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ABSTRACT 

A simple analytical model f o r  flowing l a se r  systems has been developed. 

The 1 asinq species i s  modeled as a two-state system w i t h  specified pumping 

and relaxation rates.  Threshold requirements and output efficiency are  
expressed in the form of universal dimension1 ess functions. In terms of 
these universal functions, the behavior of par t icu lar  systems can be 

studied in a parametric way. The analysis shows t h a t  flow would not improve 
a a the performance of a1 1 1 aser systems. The transformation - -t v - a1 lows a t  ax 

one t o  predict  the performance of flowing systems from the behavior of pulsed 

sys terns. 



I 

INTRODUCTION 

I n  many h igh  speed gas l ase rs ,  i t  i s  found t h a t  t h e  pumping r a t e  i s  

approximate ly  uncoupled from t h e  l a s i n g  and t h e  d e a c t i v a t i o n  ra tes .  

When t h i s  approximation i s  adequate, t h e  a n a l y t i c a l  d e s c r i p t i o n  o f  t h e  

ope ra t i on  o f  t h e  l a s e r  i s  reduced t o  the  s o l u t i o n  o f  two simultaneous 

1 i n e a r  f i r s  t - o r d e r  d i f f e r e n t i a 1  equations. 

This  approach a1 lows t h e  1 aser  t o  be s tud ied  q u i t e  genera l l y  w i t h  

respect  t o  t h e  var ious ra tes  t h a t  a f f e c t  i t, w i t h o u t  r e s t r i c t i n g  the  analy- 

s i s  t o  a s p e c i f i c  system. The performance o f  h igh  speed l a s e r s  can then be 

p r e d i c t e d  t o  a f a i r  approximation by merely s u b s t i t u t i n g  i n t o  general so lu -  

t i o n s  the p a r t i c u l a r  values o f  the  atomic constants, o p t i c a l  c a v i t y  para- 

meters, and t h e  pumping and deac t i va t i on  ra tes  ( these a re  known o r  can be 

determined by independent means). 

The f i r s t  p a r t  o f  t h i s  d iscussion deals w i t h  those l a s i n g  systems 

whose l o c a l  volume pumping r a t e  can be considered cons tant  throughout the  

l a s i n g  region.  Examples o f  such l ase rs  are  premixed chemical and e l e c t r i -  

ca l  d ischarge l ase rs .  The second p a r t  (which w i l l  f o l l o w )  deals w i t h  the 

i n t e r e s t i n g  spec ia l  case i n  which the pumping i s  t he  r e s u l t  o f  a  chemical 

reac t i on ,  o r  energy t r a n s f e r ,  as l i m i t e d  by the  r a t e  of  t u r b u l e n t  m ix ing  

of two streams o f  unequal v e l o c i t i e s .  

An e f f o r t  has been made t o  render the  main body o f  t h e  d iscussion 

complete i n  i t s  d e s c r i p t i o n  o f  t he  var ious aspects o f  t h e  l a s e r  opera t ion  

i n  t h e  hope t h a t  i t  can be read as one u n i t .  To t h i s  end, t h e  prob l  ems 

and r e s u l t s  o f  t h e  o p t i c a l  considerat ions ( i n  connect ion w i t h  the gain o f  

t h e  amp1 i f y i n g  medium and power e x t r a c t i o n )  a re  discussed i n  Appendix 1. 

I n  the i n t e r e s t  o f  p reserv ing  t h e  c o n t i g u i t y  o f  t h e  d iscussion,  most of  

the a lgebra i s  de fe r red  from t h e  main body and inc luded i n  Appendix 2 .  



RATE EQUATIONS 

I n  the  present  model, l a s i n g  i s  assumed t o  take  p lace between two 

l e v e l s :  t h e  upper s t a t e  U, and the lower  s t a t e  L. These a re  s i n g l e  s ta tes  

(as de f ined by a  complete s e t  of quantum numbers) if t h e  l a s i n g  occurs on 

a s i n g l e  l i n e ,  o r  composite " s ta tes "  i f  t h e  l a s i n g  occurs on many l i n e s  

s imul taneously.  The processes t h a t  a re  considered i n  t h i s  model a re  sum- 

marized i n  F ig.  1. The var ious q u a n t i t i e s  t h a t  appear a r e  de f ined as 

f o l  1 ows : 

R 
- 1  - volume pumping r a t e  i n t o  t h e  upper l a s i n g  l e v e l  sec ) ,  
3 

"us n~ - upper and lower l a s i n g  1  evel popu la t ions  ( p a r t i c l  es p e r  cm ) , 

n* 3 - photon dens i t y  i n  t h e  1 as ing mode (photons p e r  cm ) , 

guy 9L 
- degeneracies o f  t he  upper and l o w e r  l a s i n g  l e v e l s ,  

I - - t r a n s i t i o n  r a t e  from t h e  upper l a s i n g  l e v e l  t o  any f i n a l  s t a t e  
'UO o t h e r  than t h e  l ower  1  as ing  1  eve1 ( sec - l )  , 

I - - t r a n s i t i o n  r a t e  from t h e  upper l a s i n g  l e v e l  t o  the lower  l a s i n g  
'UL l e v e l  by a l l  mechanisms o t h e r  than s t i m u l a t e d  emission (sec ' l )  , 

1 - - t r a n s i t i o n  r a t e  o u t  o f  t h e  l o w e r  1 as ing  1  eve1 ( sec - l )  , 
T~ 

3 - 1  
K * - s t i m u l a t e d  emission r a t e  constant  (cm sec ) .  

