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List of Symbols 

Only symbols introduced for describing partial equilibrium flows are included in the following 
list. For symbols not listed here, see Surf report (Rein, 1989). 

coefficients of matrix in eq. (4.5) 
partially frozen sound speed 
contribution of equilibrium reaction k t o  the rate o f  change of dependent 
species j 
contribution of  nonequilibrium reaction k to  the rate of change of dependent 
species j 
reaction vector of formation reaction for dependent species Y ,  
defined by eq. (3.12) 
defined by eq. (3.2) 
number of linearly independent equilibrium reactions 
multiplier for rate equation for dependent species Yj ( 1  = 1, ..., (s - c )  - n,) 

set containing the indices of  all equilibrium reactions 
set containing the indices of n, linearly independent equilibrium reactions 
set containing the indices of all nonequilibrium reactions 
set containing the indices of all nonequilibrium reactions which are 
linearly independent of equilibrium reactions 
reaction vector, universal gas constant 
reduced reaction vector (cf. chapter 4.3.) 
defined by eq. (3.14) 
switch temperature at which thermodynamic model is switched 
from polynomial f i t  to  statistical mechanics formulation 
:= u',k - u31;, components of reaction vector 
proportionality factor (cf. eq. (3.17)) 
characteristic relaxation length of reaction k, defined by eq. (4.4) 
characteristic relaxation time of reaction k, defined by eq. (4.3) 

e ,  eq equilibrium 
f frozen, forward 
neq nonequilibrium 
Peg partial equilibrium 
P f partially frozen/equilibrium 
I orthogonal 

equilibrium 
nonequilibrium 
cf. eq. (2.34) 
orthogonal 



1. Introduction 

is a program for computing steady and inviscid, upersonic ~eacting flows in planar 
and axisymmetric nozzles. The program which was described in a previous report (Rein, 1989, 
named Surf report hereafter), has options for determining nonequilibrium, equilibrium and frozen 
flows, respectively. Further, the possibility of switching the computation from a fully equilibrium 
to  a fully nonequilibrium flow calculation was introduced. This latter option aimes at decreasing 
the CPU-time by reducing the stiffness in herent to  the partial differential equation system used 
for modeling the flow. Exploring this concept more deeply, one eventually ends up with the idea 
of introducing partial equilibrium into Surf. The realization of this idea, both theoretically and 
practically, is subject of the present report. 

The stiffness of the governing equations which often complicates the computation of non- 
equilibrium reacting flows, is due to  characteristic time constants of very different order of  
magnitudes being present at  the same time. Reactions, for example, which are close t o  equi- 
librium, have very short time constants, while time constants of reactions which are far from 
equilibrium, and characteristic times o f  the flow itself, can be large. A remedy for circumventing, 
or at least for reducing, the stiffness is t o  consider those reactions which are close t o  equilibrium, 
as actually being in equilibrium. Contributions of these fast reactions to  the rate equations can 
then be replaced by some equilibrium constraints. In this manner the very short characteristic 
times of close to  equilibrium reactions are eliminated. 

Ramshaw (1980) proposed two different equation systems for partial chemical equilibrium in 
fluid dynamics. In the first equation system the contributions of equilibrium reactions to  the rate 
equations are eliminated by suitably combining these equations. In the derivation of this system, 
however, statements are made which are not clear. Further, Ramshaw does not distinguish 
between linearly dependent and independent reactions. This point is of great importance in the 
present theory of partial equilibrium. In deriving the second equation system which is used in 
the KlVA-code of Amsden e t  al. (1985), additional equations expressing the conservation of 
mass and energy are needed. The equilibrium conditons are applied in differential form. As 
Ramshaw (1980) quoted, the resulting equations will only "preserve partial equilibrium if it is 
initially present but will not establish it if it is not". Further, Ramshaw (1980) stares that the 
concept of partial equilibrium flow is especially useful when the reactions can be classified in 
equilibrium and nonequilibrium reactions independently of space and time. 

In the present report a more straightforward approach, reminding of the one leading t o  the 
first equation system of Ramshaw (1980), is used. A general formulation is introduced which is 
accessible to  a mathematical treatment of arbitrary reactive systems. The formulation is in no 
way limited t o  cases where all close t o  equilibrium reactions are a p n o n  known. It is thus easily 
applicable t o  nozzle flows where the flow conditions range from equilibrium to  frozen, enclosing 
a nonequilibrium regime. 

In the following chapters firstly the theory of partial chemical equilibrium in arbitrary reactive 
systems is formulated. This part provides also a formulation for the partially frozen sound 
speed The formulation includes the nonequilibrium and equilibrium sound speeds as limiting 
cases. In the Surf report the expression for the equilibrium sound speed is in error and needs 
to  be replaced by the present formulation. Subsequently the implementation of the concept of 



partial equilibrium in Surf is described and illustrated by sample computations. The theoretical 
part concerning partial equilibrium is self-contained, whereas the more practical part on the 
implementation is not. In this latter part reference will often be made to the Surf report cited 
above. It should be mentioned that the new version of Surf including the partial equilibrium 
option, works in quite the same manner as the old version. In particular, the input and output 
formats have not been changed. Actually, on input the new version no longer needs the 'third 
body vector' (cf. Surf report) to be provided. If, however, this vector is nevertheless provided, 
this will not lead to an error. The new version is thus compatible with old input data files. 
On output. some additional information concerning partial chemical equilibrium is written to 
output file 'outpt2' which contains the detailed results of the computation (cf. Surf report). 
This happens again in such a way that old evaluation programs should not need to be changed. 
They can thus be used for both versions of Surf. 

The program Surf computes reacting nozzle flows by a method of lines. The initial conditions 
are usually approximated using a one-dimensional flow solution. The dependence of the solution 
obtained by Surf, on the resolution in cross direction and on the initial canditions was not 
considered in the Surf report. It is now discussed in chapters 6.4. and 6.5. . 



In the following a general formulation for partial chemical equilibrium is introduced. This 
is done with an application in the field of gas dynamics in mind. For that reason, then and 
now reference will be made t o  expressions like 'gas', 'flow', etc. The mathematical formulation, 
however, can be applied t o  any reactive system, as long as the reactants are premixed. 

2.1. Linearly independent and dependent species 

A mixture of  s different species is considered. The species can be divided into c linearly 
independent species Y,,  i = 1, ..., c, and (s - c)  linearly dependent species Y,,  j = c + 1, ..., s (cf. 
Lordi et al., 1966). The dependent species are defined by: 

Here, aji denotes the number of atoms or molecules of the independent species Y ,  per atom 
or molecule o f  the dependent species Y,, respectively. In the present formulation the uji may 
be real numbers. Equations (2.1) represent the so-called formation reactions of the dependent 
species. The concentrations of the independent species satisfy conservation equations. If the 
concentrations 71, I = 1, ..., s, are expressed in units of moles per mass the conservation equations 
are given by: 

where rrl, = bli for I = 1, ..., c, i = 1, ..., c, and bli is Kronecker's 6. The T,", i = I,  ..., c, denote the 
concentrations of  the independent species in the special case, where only independent species 
are present. 

At a thermodynamic state specified by two quantities, e.g. temperature and pressure, 
the equilibrium species concentrations are determined by the conservation equations for the 
independent species, and by the law of mass action formulated for the formation reactions of 
the dependent species: 

T and p denote the temperature and the pressure, respectively. The so-called equili brium constant 
K,  expressed in terms of the species concentrations in moles per mass, is defined by 

where po is the reservoir pressure and R the universal gas constant. The chemical potentials per 
mole, $;, at  this pressure can be calculated using a thermodynamic model as the one provided 
in the Surf report. 



