + second order.
2 sina {0 “0
2

Therefore, for small 60 and €

- 50 Eo .
Iout >y 1 - — + higher order Iav'

I(x), as used in the main body of this discussion, corresponds to Iav’

evaluated at each station Xx.
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APPENDIX 2

In this appendix, the algebra that is omitted from the main body of
the discussion is presented. Equation numbers on the left refer to the
numbering sequence in the main body.

Equation 8

From Eq. 7a, we have

3 Uu _R
=MWty (A2.17)

or

X x o _x
VT VT
Uu_R '
nU e =7 ./F e dx
0
IR S
VT
=TUR(e U 1)
" Therefore
’ -X/VTU‘
(8a) nU(x) =1 RI1 - e .

Substituting 8a into 7b yields
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or

3 eX/VTL i TUR - e-X/VT eX/VTL
X nL VTUL y

=
-
—
x
St
1)
x
~
<
~
—
]
~
=~
P S
c>g“\x
D
>
~
<
[a)
—
(o %
>
]
[}
<l><
P
|-
|
]
o f—
<
N—
[
x
A W

e
=' T e - ] = -
UL 1 TL/TU
.Therefore
n(x) = Sk b TR
L T - € - 1 - 1,/ ?
UL B R

combining the exponential then yields

- X _ X
. VT VT
T,,T L U
U'L e . e
(8b) n(x) =—=——=R¢T - t - Z
L TUL ] - TU/TL TL/TU ]

Equation 9
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while from Eq.'8b

g\ x) =._T_U_ AV e—X/VTL L wim e"‘/‘”u
9./ 1R \9 V- V-l '

Subtracting (A2.4) from (A2.3) and collecting terms yields

(9) An()é) - nU(X) ‘:" gU/gL nL(X)
U

Equations 11 and 12

Adding Eq. 10a and Eq. 10b yields

n, n n
] U L u _
Vaz(“u*"L)*r*‘“‘*““ R.
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therefore

' n )
3 I
VX (nU + nL)‘+ — + R. (A2.6)

Substituting Eq. 10c into A2.6 yields

g an g

u 3 d th 1 1 U

1T+—}jve=n tv—nn, +—+ | —+——=}|n =R (R2.7)
( gL) ax L ax "~ 'th o [TL o (g.L) ] L

For plane parallel optics %Y'Anth =0, and hence

An
(11) | (1 ¥ gU/gL) v-—J:+-;L-= R - —th (A2.8)

where, from Eq. A2.7
(12) LI S Y
, - =T .

Equations 13 and 14

From Eq. A2.8 we have

EEL.+ EL.: R - Mtn/ o (A2.9)
oxX g (1T + gU/gL)v > )
where
(14) 2= (1 + gU/gL) VT.

From Eq. A2.9 we have

2 (. ex/z i R - Anth/TUO ex/xL
ax \ 'L T+ gy/g v ’
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or integrating from X7 to x,

X/ %

X./% R~ an, /< X/2 X/ %
1/ th v, (e e ).

nL(X) e = (] T QU/QL)V

- nL(x]) e
Therefore, using Eq. 14 for 2, we have

(13a) n (%) = n (x;) e Y 4 T’(R - A:Eg ) (1 e * )

Substituting into Eq. 10c then yields

AN g ' . B - An \ - T )
(13p) nU(x) = ang + g:%{AnL(x]) e ' o+q (R - Tth (1 -e * );

Eguation 15

* From Eq. 10a, we have

n*(x) = 1 R-{vd n' + E!- (A2.10)
K*An th ax U o : ’

From the functional form for nU(x), as given by Eq. 13b and Eq.
A2 10 for n*(x), we can see that

(15a) ) n*(x) = (n:-n:)ef g n*.

*
We can easily calculate n_ from Eq. A2.10 by observing that

8 (x) >0 as x » =, i.e.,

% MU

n*(=) = n" = E‘“l""{ R -1 (=) } . (A2.11)



From Eq. 13b we have

g An
ny(=) = any, +(g_u) " (R - Tth)’
9 w

and therefore

Now, from Eq. 12°

A [
i
-'ll-—'

—
+
-
c —t
O I
A

hence ' '
‘ ] = I.... + ._}-.... (g..l:,.
» oo \9L
and
1 - _JL_(?EL) = I
| | lo\%L/ L
Therefore

(A2.12)

(A2.13)



From the lasing condition, as given by Eq. 3, we have

kAN, = %t- (e +8),
and finally
* _ 2IR « [ r AMp
(15C) nw-T._—_)_CE'FG {]-TEU(EE)-}—JTLR .