We can d e f i n e  the  l i n e a r  gain c o e f f i c i e n t  (see Appendix 1 )  i n  t h e  ampli fy- 
2 

i n g  medium a (cm-' ) , as t h e  product  o f  an o p t i c a l  cross sec t i on ,  IS* (cm ) and t h e  
3 

popu la t ion  invers ion ,  an ( p a r t i c l e s  per  cm ) .  That i s  

where 



X = wavelength of the t ransi t ion radiation, 

g(v  - yo) = normalized 1 ine shape function, 

and 
1 -. = spontaneous radiation rate  (Einstein coefficient A ) . 
r U L 

T~~ 

In terms of o*, K* i s  given by CO* where c  i s  the speed of l igh t .  The 
lasing condition on the population inversion can be expressed as a  gain 
equals 1  oss condition (see Appendix 1 ), or 

where ro and rL are  the  mirror r e f l e c t i v i t i e s ,  E~ and E~ are the fractional 

losses (d i f f rac t ion ,  absorption, scat ter ing,  e tc .  ) of the two mirrors, and 
L i s  the length o f  the amplifying medium. . 

I f  we denote the solution of E q .  2 by Y h ,  then we have 

where 

and 

Since a t h  = o*Anth, we have 



We can wri te  the rate equations for  the populations of upper and 
laver  las ing levels from Fig. 1. In a frame a t  rest  a i  t h  respect to the 

lasing medium, we have 

where 

In the discussions that  follow, the assumption i s  made that  the 
various quantit ies of in te res t  (nu,  n L ,  and n*) depend only on x .  The 

dependence on z i s  small and i s  neglected. This assumption i s  val id 

under very mild res t r ic t ions  (see Appendix 1 ) .  

The ra te  equations for  a flowing system are obtained by performing 
the transformation 

where we have assumed that  the velocity v i s  along the x-axis. A t  steady 
a s t a t e  - = 0, and consequently a t  

and 



The geometrical configuration i s  sketched i n  Fig. 2. The pumping 

region f i  11 s the vol ume I 
O i < x  < X 

I 3 '  
O < y < b  , 

The pumping r a t e  R i s  ,constant i n  t h i s  volume and zero outside.  The 

optical  cavi ty  forms a Fabry-Perot in terferometer  whose opt ical  axis  

i s  para1 1 el t o  the  z-axis. 

We now assume t h a t  the  i n i t i a l  conditions a r e  given a t  x = 0 as 

and 

In o the r  words, a l l  of  t he  1 asing species  t h a t  populate these  two leve l s  
r e s u l t  from the  pumping mechanism. I n i t i a l l y  the  photon density n*(x) i s  

zero and remains zero, i n  t h i s  approximation, unt i l  the population inver- 

sion ~ n ( x )  equals the threshold value A n t h .  Thus i n  the build-up region,  

0 4 x < x1 (where n*(x) = O ) ,  the  system i s  described by t h e  equations 

and 

The solut ion of Eq. 7 i s  given by: 



and 

From Eq. 8, we can c a l c u l a t e  t h e  popula t ion  inve r s ion  a t  each s t a t i o n  

x  i n  t h e  bui ld-up reg ion .  I f  ~ n ( x )  i s  normalized by rLR, we o b t a i n  

- X / V T  U 

'L 'ui  

Equation 9 provides  an i m p l i c i t  equa t ion  f o r  x l ,  t h e  end o f  t h e  bu i ld-up  

r e g i o n ,  s i n c e  nn(x l )  = An t h '  

For x  > x l ,  t h e  popula t ion  inve r s ion  is clamped t o  ~n~~ by t h e  l a s i n g  
c o n d i t i o n ,  and hence t h e  equa t ions  become 

and 

The i n i t i a l  cond i t i ons  f o r  nU(x1) and nL(x , )  a r e  given by Eq. 8 wi th  

x  = x Adding Eqs. 10a and 10b and s u b s t i t u t i n g  10c  y i e l d s  1  ' 



where 

Therefore, f o r  x > xl 

and 

where 

The photon density n*(x) can now be calculated by subst i tut ing E q .  13b 

i n t o  Eq. 10a. This yields  
x-Xl  

If  we make the substi tution 

* * 
from E q .  3 ,  we can express n,  and n as follows: 

00 



and 

I * 
Thus n l  i s  the photon density inside the cavity a t  the s ta t ion  where the 

+ * 
, l a se r  turns on (x = x,) and n OLY i s  the photon density a t  inf ini ty .  

* 
I f  n a > 0, Eqs. 13a through 75c describe the operation of the * 

l a se r  u p  to  x  = xg where the pumping region ends. If n a < 0 ,  then there 

ex i s t s  an x p  such tha t  n*(x2) = 0, o r  

The lasing then ends a t  x Z  or x3,whichever comes f i r s t .  If  x2 < xg, * 
then n ( x )  = 0 for  x p  < x < x3, and the populations are  once more des- 

cribed by Eqs. 7a and 7b (with i n i t i a l  conditions given by Eqs. 8 and 

9 evaluated a t  x 2 )  The evolution of the solution in the three regions 

i s  summarized in Fig. 3 f o r  a hypothetical s e t  of parameters f o r  which 
* -2 < 1 and n < 0. 

T~ 
00 

Note tha t  in the approximations of th is  analysis,  the photon density 
i s  discontinuous a t  x, , i . e . ,  

and 

This i s  a consequence of neglecting spontaneous emission in the  lasing mode, 
any optical mode structure,and the photon dynamics as the in tens i ty  builds 

u p  a f t e r  x l .  These approximations r e su l t  from using the threshold condition 



as g iven by Eq. 3, i ns tead  o f  s o l v i n g  a  t h i r d  coupled r a t e  equat ion f o r  

t h e  l o c a l  photon densi ty .  Such a  ref inement  would have in t roduced a  "so f t "  

s t a r t  o f  t h e  1  as ing a t  xl tend ing  asympto t i ca l l y  t o  the  expression f o r  t he  

photon dens i t y  as g iven by Eq. 15 f o r  x  > xl and t o  zero f o r  x  < xl . 