Chemical reactions are always composed of a forward and backward reaction taking place 
simultaneously. A reaction among the species x, I = 1, ..., S,  is usually specified in the following 
manner: 

where ul and u;, 1 = 1, ..., s, are the stoichiometric coefficients of the reactants and products. Here, 
a reaction vector R = (P1)l=l,...,d is introduced for representing this reaction. The components 
of the vector R are defined by Pt = U; - vl. Third bodies are thus not taken into account in 
the present reaction vector formulation. They can, however, be easily incorporated by defining 
extended reaction vectors R' = (P;)I=~,...,~. where 6; = U; for 1 = 1, ..., s and P; = -vi for 
I = s + 1, ..., 2s. For the present purpose of describing partial chemical equilibrium the extended 
form of the reaction vector is not needed. Using the reaction vector notation the condition for 
a reaction to  be in equilibrium can be expressed in the following manner: 

where j'il is the chemical potential per mole of species K, I = 1, ..., s. 
DifFerent reactions are said to  be linearly dependent or independent, if their reaction vectors 

are linearly dependent or independent, respectively. The formation reactions provide a basis for 
all reactions that can occur. This yields (s - c) linearly independent reaction vectors which span 
a subspace of the s-dimensional space of reaction vectors. This subspace contains all reactions 
which do not violate the c constraints which are present due to the conservation equations (2.2) 
for independent species. It will be called reaction subspace. 

2.3. Equilibrium and finite rate reactions 

If a reaction is in equilibrium the forward and backward reactions balance each other. Thus 
an equilibrium reaction does not change the concentrations of the species involved in the reaction. 
Further, the law of mass action corresponding to the reaction considered, is satisfied. In the 
present formulation (cf. eq. (2.4)) the so-called equilibrium constant of the law of mass action 
is a function of the temperature, the pressure and the species concentrations. In steady reacting 
flows a change of the thermodynamic state may be caused both, by the heat of reaction of a 
nonequilibrium reaction and by a changing geometry as, for example, in nozzle flows. If the 
thermodynamic state is changed due to geometrical effects, a reaction which is in equilibrium at 
first, will get out of equilibrium. It takes a finite time to reestablish equilibrium. Within this time 
a 'flow particle' usually moves to  a new location and the thermodynamic state is changed again, 
etc. For that reason reactions which are truly in equilibrium will normally not be found in nozzle 
flows (exceptions may be cases where the thermodynamic state is constant within wide parts of 
the flow field). Thus, a flow in which ail reactions are in equilibrium, represents an ideal case. 



This ideal case, however, is the limiting case which is present if the characteristic relaxation times 
~k of all reactions k, k = 1, ..., s, are much smaller than a typical time constant rf of the flow. 
The characteristic relaxation time of a reaction k can, e.g., be defined as ~k = mas ( r j k )  where 
the maximum is formed with respect to  different j ,  j = c + 1, ..., s. The characteristic relaxation 
times T j h  associated with the rate of change of each of the dependent species concentrations, 
due to reaction k, were introduced in the Surf report (eq. (2.18)). Henceforth, a reaction with 
n < ~f will be called equilibrium reaction. All other reactions are finite rate reactions which will 
also be calied nonequilibrium reactions. 

Within the reaction subspace the equilibrium reactions span a subspace which will be called 
equilibrium reaction subspace. The reaction subspace can be represented by the direct sum of 
this equilibrium reaction subspace and another subspace. Here, the orthogonal complement of 
the equilibrium reaction 
thus be decomposed in 
reaction su bspace, R,., 

subspace is chosen as the other subspace. Every reaction vector R can 
two vectors, R = Re, + R,.,. Re, being an element of the equilibrium 
of its orthogonal complement. The contribution to  the reaction vector 

of R,., is responsible for the nonequilibrium properties of a reaction. Therefore the orthogonal 
complement of the equilibrium reaction subspace will be called nonequilibrium reaction subspace 
hereafter. 

In the case of nonequilibrium flows all reactions considered need to be specified. The 
rate of change of the species concentrations due to nonequilibrium reactions is described by 
rate equations (cf. Surf report, eq. (2.15)). In order to  approach an equilibrium state by 
nonequilibrium reactions it is necessary that at least ( s  - c )  linearly independent nonequilibrium 
reactions are present. Otherwise, an equilibrium state as described above can never be obtained. 
Strictly speaking, a system of reactions can only yield the equilibrium state if it contains a basis 
of exactly ( S  - E )  vectors from which all formation reactions can be formed. This condition which 
is necessary to  include the limiting case of equilibrium, is usually never stated explicitly. 

Changes in the species concentrations are considered to occur only due to  chemical re- 
actions. Hence, the concentrations are always positive and there exists a maximum for every 
concentration. The conservation equations for the independent species limit the concentrations 
to  an even smaller domain, 

The species concentrations can be written as a vector (n)l=l,,.,,, which will be called con- 
centration vector hereafter. A reaction changes the concentration vector in the direction of the 
corresponding reaction vector (except for the sign). Changes in the concentration vector can 
thus be decomposed into changes in the equilibrium and nonequilibrium reaction subspaces. This 
decomposition will become important in the formulation of the partially frozen sound speed (cf. 
chapter 2.7.). 

2.5. Example 

To elucidate the concept of linearly dependent or independent species and reactions, respec- 
tively, an example with s = 5 species of which c = 2 species are independent, is provided. The 



gas considered is composed of the independent species Yl = N2,  & = 0 2  and of the dependent 
species Y3 = N ,  YI = 0, Ys = NO. The formation reactions are given by: 

1) N 7-- 112 N2 
--.1 

2) 0 - f /2  0 2  
4 

3) N O  - 112 N2 + 112 0 2  , 
---1 

i.e. all non-zero aji are real. The reaction vectors Fi,i  = 1, ..., 3, of these formation reactions are 
thus: 

The following finite rate reactions are taken into account (not all of these reactions appear in 
the following example, but they will be used later): 

1) N2 + M - 2 N + M  
4 

2) 0 2  + M - 2 0 + M  
A 

3) N O  -I- Rf - N + O + N  
4 

4 0 2  + N - O + N O  
--L 

5) & + O  t-- N  + ilTO 4 

6) N2 + 0 2  - 2 N 0  
---1 

M denotes an arbitrary third body. The corresponding reaction vectors Rk, k = 1, ..., 6, are then 
given by: 

(2.8) 

It can be seen that R3 and R4 are linearly independent, but R2 is not: R2 = R3 + R4 Further, 
R2 = -2 F2. Thus, let reaction (3) and (4) be in equilibrium, then the equilibrium conditions 

hold. Adding these equations yields: 

This is the condition for the concentrations of 0 2  and 0 to be in mutual equilibrium. Thus, 
even though finite rate reaction (2) may be in nonequilibrium it does not play a role and can 
be neglected. It should be mentioned that the total amount of O and O2 may change, i.e. 
70 + 2  -70, f const (e.g. reactions (5) and (6) can still change the total amount of mon-atomic 
and di-atomic oxygen). 



The rate of change of the concentration of a species is due to contributions of the individual 
reactions. This is expressed by the rate equations for the dependent species: 

where (dYj/dt), denotes the contribution of reaction k. The rate of change of the independent 
species concentrations is easily obtained from the conservation equations (2.2). 

Ramshaw (1980), and independently Hornung (1988), proposed to distinguish between con- 
tributions of equilibrium and nonequilibrium reactions: 

where k E N,., denotes nonequilibrium and k E N. equilibrium reactions. Considering eq. (2.12) 
the question arises what the contribution (dyj/dt)k,k,Ne of an equilibrium reaction to the rate 
of change of species concentration 7j looks like. 

Ramshaw (1980) derived explicit expressions for (dyj/dt)klk,Ne by taking the derivative of 
the equilibrium conditions in the form C;=, PIk = 0 (this is practically the law of mass action). 
He further needs the continuity equations, written for the partial mass densities pl of the species, 
and the energy equation. This leads to  his second equation system. Since Ramshaw chose the 
temperature T and the densities pr, I = 1, ..., s, as independent variables (instead of p ,  p and rj, 
j = c + 1, ..., s) this approach is not straightforwardly applicable in the present case. 