From Eq. A1.10 we have

an n
i - (1), () )
X X

Now, from Eq. 13b

(R )
X 2 2 TUO ?

X

Therefore,
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or

1
f—
P N
[{»]
L swey
o]
[ o
——
b
—
N
+
[
=
r-'-
b 4
N onp’

Hence

_\L(_a_'lU_)+(f_U_) I {EL ") (1 £ U ili)+ )

1

and since (from Eq. 8a)

nU(x]) _, 'x1/VTU
we have
Y ") WY T W O T TA W A T
R\ ax + oY 1+gU79L L T
X X4
1 1
An
th
- TLR } . (A2.16)

Now, from the thresho]d condition as given by Eq. A2.14 and from Egs.
A2.15 and A2.16, we obtain

x4 2R T Ty
(18b)  ny = n*(x;) = T 5)(T + 9y/9;) { ' (] ' 9@ ;—-) (} -

Anth
"L R O(

L
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Equation 16

From n*(xz) = 0, or

n* - n* - 2" N
1 e _ 2
- —x = e
-r?m
Therefore
: *
X2 = X M
(16) s +1].
v ‘ -n_

Equations 17 and 18

Equation 17 follows from Eq. 15b by making the substitutions R = Rth’
‘ ' ‘
X = Xgpo and requiring that ny = 0. Eg. 18 follows from Eq. 9 by sub-

-st1tut1ng an(x) = s R= Ry X=X,
Equations 17' and 18"
Xn/ YTy
From the coefficient of (I - e ) in Eq. 17, we have

9. 9% L Two \%
g, T -1, \ 9
:H_U__u-( __U_)_u
CT RIWA
T T {9
=]_....U.+U _.g
T Tfue\%
Substituting
T, /9
(19) w=;u_<_u
» uL \ 9L



and

(19¢) s = — ,

we have

Therefore, from Eq. 17, we obtain

1 _
5[-— 1-(1-s+w)(1- qth)
=1 -1+s-w+ (1 -5 +w) e
Hence
(17') ‘ o= (1-s+w qy
where
(19e) W ) =‘%—-- s + W.

L

Similarly, from Eq. 18, we have

1 _ s w_ s
'e"L‘“S ‘W'(5+Ti‘§w)qth+1-s Uth>

from which it follows that
' = W .S __S_ -
(18") = 105 9 T T (T s W) Gy

Equation 21
Substituting Eq. 20 into 18', we have
S

=" ¢ S ¢
¢ = T—?(]-sﬂu) B _ITS(] - st w) (]-s+w)
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or

(1) - W(1-§;w)

Eq. 21 has two solutions if 1 - s + w > 0. These are

1]
e

¢]=0
and S
" T-s
¢y = W (1 + 155) s
corresponding to
1
......—-:S-w
%
and
- S
1-s -
1 _ 1-s
'e——'—W(]'I'T) + S - W,
L
In this case
S

- 75 |
w (} + %ﬁg) +S -W>S -Ww,

and consequently, the minimum pumping rate corresponds to 6o

Equation 23b

From Eq. 23a
S
\ 1-5
i 1=s
b= w (1 + " ) s
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and hence for small s
o(s, W) = (0, w) + 3 o(0,u) + 0(s?).

From Eq. A2.18, we have that

$(0, w) = w
and
(), ()
s=0 s=0
= W &h (1 + %—)
Therefore

¢(w, s) =w - sw en (1 +‘,7)+Os2

Substituting for ¢

;—-s+w=w-swzn(1+l)+0(sz),
L W
or finally,

(23b) —]él-ms[]-wzn<1+%)].

Equation 25b

From Eq. 25a, we have that as w >~ 0

l—-»—] + W W W.

%
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Since

lim {w en w} =0
w0

we have

For large w,

1 1
= ] -[1 - 5=+ - ]
2w ;;7
1 1
T o - + .
2w g;?
1 2
--2-‘—N—(.l—3—w+ )
‘Therefqre
o, (0, w) ~ 2w
u T2 .
T 3w
2 2
= &v[] + §F'+O (w )]
- 4 1
2W+'3—+0(W)

AS W > =

4
8y (0, w) ~ 2w + T -

In fact, Eq. A2.21 is good for w > 0.1 (see Fig. 4).
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Equation 26

‘Since g, = seu, Eq. 26 fo]]éws from 23 by dividing the entries

-1 u
for eL by s.