Several i n t e r e s t i n g  conclusions can be drawn f rom t h e  ana lys is  so 

f a r :  

* 
a) n m i s  t h e  photon d e n s i t y  a t  x  - xl >> a o r ,  e q u i v a l e n t l y ,  t h e  

photon d e n s i t y  t h a t  would have r e s u l t e d  i f  t h e  l a s e r  was operated * 
as a  s t a t i o n a r y  l a s e r .  I f  n  oJ i s  negat ive ,  t h e  l a s e r  w i l l  n o t  

operate as a  s t a t i o n a r y  l a s e r .  From equat ion 15c i t  can be seen 
* 

t h a t  f o r  nm t o  be p o s i t i v e ,  t h e  q u a n t i t y  

must be p o s i t i v e  ( t h i s  i s  necessary, b u t  n o t  s u f f i c i e n t ) .  This 

r e s u l t  i s  i n t u i t i v e l y  appeal ing s ince  i t  says t h a t  f o r  a  s t a t i o n -  

a r y  l a s e r  t h e  r e l a x a t i o n  r a t e  ou t  o f  t he  lower  l a s i n g  l e v e l  must 

be h igh  enough f o r  the i nve rs ion  t o  be mainta inable.  

b )  The c h a r a c t e r i s t i c  l e n g t h  a ,  which sca les  the l a s i n g  reg ion ,  does 
-, 

n o t  depend on the  r a t e  T;:. This r a t h e r  s u r p r i s i n g  r e s u l t  i s  per- 

haps d i f f i c u l t  t o  r e c o n c i l e  w i t h  t h e  i n t u i t i v e  n o t i o n  from s t a t i o n -  
-, 

a r y  l a s e r  performance t h a t  a  h igh  T;L r a t e  would cause a  lower  

l e v e l  bo t t l eneck  and te rminate  the l a s i n g .  I n  f a c t ,  t h i s  inde- 

pendence from rUL suggests t h a t  t h e  c r i t e r i a  f o r  a  good s t a t i o n a r y  * 
l a s e r  (n cu as h i g h  as poss ib le )  and fo r  an e f f i c i e n t  f l o w i n g  l a s e r  * 
( a  as l a r g e  as poss ib le )  might  even be c o n f l i c t i n g .  A l a r g e  nm 

1 - i 
requ i res  a  1  arge T ra te .  Since L 

= ( I + $ ) v .  < (1 +$) vrL,  a  h igh  r;' r a t e  would g i ve  a  very  

s h o r t  1  as i n g  reg ion .  



c )  Even neglecting the possibi l i ty  that  a might be too small, i t  
should be noted tha t  not a l l  lasers  would benefi t  by being 

flowed. There ex i s t  combinations of the parameters, f o r  which * * 
n ,  < nco. Such 1 asing systems would work be t t e r  as stationary 

lasers  (v = 0) and should not be flowed. This point will be 

discussed l a t e r  in the context of minimum pumping rate  required 

fo r  l a se r  operation. 

The Gal ilean transformation x/v -+ t i n  Eqs. 8 through 13 des- 

cribes the t rans ien t  response of a stationary laser .  All the 

resul ts  of the present analysis carry over t o  time-dependent 

pulsed 1 aser performance. The equival ence being one-to-one, we 

can predict the behavior of CW flowing systems from the pulsed 
behavior of the same system (and vice-versa) to  the  extent tha t  
we can duplicate the various relaxation rates when the system 

i s  s ta t ionary.  



THRESHOLD PUMP I N  G RATE 

Using Eq. 9, we can c a l c u l a t e  xl f o r  a  g iven pumping r a t e  R y  threshol  d  

popu la t ion  i n v e r s i o n  An deac t i va t i on  ra tes  rL t h  ' a T ~ ~ ,  and T and spectro-  
UO ' 

scopic constants. We can then ask f o r  t h e  minimum pumping r a t e  t h a t  would 

be requ i  red f o r  t h e  1  aser t o  t u r n  on a t  any xl . This can be ca l  c u l  a ted  * t 
by r e q u i r i n g  t h a t  nl ( t he  l a s i n g  mode photon d e n s i t y  a t  xl) be non-negative. 

I f  we denote the  minimum o r  threshol  d  pumping r a t e  tClat s a t i s f i e s  t h i s  

c o n d i t i o n  by Rth, we have from Eq. 15b 

where xth i s  equal t o  xl f o r  R = Rth. Note t h a t  dn(xth) = anth and 

the re fo re  xth s a t i s f i e s  Eq. 9 w i t h  R = Rthy i.e., 

Eqs. 17 and 1 8  a re  simultaneous equat ions f o r  Rth and xth. To 

f a c i l  i t a t e  t h e i r  s o l u t i o n ,  we make the  f o l  low ing s u b s t i t u t i o n s  : 



and 

A f t e r  some algebra, the  transformed equations become 

and 

where 

From Eq. 1 7 ' ,  we have 

where we no te  t h a t  s ince  0 < q < 1, t h e  s i g n  o f  4 must be the  s i g n  - t h  - 
o f  ( I  - s + w) .  

S u b s t i t u t i n g  Eq. 20 i n t o  18 ' ,  we have 

For  1  - s + w > 0, Eq. 21 has two s o l u t i o n s  g i ven  by 

@ = O  



and 

I t  can be verif ied that  in th i s  case the minimum pumping ra te  corresponds 

t o  the  l a t t e r .  For 1 - s + w < 0, however, only the $I = 0 solution i s  

possible. Thus, depending on the sign of 

we have two types of lasers whose threshold behavior is summarized in 

the following tab1 e. 