A different approach is to  use the equilibrium condition for each linearly independent equi- 
librium reaction to  replace a rate equation. At the same time, in the rate equations the con- 
tributions of equilibrium reactions to  the rate of change are eliminated by suitably adding these 
rate equations* 

To elucidate this procedure an example basing on the one of chapter 2.5. is given first. For 
simplicity, the rate equations (2.12) are expressed using total difierentials: 

where dNjk and dEjk represent the contributions of nonequilibrium and equili briu m reactions k. 
respectively, to  the change of species concentration 7,. The dNjk are well known expressions 
(cf. Surf report, eq. (2.12)) whereas the dEjk are unknown. 

Consider again the example of 2.5. where reactions (3) and (4) are in equilibrium. The rate 
equations for the dependent species are then given by: 



Considering reactions (3) and (4) it can be seen that 

because the forward and backward reactions balance each other. Thus, adding the first and 
last equation of (2.14) yields an equation which no longer contains contributions of equilibrium 
reactions: 

The law of  mass action formulated for reaction (3) and (4) provides two more equations: 

Equation (2.16) and equations (2.17) form a determinate system for the concentrations y ~ ,  70 

and TNO. 
It can easily be shown that eq. (2.16) is the only independent combination of (2.14) which 

does not contain 'equilibrium contributions'. First, equations (2.14) are multiplied by factors 
n l , n 2  and n 3 ,  respectively. The resulting equations are added. Considering eq. (2.15) this 
yields: 

nl d r ~  + n 2  * dye + n 3  . d7No = 

(2.18) nl - d N ~ , i  + n 2  . d&,2 + (n l  + n 2  - n3) d.GNt3 + (-nl + n z  + n3) . d E ~ , 4 +  

nl . dN~ ,5  + n 2  a d h l s  + n g  ~ N N ~ , ~  3. n 3  ~ N N ~ , ~  . 

The conditons for the equilibrium contributions to  disappear are thus: 

The only non-trivial solution o f  this system is nl = n 3 ,  n 2  = 0. Hence, reaction (2) is not 
contained in the new rate equation which is obtained by a linear combination of the original 
ones and no longer contains contributions of equilibrium reactions. Reaction (2) is redundant. 
because the concentrations of O and Q2 which are the ones changed by reaction (Z), are already 
in mutual equilibrium due to  equilibrium reactions (3) and (4) (cf. example in 2.5.). 

In the following a general formulation for partial chemical equilibrium will be given. Consider 
n,, ne 5 s - c,  linearly independent reactions t o  be in equilibrium. This yields n. equilibrium 
constraints. (s - c) - ne additional equations which do not contain equilibrium contributions to  
the rate of change, can be obtained by linear combinations of the rate equations. In the rate 
equations it is sufficient to  consider only those nonequilibrium reactions which are linearly inde- - 
pendent of the equilibrium reactions. The set of these equations will be denoted N,,, hereafter. 
Changes in the species concentrations due to  nonequilibrium reactions which depend linearly on 
equilibrium ones, will be instantaneously corrected by the equilibrium reactions. Similarly, only 
those equilibrium reactions whose basis vectors span the space of equilibrium reactions need 



t o  be taken into account in the rate equations. This leads t o  the following form of the linear 
combination of the rate equations: 

where denotes a set of n. linearly independent equilibrium reactions. The multipliers n j , ~  are 
subject to  n, constraints: 

The constraints admit (s - c) - n. linearly independent solutions for the multipliers nj,l. These 
solutions have been labeled by the index l ,  I = 1, ..., s - c - n.. In deriving the constraints (2.21) 
use was made of the relation 

which expresses the balance of foward and backward reactions in the equilibrium case. 
This formulation is based on the same idea as Ramshaw's first equation system, namely on 

the elimination of the equilibrium contributions in the rate equations by suitable combinations 
of these equations. Ramshaw does not, however, distinguish between linearly dependent and 
independent reactions. He even states that every equilibrium reaction provides an independent 
equation (this is true under certain circumstances only!). His arguments following this statement 
are therefore not clear. - In comparison with Ramshaw's second equation system the present for- 
mulation has the advantage that the equilibrium constraints need not be differentiated. Further, 
no additional equations such as the energy equation, are needed. 

In this paragraph, the partially frozen sound speed which could be equally called partial 
equilibrium sound speed, will be introduced. The definition of the partially frozen sound speed 
includes the frozen and equilibrium sound speeds as limiting cases. In general, the sound speed 
a can be defined by 

where the indices denote partial derivatives. The enthalpy is a function of  the pressure, the 
density and the species concentrations. Its total difFerential is given by: 

Depending on how the partial derivatives are formed in eq. (2.23), the equilibrium, frozen or 
partially frozen sound speed will be obtained. In equilibrium the concentrations depend on two 



thermodynamic variables, e.g., on the pressure and the density. The concentrations are thus 
no longer independent variables. In nonequilibrium, however, the ( s  - c )  concentrations of the 
dependent species are independent variables. Hence, the equilibrium sound speed is obtained, if 
the partial derivatives of the enthalpy are taken with the concentrations being in equilibrium, and 
the pressure or density, respectively, being constant. Taking the partial derivatives with respect 
t o  pressure or density, with all other variables, including the concentrations, being constant. 
yields the frozen sound speed. 

If partial equilibrium is considered, the number of independent variables depends on the 
degree of equilibrium. In the limiting case of nonequilibrium there exist ( S  - c )  independent 
concentration variables in addition to  pressure and density. Each linearly independent equilibrium 
reaction reduces the number of independent variables by one. The equilibrium reactions define 
the equilibrium and nonequili brium reaction su bspace. In the equilibrium reaction su bspace 
changes of the concentration vector need to satisfy the equilibrium constraints, whereas changes 
of the concentrations are independent in the nonequilibrium reaction subspace. The dimension 
of the nonequilibrium reaction subspace is equal to  the number of independent concentration 
variables. Usually, an orthogonal basis of this subspace does not coincide with basis vectors of the 
normal coordinate system of the reaction space (i.e. the coordinate system which is consistent 
with the definition of the reaction vectors in chapter 2.2.). In the case of partial equilibrium the 
remaining independent concentration variables are then no longer individual concentrations of 
the dependent species. 

For forming the partial derivatives of the enthalpy in eq. (2.23), it is important to look 
at the changes in the concentration vector. In the case of partial equilibrium these changes 
can be devided into changes in the equilibrium and nonequilibrium reaction subspaces. The 
derivative of the enthalpy with respect to  pressure or density needs to be taken with changes 
of the concentration vector in the equilibrium su bspace satisfying the corresponding equilibrium 
constraints. In the nonequilibrium reaction subspace changes in the concentration vector are 
zero. Changes of the concentration vector defined in this manner, are denoted by (dy l ) yk  in 
the following. The independent changes (i.e. those which are not functions of the pressure and 
density) are (dyl),,d. The total difFerential of the enthalpy can then be written: 

In the equilibrium subspace concentration changes depend on pressure and density. This was 
used in writing the second line of eq. (2.25). Considering eq. (2.25), the partially frozen sound 
speed apf  is defined as 

The s components of the derivatives of the concentration vector with respect to pressure 
and density, (y l lp) , , , -  and (71/,),,,-, are implicitly given by an equation system. - In the 



equilibrium su bspace changes of the concentration vector satisfy the equilibrium constraints. 
These constraints provide n, equations for the derivatives of the concentrations. Additional 
s - c - n. equations are obtained from the constraint that changes in the concentrations are 
zero in the nonequilibrium su bspace. The conservation equations (2.2) for independent species 
concentrations provide the remaining c equations. The (?i,,),,,- and ( ~ ~ l , ) p l , - l  I = 1, ..., s, can 
thus be determined. 