Equation 30

Eq. 28 follows from Eq. A1.18 by substitution of I(x) for Iav'
Eq. 29 assumes that the mirrors extend sufficiently to justify neglecting
any variations in the y-direction. Eq. 30a follows by substituting 27
and 28 into 29. From Eq. 15a

%2,3 X2.3

/ n*(x)dx

X1 X X

1]
—
>
— %
]
>
8 ¥
S
)

t
b
—
o
hd
+
=
8 *
o
=

where

Equation 37

Since An(x]) = ANy, we have

An(x]) ANy,

TLR TLR

H
cm‘—l
‘—’.
>

|



Therefore, from Eq. 9, we have

R
I {7thY. ..., _ s s .S
(1) e mv (oo te)ar s

=5 -w-—=(1- : N3
S - W=y (1 s + u) g+ T—s @

=_]_1.§.—(] -s)(s-w)-s(]-s+w)q+qu]

e

or

(f;1)+%(]-s+w)“-wﬂ=(]&s)%(%?), (12.22)

from which Eq. 37 follows trivially,
Equation 38

As Rth/R + 0, Eq. A2.22 becomes of the form

¢ +sa(l-gq)-1=0, (A2.23a)

where

a=14+1 . | (A2.23b)

The solution of Eq. A2.23a may be viewed as the intersection of
two curves:

¥y = q° (A2.24a)
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and

yp = saq + (1 - sa).

Independently of s and a, g = 1 is always a solution of Eq.

A2.23a. In addition, a second solution may exist for 0 < q < 1.
» the g = 1 solution means that as = 0 the laser

turns on immediately (i.e., Xq > 0). Fors <1, the 0 < q < 1 solution

corresponds to the position downstream where an(x) would again be equal

to L if the lasing did not start. Recall that for s <1, Ty < and
R
th

Since q = e

the Taser eventually bottlenecks. Thus, in all cases Xy > 0 as e 0.

To see what happens for large but finite pumping rates, we make an
expansion about the R = = solution, i.e.,

Then

£
1] n
— ~—~
pu—
1
t
wn
[
~—
+
Q
Lann )
>
N
~—

A
pa—}
]
[7,)
S’
[72]
=
1}
N
—
=zt
w
g
[av3 K d
|
N
Tt
pooe
e
+
o
N
7oL+
="
S

Ifs#1

(]
cpl._l

SX
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Therefore, since 6,, = se@

‘ R R
- 1 th th
(38) 9=1- é"‘(T)* 0 (T)

Equation 39

R
From Eq. 38, for _%ﬂ >0,

~ Xq/VT R R
1 -e v z1-qg= %—-(—%?l)-+(3(-%¥1) s

U
therefore,
- Xq/VT
1m1{1 e U ”} =0
Rveo
Similarly
TLR GL R
Rth

-and therefore, for finite eL and = 0,

im J4%h | _
Rreo TLR :

Therefore, from Eq, 36

g
= qs L U
Ne_ = 1im ¢ Nep- [] +_<] + ———) (

g
(1 + Y X
9./ 3
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If we now define

g g
(39b) g=(1+.9)(_}._!-1),
9 u 9L

where, since x; + 0 as R > =, we have used

X - X X
lim {e} = 1im 223 10 _ 72,3 (A2.26)
Row -~ Rwo .

Equation 40

For £ << 1, we have

Therefore, for Eq. 39a for Xo 3 7 X35

:;8 {nsm (E;;)}

1]
=




Equation 41

For £ >> 1, we. have

and therefore, from Eq. 39a for xé 3 7 X3

g g
1+22

I

Tim ‘{nsm (s;;)} g (mig) = —E_ (A2.26)

Using the defining Eq. 39b, we then have

g
41 =1 -3 (Y,
D e TU(gL)

To show the second part of Eq. 41, we observe that

. g
]_ = :I.._ + ...L (_!) .
ToT Tyo \9L

and therefore

oo 9
g
=I—'+T<] __L)_li
L o /9
Consequently
g 9
]zz_(_U)= L. T_T..(_!) (A2.27)
Tu\SL L ‘oL \9%
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Equation 42

This equation is essentially derived in the main body.

‘Equation 43

From the power series expansﬁon for the natural logarithm, we have

zn(] + -]—)
\ (4

[}
| -
1

|__.
+
-
[o%)
1
L]

Therefore
1 _ 4
Ty~ 1 1 1
an (1 + — 1 - »—+ +0f —
( c) z 3;? (c3)
. 1 1 1
=g |1+ - + +0( )
[ 1 1
o[kl
_ ] 1 1
'“2"1"5*0(—2')’
g
and hence
1 1 1 1
(43) -7 = 5- + 0 (-—).

Equation 42' follows by using the first term.
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