I t  can be seen from the expression fo r  q t h  t ha t  a type I1 l a s e r  reaches 

the threshold condition a t  x th /vrU = m when pumped by the minimum pumping 
rate R t h .  Thus, fo r  a type I 1  l a se r ,  the optimum thresh01 d behavior i s  

realized when v = 0. In other words, a type I1 l a s e r  sho.uld not be flowed. 

For type I l asers ,  



For t h i s  type of l a s e r  s < 1 + w; i n  f a c t ,  i t  i s  frequently true t h a t  

s <<: 1. I t  i s  useful ,  therefore ,  t o  examine the  behavfor of Eq. 23a 

f o r  small s .  Making a Taylor expansion about s = 0 y ie ld s :  

I f  we def ine  

we have, f o r  small s ,  

I t  can be ver i f i ed  t h a t ,  f o r  s < 0.1, E q .  25a is good t o  about 2%. 

From Eq. 25a, we f i nd  t ha t  

1, f o r  w < 0.1.  
I 
I 

The function e (0,w) and the two asymptotic expressions f o r  small and 
U 

1 arge w a re  p lo t ted  i n  Fig. 4. From Eq. 23a, the e n t i r e  function 

eU(s ,w) i s  given by : 



g u 
( ~ o t e  t h a t  0 < w < - .) This f u n c t i o n  i s  t a b u l a t e d  i n  T a b l e  I a n d  p l o t t e d  

g~ 

i n  Fig. 5;  x /vr i s  t a b u l a t e d  i n  T a b l e .  I1 a n d  p l o t t e d  i n  Fig.  6. 
t h  U 



LASER OUTPUT AND EFFICIENCY 

From the  photon density of the lasing mode, as given by E q .  15, we 

can calculate  the lasing intensi ty  inside the cavity a t  each s ta t ion  x 
(see Appendix 1 ) : 

where 
I = las ing in tens i ty  

h = Planck's constant 

c = speed of 1  ight  

v = las ing frequency. 

Let us now assume tha t  the l a s e r  has one-sided output opt ics .  In 

other  words, the z > L mirror i s  100% ref lect ing ( s ~  % - 0) and loss-less 

(eL 4 .. 0). The output intensi ty  from the z < 0 mirror i s  then given by 

(see Appendix 1) 1 - (ao - E ~ )  
1 - e  ( s ~  + E ~ )  e2 

I ' , ~ ~ ( X )  = 2 
60 + €0 2 sikh ( ) 

and the to ta l  power output of the l a s e r  by 

where 



and b is the width of the  pumping (and the lasing) region i n  the y-direction 

(see Fig.  2 ) .  Substituting for  IoUt(x), we have 

where 

and 

The power suppl ied t o  the upper 1 asing level i s  given by 

pu = (Energy per upper level  article) 
3 

x (Upper 1 eve1 part ic les  generated per second per cm ) 

x (Pumping volume) 

In terms of PU .and P o u t ,  we can define the lasing efficiency n as L ' 

We then find tha t  the 1 asing efficiency can be written as the product 

of three parts 



where TI i s  the quantum e f f i c i e n c y  g iven by Q .  

rl i s  the " o p t i c a l  e f f i c i e n c y "  and i s  g iven by 
0 

and nS i s  the "system e f f i c i e n c y "  g iven by 

I t  i s  i n t e r e s t i n g  t o  s tudy  the  system e f f i c i e n c y  i n  t h e  1 i m i  t o f  

Rt h  - -t 0. Let R 

then f rom Eq. 9 we have 



I t  can be shown t h a t  t he  s o l u t i o n  t h a t  corresponds t o  the beginning 

o f  t h e  l a s i n g  reg ion  i s  g iven by  

Rt h In o t h e r  words as - -+ 0 t h e  l a s e r  " s t a r t s "  a t  xl -+ 0. Therefore, i n  
R 

t h e  l i m i t  of R > Rth, we have 

where 

X 
t h a t  xl -+ 0 as R + and hence 1 im { i } = 9) 

R- 

Several i n t e r e s t i n g  cases descr ibed by Eq. 39 are wor th  examining. 

a) 5 << 1, ( x ~ , ~  = x3) .  This  corresponds t o  a f l o w i n g  l a s e r  system 

i n  which the  pumping terminates j u s t  a f t e r  t h e  l a s e r  t u rns  on. 

See Fig.  7a. Then 



b )  5 >> 1, ( x * , ~  = x3). This  corresponds t o  a pumping reg ion  extend- 

i n g  f a r  downstream o f  2 .  See Fig. 7b. Note t h a t  such a pumping * 
scheme would o n l y  make sense i f  na, > 0. I n  t h i s  case 

It should be noted, however, t h a t  i n  t h i s  case we should prob- 

a b l y  n o t  be f l o w i n g  a t  a l l  s i nce  the same 1 i m i t i n g  e f f i c i e n c y  

would be e x t r a c t a b l e  f rom a s t a t i o n a r y  system ( t o  the  e x t e n t  

t h a t  t he  values o f  the o t h e r  parameters cou ld  be mainta ined 

as v + 0 ) .  

c )  E =  ( $ +  1)  ( x * , ~  = x3).  This corresponds t o  t h e  case 
x 

where nm < 0 and the  end of  t h e  pumping r ~ g i o n  co inc ides  w i t h  

t h e  end o f  t h e  1 as ing  reg ion  ( i - e . ,  x2 = x 3 )  See Fig.  7c. 

I n  t h i s  case 

Rt h b u t  f o r  - -+ 0 R 

Therefore, f o r  t h i s  case 



and subst i tut ing i n  E q .  39a 

I t  i s  useful t o  observe that the expression in the brackets 

has an asympotic behavior for  large posit ive c given by 

Hence, for  5 ; 1 

The function f ( c )  i s  plotted in Fig. 8. 