For actually calculating the partially frozen sound speed some further information is needed. 
As in the Surf report the gas is assumed t o  be thermally perfect. Then the thermal and caloric 
state equation of the gas which is composed of s difFerent species, read as follows: 

where I' is the sum of the species concentrations. The molar enthalpies kl which are functions 
only of the temperature, can be determined using a thermodynamic model as the one provided 
in the Surf report. 

Considering the thermal and caloric state equations (2.27), the total difierential of the 
enthalpy can be written as 

where the specific heat cp (per mass) at constant pressure is defined by: 

The equilibrium constraints corresponding to the n, Iinearty independent equilibrium reac- 
tions are the corresponding laws of mass action. The species concentrations satisfy these laws 
of mass action. To obtain n, equations for the derivatives of the species concentrations which 
express the equilibrium constraints, the laws of mass action are used in differential form: 

where A& := x p l i k l  , k E 
1=1 

The differentials of the independent species concentrations are replaced by the expression 

(2.31) dy, =: - 1 a j i  dyj z = 1, ...7 c , 



which follows from the conservation equations (2.2) for independent species. This, and rear- 
ranging the terms in eq. (2.30), eventually yields: 

The remaining s - c - n. equations for determining the derivatives of the dependent species 
concentrations with respect to  presssure and density are obtained from the constraint that 
changes of the concentrations are zero in the nonequilibrium reaction subspace. This condition 
can be expressed by equating the scalar product of the basis vectors (R;;q)(l,ll...l,~, IC = 1, ..., s - 
c - n, of the nonequilibrium subspace and the difference vector of the concentrations to  zero. 
Considering again relation (2.31) this yields the following additional s - c - n, equations: 

The derivatives of the species concentrations with respect to  pressure and density under 
the conditions of  partial equilibrium are now easily obtained. Here, this is demonstrated for the 
derivatives with respect to  the pressure. 

The '*' denotes the special conditions concerning the concentrations in the partial equilibrium 
case. There is exactly one equation for each of the dependent species concentrations. This 
system of  linear equations for the derivatives of species concentrations in partial equilibrium can 
thus be analytically solved for the derivatives (a?l/ap),,T;. The derivatives with respect to  the 
density are obtained analogous. 

In the case of full equilibrium no basis for the equilibrium reactions will be determined. 
Then, the concentrations of the dependent species satisfy the laws of mass action formulated for 
the corresponding formation reactions. To obtain the derivatives of the species concentration 
this law of  mass action is used in differential form: 

C 

where Lhij := - ij . 



No additional equations are needed, since these are already ( 8  - c) independent equations. The 
derivatives of the species concentrations are obtained in the same manner as in the case discussed 
above. 



In the Surf report equations describing nonequilibrium reacting flows were provided. In 

comparison with these equations the rate equations (eqs. (2.15) of the Surf report) will be 
changed in a formulation considering partial equilibrium. Further, the energy equation is affected 
by a partial equilibrium formulation since it is formulated for the enthalpy. In the program 
Surf, however, pressure, density and species concentration were chosen as dependent variables. 
Derivatives of the enthalpy are thus replaced, considering the total differential of the enthalpy. 
Thereby it should be distinguished between changes of the concentration vector in the equilibrium 
and nonequilibrium reaction subspace. This was expressed in eq. (2.25) which is repeated here: 

The equations will be transformed to  characteristic form. In this, the term C;=, h,, (dyl),- can 
be eliminated by using the definition of the partially frozen sound speed. This results in C+ 
and C- characteristics which are defined by the partially frozen sound speed as to be expected 
in partial equilibrium flows. It turns out to  be difficult, however, to find an expression for the 
remaining last term in eq. (3.1). For that reason, in the following characteristic formulation the 
frozen sound speed is used (as in the Surf report). 

The (s - c )  rate equations for the dependent species are now replaced by (s - c )  - n, linear 
combinations of these equations which do not contain contributions of equilibrium reactions, and 
by ne equilibrium constraints for n. linearly independent equilibrium reactions. First, however, a 
parameter Ir,k is introduced so that: 

(3.2) 
is in the equilibrium reaction subspace 

I = ( )  if reaction i 
is not in the equilibrium reaction subspace ) a  

In this, k 3 means that reaction k is not one of the basis reactions for the equilibrium 
reactions. The combinations of the rate equations can now be written as follows: 

where the contribution P j k  of the nonequilibrium reaction K to the rate of change of the dependent 
species Y,  is given by (cf. Surf report, eq. (2.12)): 

k f , k  is the rate constant of the forward reaction of reaction k. In the numerical computation it 
is approximated by a modified Arrhenius equation. The laws of mass action formulated for the 
n, linearly independent equilibrium reactions, provide the equilibrium constraints: 



Here, the equilibrium constant KT& is defined by: 

The program Surf computes stationary flows in planar and axisymmetric nozzles. The nozzle 
geometry is specified in terms of two functions y+(x) and 9-(x), 3, > y-. The throat is located 
at  x = 0 and the ftow is in the positive x-direction. In the planar case, y+ and y- denote the 
location of  the upper and lower wall, respectively, whereas in the axisymmetric case y, is the 
nozzle radius and y- 2 0. Usually y- = 0, but also centerbodies can be taken into account by 
choosing y- > 0. In the Surf report new coordinates (&q) were introduced to  transform the 
nozzle geometry into a rectangular: E = I and v =  (9 -y-)/(g, -9-). Due to  this transformation 
additional terms appear in the transformed equations: 

.- @rl a .- - b := - " and d : = a u + b v  . 
dz ' dy 

where u, and v are the components of the velocity in x- and y-direction, respectively. The 
resulting differential equations are solved by the method of  lines. In using this method the 
derivatives in q-direction are replaced by finite differences. The finite difference scheme chosen 
in the Surf report, is based on a characteristic formulation of the equations. One-sided difference 
formulas are used to  approximate derivatives with respect to  q. In this, the finite differences are 
taken in the direction of the characteristic direction of the compatibility equation considered. In 
this manner a kind of "up-information" diflerencing is obtained. This formulation has several 
advantages (6. Moretti, 1979), one of them being a simple physical formulation of  the boundary 
conditions. The derivative of some arbitrary function f is thus replaced by: 

where the index i denotes a characteristic direction and oz is an index representing the discretiza- 
tion of the q-coordinate. 

The rate equations, and thus linear combinations thereof, are already in characteristic form. 
In transforming the continuity, momentum and energy equations into characteristic form some 
coupling terms containing derivatives of the species concentrations were treated as "forcing 
terms" (cf. Surf report). In the case of purely nonequilibrium flows, however, the complete 
characteristic equations (i.e. without forcing terms) can be easily obtained. A sample computa- 
tion using the two digereat formulations yielded practically the same results in both cases. 

In the present formulation of partial equilibrium flows only the rate equations and the equi- 
librium constraints are difFerent from the equations listed in the Surf report. For completeness, 
however, all equations, together with the corresponding characteristic equations, are listed in 
the following: 

d~ -- d 
+ + =  i=1 along (2) l U  - , 



du v dv 1 dp  = - + -7 

d + -- along (2) = - , 
dt uLY ~ z 1 . 4  I 

In this H denotes 

At this place it should be mentioned that in the compatibility equation (5.17) of the Surf 
report the first term within the first square bracket on the right hand side should be multiplied 
by the density. The correct form of this term is: -I, p v / y .  

The (s - c) - n, difFerent linear combinaticg7s of the rate equations in characteristic form are 
given by: 

d 
along (2) = - . 

1 ZL 

To facilitate the implementation of the equations for partial equilibrium flows in the program 
Surf, the ne equilibrium constraints (3.5) are used in difierential form. In this manner the number 
of ordinary diflerential equations to  be solved remains constant throughout the flow field. As 
quoted in the introduction, the drawback of this formulation is that the equilibrium conditions 
in differential form cannot establish partial equilibrium. In the course of stationary nozzle flow 
calculations considered here, however, the computation proceeds in downstream direction* in 
this direction the flow will depart more and more from equilibrium. At the upstream boundary the 
program Surf permits boundary conditions which are in accordance to  equilibrium or frozen flows, 
respectively. The former case should always be considered when equilibrium or partial equilibrium 
flows are calculated. Then, equilibrium is initially present and needs not be esta btished. 