Since gU/gL % 1 and 5 i s  often of the order o f  1 o r  greater ,  an engi- 
1 1 

neering estimate fo r  the system efficiency of T :  nSw ; could be a good 

approximation. The upper l imi t  i s  attained when the pumping region i s  

terminated soon a f t e r  the 1 aser turns on, whereas the lower 1 imi t i s  

attained when the pumping region persis ts  t o  the end of the lasing region. 

Rth << 1 and i f  <: 1 Thus, we could write f o r  the lasing eff ic iency,  i f  

(see Eq. 39b), 

Fig. 9 presents a plot of 0 versus 6 and E 
0 0 0'  

I t  should be emphasized that  the lasing efficiency nL i s  defined with 

respect to  the power suppl ied to the upper 1 asing level.  This power may 

or  may not be equal t o  the input power to  the l a s e r  Pi , ,  depending o n  whether 



there exist intermediate pumping steps, a1 ternative competing processes, 

branching'ratios, etc.  Thus i f  pumping the upper lasing level i s  an 
indirect process, the overall efficiency n ,  defined with respect to the 

total i n p u t  power to the 1 aser i s  given by 

Pout  ,-, = - 
P i n  

r, = n~ no "s "p , 

where np  i s  the pumping efficiency defined by 



CALCULATION OF PUMPING RATE 

It i s  i n t e r e s t i n g  t o  c a l c u l a t e  the  pumping r a t e  R and t h e  pumping 

e f f i c i e n c y  np f o r  some o f  t h e  common ways t h a t  a re  used i n  pumping t h e  

l a s i n g  species t o  t h e  upper 1 as ing l e v e l .  

a) Chemical Pumping (premixed reac tan ts )  , 

Reactants A and B, w i t h  concentrat ions nA and nB, a r e  assumed t o  

r e a c t  w i t h  a r e a c t i o n  constant  kr(T) depending on temperature. 

The upper 1 as ing  l e v e l  appears as one of t h e  products w i t h  a 

c e r t a i n  branching r a t i o  a The e x c i t a t i o n  energy E i s  p a r t  U' U 
o f  t h e  a v a i l a b l e  heat  o f  r e a c t i o n  -AH. That  i s ,  

The pumping r a t e  i s  then g iven by 

w h i l e  t h e  pumping e f f i c i e n c y  i s  given by 

w i t h  respect  t o  an i n p u t  power 

I n  t h i s  case, where t h e  chemicals a re  premixed, the  concentra- 

t i o n s  o f  the  reactants w i l l  a c t u a l l y  decrease as the  l a s i n g  

proceeds. Some average value f o r  nA and ng can then be used 

f o r  t he  purpose o f  ob ta in ing  est imates.  



b)  Call i s  ional Energy Transfer from i?etas tab1 e Excited (premixed) 
Species 

A species W i s  assumed to be created a t  a rate  P, in an excited 
metastable s t a t e  (see Fig. 10). The metastable excited s t a t e  can 

then t ransfer  i t s  excitation t o  the lasing species with a trans- 
f e r  reaction constant kt(T) o r  i t  can be deactivated a t  a ra te  r: 

due to  a l l  other possible mechanisms. The ra te  equation f o r  the 

excited metastable i s  then 

3 
where m u  i s  the excited metastable density (par t ic les  per cm ) and 

3 n i s  the ground s t a t e  density (par t ic les  per cm ) of the lasing 

species. I f  we make the t rans format ion  

as before, we have a t  steady s t a t e  

where 

For positions downstream such tha t  x/v >> r m ,  we have 



Theref ore 

where a U  i s  the branching ra t io  t o  the upper lasing level.  The 
pumping efficiency i s  then given by 

with respect to an input power given by 

where Em i s  the energy of the excited metastable. In th i s  

calculat ion,  as in the previous case, we have ignored the  
reverse reaction process. 

c) El e c t r i c  Discharge Excitation 

The pumping region i s  assumed to be f i l l e d  with a uniform dis- 
charge characterized by an e l e c t r i c  f i e ld  k?, - a current density 

j, and an electron density ne .  The upper lasing level i s  then - 
excited from the g round  s t a t e  by electron impact. For a wide 

class  of discharges i t  i s  found that  the excitation rate  can be 

wri t ten as proportional to  ne w i  t h  a constant of proportional i ty 

conventionally denoted by vX:  

For a small degree o f  ionization and an electron mean free path 

much smaller than the characteris t i c  dimens ions of the apparatus, 



one can show by similari  ty arguments tha t  v, (when normal ized 

by the ground s t a t e  density) i s  only a function of  the ra t io  
of the e l ec t r i c  f i e l d  to  the ground s t a t e  density. That i s  

The pumping efficiency fo r  th is  process i s  given by 

w i t h  respect t o  an input power given by 

= & -  j ( b L x 3 )  . P i n  - - 

These methods are often combined t o  provide composite pumping 

methods. For example, one can dissociate  SF in a discharge by electron 
6 

impact to  1 iberate F atoms which in turn react with H2 mol ecul es to  

chemically pump an HF laser .  



RELAXATION RATES 

The relaxation rates T 
-1 -1 
UO' r~~ 

and T were introduced phenomeno- L 
logical ly  into the ra te  equations fo r  the upper and lower 1 asing 1 evel s .  

These rates  can be the r e su l t  of several d i f fe rent  processes tha t  can 
remove an atom (or  molecule) of the  lasing species from the correspond- 

ing level.  To the extent t h a t  these processes ac t  independently on the 
corresponding leve l ,  we can assign a ra te  due t o  each one separately. 

The to ta l  ra te  i s  then the sum of these independent rates  ( insofar  as 
the t ransi t ion probabi l i t ies  per uni t  time add). For example 

where 

- -  I - i ne l a s t i c  col l is ion deactivation ra te  of the 

T~ 
lower lasing level , 

L.-= dissociatioti ra te  (of the molecule, in t h i s  case) 
T ~ d  in the lower lasing 1 evel , 

- -  I  - diffusion ra te  out of  the lasing volume. 
D 

= L 

In turn, each of these can be composite rates. The radiative decay 
1 
I r a t e ,  - r , will be the sum of the  rates to  a l l  the possible final s t a t e s  

L 
tha t  are radiatively connected with the  lower lasing level.  Hence 



where the ALi are the radiative Einstein coefficients to  go from the 
lower lasing level to the ith final s t a t e .  The ine las t ic  col l is ion 

1 deactivation r a t e ,  '? , can be due to  a sum of the coll ision frequencies 

L 
w i t h  each of the possible deactivators present. That i s  

where the k L i  i s  the col l is ion ra te  constant of the lasing species in 
the lower lasing level with the i th deactivator and n i  i s  the number 

1 density of the i th deactivator. The dissociation r a t e ,  a , can be 

-' L 
due to  radiat ive dissociation o r  col 1 isional dissociation. 

I The diffusion r a t e  out of the lower lasing level ,  7 , i s  usually 
L 

not important in a transverse flow geometry, b u t  with the  advent of 

waveguide lasers ,  the  possibi l i ty  might a r i se  to  consider such a loss .  
-1 The other r a t e s ,  T;: and -rUL, are defined simil arly.  

. 



CONCLUSIONS 

The r e s u l t s  o f  t h i s  ana lys i s  can be summarized as f o l l o w s :  

1 )  There e x i s t  two types o f  l ase rs :  

The performance o f  a  t ype  I 1 asing system i s  improved by f low.  

A t y p e  I 1  1 aser  works b e t t e r  as a  s t a t i o n a r y  l a s e r  and, i n  

general , s houl d n o t  be flowed. 

2) The e f f e c t s  of f l o w  on l a s i n g  a r e  conf ined t o  a  r e g i o n  sca led  

by  R, where 

1 = ( 1  + $ ) v r  

and 

Thus, f o r  an upper s t a t e  d e a c t i v a t i o n  t ime  o f  10 psec and a  
5 flow v e l o c i t y  o f  10  cm/sec, we would have a  l a s i n g  reg ion  

(gU/gL 1)  o f  t h e  o rde r  o f  

5 e c 2 x  10 x  = 2  cm. - 

3 )  The minimum pumping r a t e  f o r  1  as ing t o  occur  i s  g i v e n  by 

f o r  a  wide range o f  cond i t ions .  

4) For a  pumping r a t e  R such t h a t  R >s Rth, t h e  e f f i c i e n c y  ( w i t h  

respect  t o  t he  power supplied t o  t he  upper l a s i n g  l e v e l )  i s  

approximately g i v e n  by 



where I-, i s  t h e  quantum e f f i c i e n c y ,  and i s  t h e  o p t i c a l  Q 
e f f i c i e n c y  (of t h e  o r d e r  o f  1). 



APPENDIX 1 

Radiation tha t  resu l t s  from a t ransi t ion between an upper and a 
lower s t a t e  of an atomic or  molecular species can be amplified o r  
absorbed. In par t icular ,  i t  i s  found tha t  the intensi ty  of  a beam of 

frequency v in the z direction i s  given by 

where a(v) i s  the gain per unit length (gain coeff ic ient) .  The gain 
coefficient i s  given by 

where 

X = wavelength of the transit ion 

g(v-v ) = normalized line-shape function 
0 

= spontaneous radiation t ransi t ion rate  from the upper 
to  the lower level 

= densi t ies  of par t ic les  in the  upper and lower s t a t e s ,  
nu '  n' respectively 

guy SL 
= spectroscopic degeneracies of upper and lower leve l ,  

respectively. 



The gain coeff ic ient  can be written as the product of the optical 
cross section o*(v - v,) and the population inversion. A n ,  i . e . ,  

where 

and 

I f  the intensi ty  of the radiation i s  considered as a flux of part- 

icles of veloc'ty c ( the  speed cf 1:'ght) and energy hv (where h i s  

Planck's constant and v i s  the frequency of the radiation) then we can * 
define the photon density n v ,  a t  the frequency v ,  by 

The stimulated transit ion rate  from the upper t o  the lower 1 asing 

level can then be written as the emission ra te  minus the absorption 

rate  or, 

* 
where K i s  the stimulated transit ion ra te  given by 

* 1 I t  is instruct ive t o  compare K (v - v o , ,  as given by Eq. A1.9, 

w i t h  a classical col l is ion rate  coeff ic ient ,  given by 



Consider now an amplifying medium between 0 < z < L ( in  which a(v)  

can be considered constant) with a  pa i r  of mirrors facing each other a t  
z < 0 and a t  z > L forming an optical resonator. See Fig. A1 . l .  Let 

the mirrors have r e f l ec t iv i t i e s  ro and rL, respectively, and total  losses 
(absorption, d i f f rac t ion ,  optical imperfections , etc .  ) given by emEo and 

e-'~. I f  I i  i s  the incident intensity on the mirror a t  z < 0, then 
the  reflected intensi ty  would be given by 

while the transmitted intensi ty  would be given by 

I t  i s  assumed here tha t  the losses zre due to  mirror surface imperfections 

and edge d i f f rac t ion  losses as opposed t o  t ransi t ion losses. 