In some computations it turned out that a stabilized form of the digerentiated law of mass 
yields better results. To stabilize the differential form of the law of mass action a source term 
which is proportional to  the departure Sk from equilibrium Sk, is introduced. Here. St is defined 

by 



In the new version of Surf which includes the partial equilibrium option, the equilibrium conditions 
corresponding to  the n. linearly independent equilibrium reactions k, k E x, are used in the 
following form: 

= - A .  Sk , k E , along 

where := Cplk61 

l=l  

A suitable value for the proportionality factor A is to  be determined from sample calculations. 
A comparison of the results for purely equilibrium flows obtained from both, calculations using 
the stabilized differential form (3.15) and the original law of mass action (3.5) has shown, that 
X = 0 is usually sufficient to  obtain good agreement. In some cases, however, X = 10 yields 
better agreement. For that reason, in the new version of the program Surf X is always taken 
.A = 10. 



4.1. Eauifibrium reactions 

Reactions having characteristic relaxation times which are much smaller than a typical fluid 
mechanical time were called equilibrium reactions (cf. chapter 2.3.). In the following, an 
expression for the characteristic relaxation time of a reaction will be derived. Only a brief 
explanation is given, because a more detailed derivation is contained in the Surf report. 

Consider r different reactions to  be present among the species. The contribution of reaction 
k to  the rate of change of concentration 7j can be written as 

where KT,,, is the equilibrium constant of the law of mass action corresponding to reaction k. 
The rjk are local characteristic relaxation times associated with the rate of change of species 
q. Considering the full expression for the rate of change of rj due to  reaction k, the following 
equation was derived for ~ , k  in the Surf report: 

As suggested in chapter 2.3. the characteristic relaxation time ~ k  of reaction k is defined as the 
maximum of the absolute r , k :  

(4.3) 7-k = max ( l T j k l )  , k = 1, ..., r 
j=c+l ,  ..., 9 

Within the program Surf characteristic relaxation lengths are considered. The characteristic 
relaxation length X k  of reaction k is defined as the product of the corresponding relaxation time 
and the local flow velocity w :  

As long as this characteristic length is smaller than a critical relaxation length A,,, which is 
chosen by the user of the program Surf, reaction k is considered to  be in equilibrium. 

In the formulation of partial chemical equilibrium, .a basis for all equilibrium reactions needs 
to  be determined. This is accomplished as follows. The first equilibrium reaction is always 

considered to  be independent. Now it is searched for the next equilibrium reaction whose 

reaction vector is linearly independent of the reaction vector of the first equilibrium reaction. 
Then it is searched for the next equilibrium reaction which is linearly independent of the first 
two ones, etc.. The linear independence of different reaction vectors is examined by checking 
whether the Gram determinant formed by the corresponding reaction vectors, is positive definite 
(t linearly dependent) or not (G linearly independent). 



The equation system (2.21) for the multipliers nj,l, j = c + 1, ..., s, which can be expressed 
as pik njsr = 0, is normally underdetermined, since usually n. < s -c. In this case a fundamental 
solution for the multipliers is determined in the following manner. Firstly, the first n, columns 
of the n. x (s - C) matrix ( p j k ) ' ,  j = c + 1, ..., s, k E K is transformed into an upper triangular 
form by Gaussian elimination, using column pivoting and interchanging columns. This yields an 
expression like: 

A fundamental solution Nl = (aj, j = I $ . . .  ,a-c)r, I = 1, ..., (s - c) - n. of eq. (4.5) is now obtained 
by considering the elements nne+l,l , ..., n,-crl of the solution vector Nl to  be given by 

This yields the following recursive formulas for the other elements niI l , i  5 n., of the vector ni 

In case n. = 0, all reactions are in nonequilibrium and the ordinary set (2.11) of rate 
equations is obtained. If n, = s - c, all species concentrations are in equilibrium and only 
equilibrium constraints are needed for calculating the species concentrations. 

Within the program Surf reduced reaction vectors are used. The definition of these vectors 
difiers slightly from the one of the reaction vectors (cf. chapter 2.2.). Following the definiton of 
chapter 2.2. reaction vectors are elements of an s-dimensional vector space. Here, however, only 
reactions satisfying the constraints given by the conservation equations (2.2) for the independent 
species are admitted. The corresponding reaction vectors are therefore elements of an (s - 
c)-dimensional subspace of the s-dimensional vector space. This (s - c)-dimensional subspace 
is spanned by the reaction vectors F j ,  j = c + 1, ..., s, of the formation reactions which thus form 
a basis for this subspace. With regard to later applications this basis is orthonormatized by the 
Gram-Schmidt procedure. The resulting basis is denoted by F ' ,  j = 1, ..., s - c. All reaction 
vectors Rk, k: = 1, ..., r ,  considered can be constructed from this orthonormal basis: 



This representation suggests the definition of reduced reaction vectors & which are elements 
of an (s - c)-dimensional space, by &I, := (fk,r)l=l,...,a-c. These reduced reaction vectors are 
used throughout the program Surf. They are easily obtained. Equation (4.8) can be written 
as F kk = Rk where F is a matrix which contains the basis vectors F:, j = 1, ..., s - c, of the 
orthonormal basis as columns. This equation is multiplied from the left by the transpose of F .  
resulting in Ft F kk = I kk = F' Rk where I is the identity matrix. The components fk,l, 
I = 1, ..., s - c. of the reduced reaction vector .6k are thus determined. 

The reduced reaction vectors are used, for example, in determining a basis of the nonequi- 
librium reaction subspace. This is accomplished as follows. The basis of the equilibrium reaction 
subspace is already known (cf. chaptert 4.1.). The constraint that the basis vectors of the 
nonequilibrium reaction subspace are perpendicular to  the ones of the equilibrium subspace can 
be expressed by 

where W is a matrix containing the reduced basis vectors of the equilibrium subspace as columns. 
and is a reduced basis vector of the nonequilibrium subspace. Determining a fundamental 
solution of eq. (4.9) yields a basis o f  the nonequilibrium subspace. The fundamental solution 
is obtained in the same manner as described in chapter 4.2. . This reduced basis is then 
transformed to  a basis of usual reaction vectors and orthonormalized. 



The implementation of  the option for computing partial equilibrium flows into Surf is ac- 
complished in such a way that the user accustomed to  the first version of Surf, will not notice 
it. Some insignificant changes of the input and output data are discussed in the next section. 
New Fortran subroutines needed for controlling the computation of partial equilibrium flows, and 
modifications of aiready existing routines are briefly explained in chapter 5.2. which is a supple- 
ment to  chapter 6.4. of  the Surf report. Some of the more important Fortran variables used in 
these subroutines are listed in appendix B which completes appendix C of the Surf report. 

5.1. Input and output data 

The number of input data needed for running Surf has been reduced. The new version of 
Surf no longer needs reactions which differ from each other only in having different third bodies, 
being specified. This information was transfered to  the program Surf via a so-called third body 
vector in the last data set of the input data file. Thus, this data set (labeled by 32 and 33 in 
chapter 6.2. of the Surf report) no longer needs to  be provided. If an input data file still contains 
the third body vector, a comment will be written to  output file 'outptl '  (cf. below) reminding 
the user that the third body vector is no longer needed. This does not affect the computation. 