Let us now s t a r t  a t  z = 0 with an intensi ty  I+ (o )  directed t o  the 

r i g h t .  Integrating Eq. Al.l ,  we find a t  z = L the intensi ty  has increased 
(a > 0) to  

I'(L) = ed I'(o). ( ~ 1  .l l a )  

Part of the radiation i s  transmitted t o  the r ight  as output radiation, 

and part of i t  i s  reflected back 



T h i s  is fur ther  amplified on i t s  way back, and a t  z = 0, we have 

Part of th is  i s  transmitted to  the 1 e f t  as output, 

and part  of i t  i s  reflected back, 

We can consider the sequence of steps f o r  a complete round t r i p  

inside the cavity,  s ta r t ing  from z = 0, as a sequence in time. Then 

i t  is c l ea r  tha t  unless 

the l a se r  intensi ty  cannot maintain i t s e l f  a t  a constant level in time. 

I t  must necessarily increase o r  decrease corresponding to  whether the 

product of the loss and gain factors ,  on the l e f t  hand side of Eq. 
A1.12, i s  greater than o r  less than unity. Thus, Eq. A1.12 i s  a con- 

dit ion on a f o r  the steady s t a t e  operation of the l a se r .  ' As t h i s  i s  
also the  threshold value of a ,  below which lasing cannot be sustained, 

we denote the sol ution of E q .  81.12 by ath,  where 



and 

The i n t e n s i t y  i n  t h e  i n t e r i o r  o f  the  c a v i t y  w i l l  be g iven by 

where 

I+(z) = I+(o) eaz 

and 

NOW, s i n c e  

we have 

I f  we d e f i n e  t h e  t o t a l  l o s s  f a c t o r  f o r  t he  m i r r o r  a t  z < 0 by 

we have 

o r  



where 

Thus, in t h e  l i m i t  of a  loss- less  cavity,  the intensi ty  inside the cavity 

approaches a  constant: I 

1 i m  t I ( z ) l  = 21-(0). 
Yo'YL 0 

For r e f l e c t i v i t i e s  which d i f f e r  appreciably from uni ty,  a  s i tuat ion 

often encountered in h i g h  power 'lasers, ue can see from Eq. A1.14 that 

I ( z )  can deviate somewhat from being a  constant. In t ha t  case, the 
assumption tha t  the stinlul ated t ransi t ion r a t e ,  as given by Eq. A1.8 

and as used in the ra te  equations, i s  only a  function of x should be 

considered as an approximat ion. The corresponding photon dens i t y  n* 
is actual ly  meant in an av2rage sense, i .e . ,  

1 n* = - 1 
chv av 

where 

Subst i tut ing Eq. A'l.14 for  I ( z ) ,  we then obtain 

and therefore,  



The unsymmetric looking argument of the hyperbolic cosine is  an art ifact  

of the cho'ice of the origin on the side of the z < 0 mirror. 
4 

1 ( z ) I a  is plotted in Fig. A1.2 versus z, for various values of yo 

for the commonly encountered case of a one-sided o u t p u t  (uL 0). As can 

be seen from Fig. A1 .2, the approximati on I ( z )  2 constant i s  a very good 

one (note displaced origin). 

From Eq. A1,16, we have 

and from E q .  Al.lle, for a one-sided o u t p u t ,  we can express t h e  o u t p u t  

intensity from the iaser in terms of the input intensity and the mirror 

characteristics. T h a t  i s  (recall ro = d 6 0 ) ,  

The quantity in the brackets approaches unity as 60 and E, go t o  zero. 

In particular * 

1 -- 'o) 1 + - ( 6  - io) + second order. 2 0 2 sink 

Therefore, for small ti0 and co 

Iiu t -+ ( 2  (1 - %) + higher order 

~ ( x ) ,  as used in the main body of this discussion, corresponds t o  Ia,, 

evaluated a t  each station x .  



APPENDIX 2 

In t h i s  appendix, the algebra tha t  i s  omitted from the main body o f  

the discussion i s  presented. Equation numbers on the  l e f t  re fer  to  the  
numbering sequence in the main body. 

Equation 8 

From Eq. 7a, we have 

and therefore,  since nU(0) = 0,  

Therefore 

Substituting 8a into 7b yields  



Since nL(0) = 0. 

. Therefore 

combining the exponential  then y i e l  ds 

Equation 9 



w h i l e  from Eq. 8b 

S u b t r a c t i n g  (A2.4) from (A2.3) and col l e c t i n g  terms y i e l d s  

Equations 11 and 12  

Adding Eq. 10a and Eq. l ob  y i e l d s  

From d e f i n i n g  Eq. 5 f o r  rU, we have 



t he re fo re  

S u b s t i t u t i n g  Eq. 10c i n t o  A2.6 y i e l d s  

a For p lane p a r a l l e l  o p t i c s  - Anth = 0, and hence ax 

where, f rom Eq. A2.7 

Equations 1 3  and 14 

From Eq. A2.8 we have 

where 

(14) e (1 + gU/gL) VT. 

From Eq. A2.9 we have 



o r  i n t e g r a t i n g  from xl t o  x, 

Therefore, us ing  Eq. 14 f o r  R,, we have 

S u b s t i t u t i n g  i n t o  Eq. 10c then y i e l d s  

Equation 15 

From Eq. 10a, we have 

From t h e  f u n c t i o n a l  form f o r  nU(x),  as g iven by Eq. 135 and Eq. 