The meaning of the critical relaxation length has slightly changed. As in the old version 
of Surf, it is provided as 'dcrit' in data set number 17 of the input data file. If dcritc 0 or dcrit 
= 0, a two-dimensional nonequilibrium or equilibrium flow, respectively, will be computed. These 
options remained unchanged. If, however, dcrit> 0, a partial equilibrium flow is now calculated. 
All reactions with characteristic lengths A* < A,,, will be considered to  be in equilibrium. 
Reactions with Ah > A=,,, are treated as finite rate reactions. There is thus no longer a switch 
from a fully equilibrium t o  a fully nonequilibrium flow calculation, as soon as any of the reactions 
gets out of equilibrium. A good choice of the critical relaxation length is crucial for obtaining a 
reasonable reduction of the CPU time. I f  the critical length is chosen too large, the results of 
the partial equifibrium flow computation will deviate notica bly from a nonequilibrium flow and 
approach an equilibrium flow. 

The results of a computation by Surf are stored in two output files, called 'outpt l '  and 
'outptZ1 (cf. Surf report). Output file 'outptl '  containes formatted data in a self explanatory 
manner. Some new comments concerning the computation of partial equilibrium flows can be 
present in this output file, The second output file, 'outpt2', which is a direct access file and 
contains unformatted data, provides detailed results of the computation. In the old version of 
Surf those records containing the results of a 2-D nonequilibrium calculation are not filled up 
to  the end. The new version of Surf writes the number n, of linearly independent equilibrium 
reactions and the partially frozen sound speed into this free space and thus provides an idea of 
the degree of equilibrium being present in the partial equilibrium flow. The structure of output 
file 'outpt2' was explained in the Surf report (cf. chapter 6.3.). Here, only that part which has 
been changed, is listed again. It should be mentioned that in 'outpt2' real numbers are stored 
as single precision numbers and that the record length is RECL = 6 + s - c .  The fourth section 
of 'outpt2' is now given by: 



record number: 

................................................................................................... 
IV. if 2-0 nonequilibrium flow has been calculated: 

i z -c t+(m- l).n,,, + n  U(m,n) . v(m,n) 1 P(m,n)~ P(m.n)t (7~,(m,n))~=c+l ,...,a 1 n.c,,.) . a ~ f  (rntn) 

a = 1, nmaX where the index (m,n) denotes that these are the values 
rn = 1, ..., m,,, of u, v, p, p T j ,  j = c +  1 ,.... s and n. at 

2, = 2, f (m - 1) (xd - x~)/(mrnaz-)1 
Y(m,n) = ~ - ( ~ r n )  + (n -  1). (y+(zm) -y-(xm))/(nmax - 1) 
the index m runs from m = 1, .... m,,, and, for each m, 

index n runs from n = 1, ..., n,,, 

iz-D remains t o  be specified: 

a) neither 1-D frozen nor 1-D equilibrium flow has been calculated: iz-D = 100 
b) 1-D frozen or 1-D equilibrium flow has been calculated: i z - ~  = 100 + mmas 

c) 1-D frozen and 1-D equilibrium flow have been calculated: i 2 - ~  = 100 + 2 * m,,, 

5.2. New and changed subroutines 

subroutine coefmt: 

This subroutine determines the formation reaction vectors and stores them as columns of 
matrix fm. Then, an orthonormal basis for the space spanned by the formation reactions, is 
determined by the Gram-Schmidt procedure, and stored as columns in frcon(1 , k ) .  Finally, the 
coefficients for constructing the reaction vectors from the orthonormal basis are determined and 
stored as columns of matrix coevc (idscm, irrn). 

subroutine nrm(mat.mat~.nrou.nrom,ncol.ncolm): 

This subroutine computes the Gram matrix m a t g  := m a t t  + rmat where m a t t  is the 
transpose of rmat. rmat and m a t g  need to  be dimensioned as m a t ( n r o m , n c o h )  and matg-  

(ncoLm,nrowm) in the calling program. 

subroutine iesw(xs1 ,xs i l :  

This subroutine was changed! It determines whether reactions are considered to  be in 
equilibrium ( i e  = I), partial equilibrium ( i e  = -1) or in nonequilibrium ( i e  = -1) at the 
position x s i  = x, = r, -+ (m - l) (xd - tu)/(m,,, - 1). If partial or nonequilibrium flows are 
considered, the parameter i e  is set t o  i e  = -1 and the equations for a two-dimensional partial 
or nonequilibrium flow are solved. 

I f  partial equilibrium is considered, first all equilibrium reactions and a basis for these reac- 
tions are determined. If real partial equilibrium is present (i.e. O < n, < s - c )  a basis for the 
nonequilibrium reaction subspace is calculated. Then, the multipliers for the rate equations are 
determined. 

Every time when one of the basis vectors of the equilibrium reactions is changed ie is set to  
i e  = -10 (this afFects the parameter in fo(1)  to  be set to  inf o ( 1 )  = O in subroutine in tgr tn) .  



subroutines called: geomtr, lindep, gram, fndsys, dgeco2 

subroutine linde~(vcmat.nrow.mrom.ncol.ncolm. indvc.ibsvc.i~sn,m.vm~:~i~vt,wv): 

vcmat is a matrix. Its column vectors are divided into different groups. Vectors belonging to  
one group are marked by assigning the same value to all components of the index vector indvc 
which have the same index as the columns containing the vectors considered. 

The subroutine determines the first idarasn linearly independent column vectors of vcmat 
which are also elements of the group with indvc(i) = 1. idmnsn which is the maximum number 
of independent vectors, is also determined by this routine. The column indices of the linearly 
independent (i-e. basis) vectors are stored in the first idmnsn components of the vector ibsvc. 

vcmat, indvc, ibsvc, and the work arrays wm, vmg, ipvt and wv need to be dimensioned 
as vcmaP; (nrovm,ncolm), indvc (ncolm), ibsvc(nrowm), m(nrowm,nrowm), mg(nrowm,nrom), 

ipvt (nrowm) and wv (nrowm) in the calling program. 
subroutines called: gram, dgeco2 

subroutine fndsvs(a.nr.nm.mc.mcm,f.iw.rw~: 

Subroutine fndsys determines a fundamental system for the solution of an equation system 
A s = 0 where A is a nr x mc matrix and s is a vector with mc components. Mere, mc > nr, i.e. 
the system A t = 0 is underdetermined. The vectors spanning the solution space are stored in 
the first mc - nr columns of matrix f. 

a, f ,  and the work arrays iw and rw need to be dimensioned as a(nm,mcm), f(mcm,nrm), 
iw(mcm,mcm) and rw(mcm,nm) in the calling program. 

subroutine nfsolv(xsi,u.uprime.rrJar.ipar): 

Same as old subroutine nfsolv. Now this subroutine is called to provide a system of 
first order differential equations discribing a partial equilibrium flow (formerly: a nonequilibrium 
flow). The subroutine need not be changed since the modifications were performed in subroutine 
matrix which is called by the present routine, 

subroutines called: nmatrix, dgbfa2, dgbsl2 

subroutine matrix(xsi .abd.a.b.xsl.lda) : 

Similar to old subroutine matrix. Now this subroutine evaluates the coefficient matrix 
a and the r.h.s. vector b of the system of ordinary diEerential equations in the case of partial 
equilibrium where the equation system is of the form 'a uprime = b' (uprime is not used in this 
routine). The limiting case of total nonequilibrium can also be represented by this routine. For 
using the LlNPACK routines dgbfa2 and dgbsl2 the coefficients of matrix a are stored in a special 
order in matrix abd. The parameter Ida is the leading dimension of array abd. 

subroutines called: apf2, geomtr, thdyn 

subroutine read : 

Same as in old version of Surf (cf. Surf report), except for some minor changes in input 
and output due t o  the reaction vector no longer being necessary. 

subroutine initial: 

Same as in old version of Surf, except for a call to  subroutine coefmt being added for 
determining the reduced reaction vectors. 



subroutine intnrtn: 

Same as in old version of Surf, except for minor changes concerning the output of the 
number of linearly independent reactions and the partially frozen sound speed to  output file 
'outpt2' (cf. chapter 5.1.). 