A2.10 f o r  n*(x), we can see t h a t  

X-X, 

* 
We can e a s i l y  c a l c u l a t e  nm f rom Eq. A2.10 by observ ing t h a t  

a - n  ( x )  + O  as x  i.e., ax u 



From Eq. 13b we have 

and there fore  

An t h  
= R ( l ) -  =U L (1 -A%), 'UO g~ 

Now, from Eq. 12 

1 - 1 1 - - - + ,  ' L 'uo 

and 

Therefore 

1 = L + Z  (:) 
=L 'uo 

1 I(%) i s  
%o g~ L 

S u b s t i t u t i n g  A2.12 i n t o  A2.11 y i e l d s  



From the las ing condition, as  given by Eq.  3 ,  we have 

C 
r*Anth = - 2 L (E  + 61,  

and f i n a l l y  

From E q .  A1.10 we have 

Now, from Eq. 13b 

and from the threshold condition a t ta ined a t  x, 

Therefore, 



Hence 

and s ince  ( f rom Eq. 8a) 

we have 

Now, f rom t h e  th resho ld  c o n d i t i o n  as g iven by Eq. A2.14 and from Eqs. 

A2.15 and A2.16, we o b t a i n  



Equation 16 

From n*(x2) = 0, or  

we have (recall  t ha t  in t h i s  case n: < 0) 

Therefore 

Equations 1 7  and 18 

Equation 17 follows from E q .  15b by making the substitutions R = Rth,  * 
X = X t h l  and requiring t h a t  n, = 0. Eq. 18 follows from E q .  9 by sub- 
s t i t u t i n g ~ n ( x ) = n n  R =  R ~ ~ , x = x  t h '  t h '  

Equations 17' and 18' 

From the coeff icient  of in E q .  17 ,  we have 

Subs t i  t u t  i n g  

(19) 



and 

(1 9 4  

we have 

Therefore, f rom Eq. 17, we obta in  

Hence 

where 

S i m i l a r l y ,  f rom ~ q .  18, we have 

from which i t  fo l lows t h a t  

(18' , W  s  - -  (1 - S + W )  qth. 
4 - % ? q t h  l - s  

Equation 21 

S u b s t i t u t i n g  Eq. 20 i n t o  18 ' ,  we have 



Eq. 21 has two solut ions  i f  1 - s + w > 0. These a r e  

and 

corresponding t o  

and 

In this case 
s 

and consequently, the  minimum pumping r a t e  corresponds t o  a2. 

Equation 23b 

From Eq. 23a 



and hence f o r  small s  

From Eq. A2.18, we have t h a t  

and 

Therefore 
2 c(w,  s )  = w - sw. an 

Subs t i tu t ing  f o r  $I 

o r  f i n a l l y ,  

Equation 25b 

From Eq. 25a ,  we have t h a t  as w -+ 0 



Since 

we have 

l i m  {w an w )  = 0 

w-to 

For large w, 

Therefore 

4 eU (0, w )  2, 2w + - .  3 

I n  f a c t ,  Eq. A2.21 i s  good for  w > 0.1 (see Fig.  4 ) .  



Equation 26 

Since 6" = set, Eq. 26 follows from 23 by dividing the  e n t r i e s  

f o r  e;l by s . 

Eauation 30 

Eq. 28 follows from Eq. A1.18 by subs t i tu t ion  of ~ ( x )  f o r  Iav. 

Eq.  29 assumes t h a t  the  mirrors extend s u f f i c i e n t l y  to  j u s t i f y  neglecting 
any var ia t ions  i-n t he  y-direction.  E q ,  30a follows by subs t i t u t i ng  27 

and 28 i n  t o  29. From Eq.  1 5a 

where 

Equation 37 

Since ~ n ( x ~ )  = A n t h y  We have 



Therefore, from Eq. 9 ,  we have 

from which Eq. 37 follows t r iv ia l ly .  

Equation 38 

As R t h / R  + 0, Eq. A2.22 becomes of the form 

qs + sa (1 - 4) - 1 = 0, 

where 
1 - s  a = l  + -  w 

The solution of Eq. A2.23a may be viewed as the intersection of 
two curves: 



and 

J'2 = saq + (1 - sa) .  

Independently of s and a ,  q = 1 i s  always a solution of Eq. 

A2.23a. In addition, a  second solution may ex i s t  for  0 < q < 1. 
-xl / v r U  

Since q  = e  Rt h , the q = 1 solution means tha t  as + 0 the l a se r  

turns on immediately ( i  .e . ,  xl + 0). For s  < 1, the 0--< q < 1 solution 

corresponds t o  the position downstream where A ~ ( x )  would again be equal 
t o  Anth i f  the lasing did not s t a r t .  Recall tha t  for  s < 1 ,  r,, < rL and 

Rt h the laser  eventually bottlenecks. T h u s ,  i n  a l l  cases xl + 0 as - 0. 

To see what happens for  large b u t  f i n i t e  pumping ra tes ,  we make an 
expansion about the R = solution, i . e . ,  

Then 

and substituting into Eq .  A2.22, we have 



Therefore, since e = s e  U L 

Equation 39 

Rt h From Eq. 38, for  -+ 0, 

therefore, 

Simi 1 arly 

R t h  -and therefore, for  f in i t e  eL and - 0, 

R- ;;TT 
l im 1"" t") = 0. 

Therefore, from Eq. 36 



I f  we now define 

then Eq. A2.25 can be written 

where, since xl -+ 0 as R - -, we have used 

Equation 40 

For 5 << 1, we have 

Therefore, for  Eq.  39a for x = x3, 
2 33 



Equation 41 

For 5 >> 1 ,  we. have 

and therefore, from Eq. 39a for  x ~ , ~  = x3 

Using the defining Eq. 39b, we then have 

To show the second part of Eq. 41, we observe t h a t  

and therefore 

Consequently 



Eauation 42 

This equation is e s s e n t i a l l j  derived i n  the  main body. 

Equation 43 

From the  power ser ies  expansion f o r  the natural logarithm, we have 

Therefore 

and hence 

(43 

Equation 42 '  follows by using the f i r s t  term. 






