This function subroutine calculates the square of the partially frozen sound speed. The 
parameter n denotes the line number (cf. method of lines), i.e. the position in 7-direction 
where the sound speed is to be determined. In the limiting case of equilibrium flows this 
routine computes the equilibrium sound speed and therefore replaces the function subroutine 
aeZ(idummy), except for subroutines e q u i l  and matr ix (cf. Surf report). 

subroutines called: dgefa2, dgesl2 

This function subroutine routine computes the equilibrium sound speed. it is called by 
subroutine equil and matrix. I f  subroutine equil is correctly changed, function ae2(idummy) 
could be replaced by function apf2(n) in subroutine e q u i l  as well. 

subroutines called: dgefa2, dgesl2 

LINPACK routines (cf. Donearra et al. 11979): 

In addition to  the LINPACK routines already listed in the Surf report, the double precision 
routines dgefa, dgesl and dgeco are used by the new version of Surf. Because some of these 
routines are also used by SLATEC(DEPAC) routines, e.g. by ddebdf and ddeabm (cf. Surf 
report), these routines were doublicated to  the routines dgefa2, dgesl2 and dgeco2 which are 
identical to  the routines dgefa, dgesl 2nd dgeco. 

&efa2(a,lda.n,i~vt.info): 

This routine computes the LU factorization of a matrix A. For details see the LINPACK 
User's Guide (Dongarra et al. (1979). 

daesl2(lua.lda.n.i~vt,b,iob) : 

Using the LU factorization of a matrix (stored in lua) this routine solves linear systems of 
the form A X = B.  For details see the LINPACK User's Guide (Dongarra et al. (1979). 

d~ecoZ(a.lda,n.ipvt,rcond,u): - 

Routine dgeco2 is only used to  determine the condition of a matrix A in the course of 
determining linearly independent vectors (cf. chapter 4.1.). For details see the LINPACK User's 
Guide (Dongarra et al. (1979). 



In this chapter the effect of introducing partial equilibrium is demonstrated. Further, some 
aspects of the program Surf which were not considered in the Surf report, are discussed. In 
most of the following sample computations the same case as in chapter 7.1. of the Surf report 
is considered, namely the expansion of high temperature air through the axisymmetric T5/100 
nozzle of the GALCIT shock tunnel. The computational domain extends again form I = 0.OI.m 
z = 1.00.m. As in the Surf report the reservoir temperature and pressure are To = 9000X and 
= 200 . 105Pa and the composition of air is represented by eight species: e - ,  N 2 ,  02, AT, N ,  
NO,  NO+.The first four species are independent species. Among these species 22 reactions 

are considered: 

1-6) N 2  + Mi v - 2N + M, 

According to chapter 2.2. the corresponding reaction vectors span a four-dimensional re- 
action subspace in the eight-dimensional space of reaction vectors. The data describing the 
thermodynamic properties of the species and the chemical reactions are the same as in the 
example of the Surf report. The only difierence is that the temperature Tf,, at which the ther- 
modynamic model is switched from a polynomial fit to a statistical mechanics formulation was 
shifted to  Tfit  = 3000K for all species. This yields a smoother transition between the two mod- 
els than the switch temperature Tfit = 6000K which was previously used. - At the upstream 
boundary the initial conditions are approximated by the solution of a one-dimensional equilibrium 
flow. 

The parameters which are typically changed in the following computations, are the critical 
relaxation length and the number of lines n,,, used in the method of lines. The value 
of .AcTit determines whether an equilibrium (&,it = Om), nonequilibrium (AeTit < om) or partial 
equilibrium (Amit > om) flow is considered. By n,,, the resolution in radial direction is fixed. In 
the following a computation with n,.. = 20 and A,,, = O.lm will be regarded as the standard 
case. In contrast to  the example provided in the Surf report the number of lines m,,, in axial 
direction at which the solution is printed, is increased from m,,, = 150 to  m,,, = 200. This 
does not affect the solution but yields a better resolution in plotting the I-dependence of any 
variable. The input data file for the program Surf, corresponding to the standard case, is listed 
in Fig. 1. Note that the third body vector is no longer provided. Further, the last comment line 
( I, : ithb(k) , k=l. . , ir : ') could also be omitted. 



For running the program Surf the geometry of the nozzle needs t o  be specified in su brou- 
tine geomtry (cf. Surf report). Thereby it is important that the first derivative of the radius 
(axisymmetric case) is smooth. This will be demonstrated in chapter 6.6. . The derivatives of 
the radius of the T5/100 nozzle were not plotted in the Surf report. Therefore, in addition to  
the nozzle contour o f  the T5/100 nozzle, the first and second derivative of its radius (as used 
by Surf) are provided in Fig. 2. The discontinuities in the second derivative are not crucial. 

6.1. Expansion of hi h temperature air: partial equilibrium flow 

The expansion of high temperature air through the T5/100 nozzle is computed, assuming 
all reactions to  be in equilibrium whose characteristic relaxation times T J ~ ,  k = 1, ..., 22, are shorter 
than a characteristic fluid dynamic time if := X,,,,/w. Here, w is the local flow velocity and 
A,,, is chosen A,,, = O.lm (standard case). Otherwise, reactions are considerd to  be finite rate 
reactions. At  the upstream boundary of the computational domain the initial conditions are 
approximated by a one-dimensional equilibrium flow. Not all reactions satisfy the equilibrium 
criterion 7 k  < 7-f right at the upstream boundary. This is shown by the following list in which an 
equilibrium reaction k  is marked by k ( e )  and a nonequilibrium reaction k  by k ( n ) :  

However, at the upstream boundary and in a region downstream of it, the dimension ne of the 
equilibrium reaction subspace equals the dimension of the reaction subspace: n, = s - c. At the 
upstream boundary the finite rate equations are thus redundant and the approximation of the 
initial conditions by an equilibrium flow is self consistent. 

In Fig. 3a the regions of the flow field with different degrees of equilibrium are shown by 
plotting the contour lines of the dimension n, of the equilibrium subspace. It can be seen that 
the reactions tend to  stay slightly longer in equilibrium on the centerline than at the walls. In a 
region of constant n. the basis vectors of the equilibrium subspace (as used by Surf) can change 
due to  a basis reaction becoming a finite rate reaction. This is demonstrated for the case n, = 3 
by listing the reaction numbers of the basis vectors on the centerline: 

4.48 10-2m < z < 4.98 10-2m: No.: 2, 8, 13 

4.98 10-2773 < rc < 6.97 10-2m: No.: 8, 13, 20 

6.97 - 10-2m < z L_< 8.96 - 10-2m: NO.: 8, 19, 20. 

It should be mentioned that the basis of the equilibrium reaction subspace needs not nec- 
essarily be changed every time a basis reaction becomes a finite rate reaction. In other words, 
as long as a finite rate reaction is an element of the equilibrium reaction subspace (and thus 
redundant) its reaction vector can also be used as a basis vector of the equilibrium subspace. 

The partially frozen sound speed which enters the computation due to  the characteristic 
formulation of the conservation equations, is corn pared with the equilibrium and frozen sound 
speed in Fig. 3b. The three sound speeds are plotted along the axis of the nozzle. From the 
beginning to  z z;. 0.045m, an equilibrium flow is assumed (i.e. n. = 4) and the partially frozen 
sound speed equals the equilibrium one. In the region with n. = 3 the only finite rate reaction 



which is not in the equilibrium reaction subspace, is reaction k = 22. Because the concentrations 
of the ionized species involved in this reaction are already very small, this nonequilibrium reaction 
afiects the partially frozen sound speed little and the difFerence between a,f and a. is not resolved 
in Fig. 3b. A first noticable increase of the partially frozen sound speed can be observed when 
the dimension of the equilibrium reaction subspace decreases to n. = 2. The partially frozen 
sound speed is now really greater than the equilibrium and less than the frozen sound speed. 
The next decrease in the dimension of the equilibrium subspace is again hardly noticable in the 
partially frozen sound speed. As soon as the transition to  a fully nonequilibrium flow computation 
takes place the partially frozen sound speed jumps to  the value of the frozen sound speed. - 
At z x 0.54 m another kink is present in both, the equilibrium and frozen/partially frozen sound 
speed. It is caused by the vibrational degrees of freedom being frozen at T, = 3000 for T 5 T,. 
The freezing of the vibrational degrees of freedom takes place at just this position. It can be 
seen that the effect of this freezing is of the same order of magnitude as the decrease of the 
dimension of the equilibrium reaction subspace by one. 

Fig. 3c shows a contour plot of the temperature. All contour lines are smooth. The 
transition from equilibrium, via partial equilibrium, to nonequili briurn is not reflected in the 
contour lines. This is also true for the pressure, density and velocity contours. 

The species concentrations are those variables which are primarily affected by a change of 
the dimension of the equilibrium reaction subspace. For that reason it might be expected that the 
contour lines of the species concentrations are not smooth in regions where partial equilibrium 
is assumed. This is not the case, however. As an example the contour lines of YN, 70. and 
?NO are plotted in Fig. 3d-f. Only on one contour line of small wiggles can be seen at 
3 x 0.19 m. These are due to the change from partial equilibrium to fully nonequilibrium at about 
this position (cf. Fig. 3a). Here, on neighboring lines (of the method of lines) the dimension of 
the equilibrium reaction su bspace is difFerent. This directly affects the concentrations because 
the rates of some reactions are finite on one line and infinit on the neighboring one. The effect, 
however, is small and local. 

A more quantitative comparison of the partial equilibrium flow computation with a nonequi- 
librium, equilibrium and frozen flow computation is given in Fig. 4. The initial conditions are 
the same in all cases, i.e. even the frozen flow computation starts from initial conditions which 
are obtained by assuming an equilibrium flow at the inflow boundary. In Fig. 4a-j the state 
variables are plotted versus the non-dimensionalized radius (7) at the nozzle exit. The agree- 
ment of the partial equilibrium and nonequilibrium solution is excellent, In most cases the two 
solutions can not be distinguished in Fig. 4. At the nozzle exit, on the axis, the deviation 
of the partial equilibrium solution from the nonequilibrium solution is given by: temperature: 
-0.18%, pressure: -0.13%, density: -O.lO%, velocity: 0.02%, y ~ :  -2.09%, 70: -0.07%, rNo: 
0.74%, : -0.42%. The only larger deviation occurs in the concentration of IV which is 
already very small (less than O.Olmole/kg). The equilibrium and frozen flow solutions which vary 
significantly from the nonequilibrium one, provide some idea of how important it is to  perform a 
nonequilibrium/partial equilibrium flow computation. Finally it is noted that density and velocity 
of the equilibrium solution are very similar to  the ones of the nonequili briumlpartial equilibrium 
solution, This is a typical result in nonequilibrium nozzle flows. 

The computation of this partial equilibrium flow took 200 seconds on a VAX 9000. 



The critical relaxation length ACTit determines whether a reaction is considered to  be in 
equilibrium or not. With increasing Amit a reaction can deviate more and more from equilibrium 
without being treated as a finite rate reaction. In the limit of Amit 4 m a purely equilibrium 
flow, and in the case Amit - 0 a purely nonequilibrium flow is obtained. A partial equilibrium 
flow computation is usually performed in order to save CPU-time by reducing the stiffness of the 
partial differential equations. In this it will be desired to obtain practically the nonequilibrium 
flow solution. In order to  provide some idea of the influence of the critical relaxation length 
on the partial equilibrium flow solution, four computations with difierent are compared: a) 

A,;, = 0.01m: this is approximately the radius of the nozzle throat, b) A,,, = 0.10m: this is of 
the order of magnitude of the radius at the nozzle exit, c) A,,,, = 1.OOm: this is the distance 
from the throat to  the nozzle exit, d) = 10.00m: this is large compared with the size of the 
nozzle. 

The regions of the flow field where partial equilibrium is assumed, are shown in Fig. 5. First, 
in Fig. 5a, the dimension ne of the equilibrium reaction subspace is plotted along the centerline 
of the nozzle for all cases considered. The extent of regions with constant n, increases about 
linearly with the logarithm of the critical relaxation length. This is not a general result since 
the characteristic relaxation times T* of the reactions depend on the thermodynamic state in a 
complex manner. For = Irn and Xcrit = lorn  the contour lines of ne are shown in Fig. 5b 
and 5c in the same way as this was done for the case Amit = O.lm in Fig. 3a. The curved lines 
demonstrate well that the partial equilibrium formutation is locally applied. 

In Fig. 6 the temperature on the nozzle axis, obtained from partial equilibrium computations 
with different A m i t ,  is compared with the temperature of the nonequili brium, equilibrium and 
frozen flow solution. If Acri, = O.lm, the difFerence between the partial and nonequilibrium 
solution can almost not be resolved (cf. Fig. 6a). The difference between these two solutions 
is even smaller in the case of A,,,t = 0.01m which is therefore not considered in Fig. 6. Fig. 
6a shows that up to s - O.lm the partial/nonequilibrium temperature is practically equal to  the 
temperature of an equilibrium flow. In this flow regime the partial equilibrium flow computation 
(with Amit = 0.I.m) solves essentially the equilibrium flow equations (n. = 4 for x 5 0.05m and 
n. = 3 for x 0.1m). As soon as the nonequilibrium flow deviates from the equilibrium one 
the partial equilibrium computation is performed with a higher degree of nonequilibrium, though 
a fully nonequilibrium flow is not assumed before z z 0.2m. Fig. Sb displays the temperature 
curve of a calculation using A,,,, = 1.0m. It can be seen that the temperature T,., of the 
partial equilibrium solution coincides with the equilibrium temperature T., longer than does the 
nonequilibrium temperature T,.,. Only behind I 2 O.?m where n. drops to  n. = 2, T,., starts 
to approach rapidly T,.,. Despite the distinct difference between T,., and T,., before z - O.2m. 
this difference becomes eventually very small. In the case of A,,,, = 10.m (cf. Fig. 6c) T,,, stays 
very long at the equilibrium temperature before decreasing towards T,.,. This time, however, 
the nonequilibrium limit is no longer reached and T,,, approaches a value somewhere in between 
the equilibrium and nonequilibrium solution. This shows that X,,it = 10.0m is clearly too large. 

As another example one of the species concentrations (To) is also plotted along the nozzle 
axis in Fig. 7. This time partial equilibrium computations with A,,it = 0.01,0.10 and 1.0Orn 



are compared with the nonequilibrium, equilibrium and frozen flow solution. The main features 
are similar t o  those observed in the temperature (cf. Fig. 6). In the case o f  the small critical 
relaxation length (A f f i i  = 0.01rn) the partial equilibrium and nonequilibrium solution agree well 
everywhere (cf. Fig. 7a). Except for a small region about s sz 0.08m where partial equilibrium is 
assumed, the difference is not resolved in Fig. 7a. Fig. 7b shows the concentration 70 obtained 
by a computation with Amit = 0-lm. As long as the dimension of the equilibrium reaction 
su bspace is greater than 2 the partial equilibrium solution coincides with the equilibrium 
solution. Right after the switch from n ,  = 3 to  n. = 2 a strong increase in 70 takes place which 
results in a ( ~ O ) p e q  which is slightly greater than (yo), , ,  The next decrease in the dimension, 
from n .  = 2 to  ne = 1, is reflected in a small increase in the difference between (yo),., and 
( ~ ~ ) n c ~ .  At  the transition to  the fully nonequilibrium equations (x 2 0.2m), (70)peq decreases 
towards (yO)neq and in the course of the nonequilibrium computation the difierence between 
the partial and nonequilibrium y o  remains very small. Finally, in Fig 7c the (70)peq curve of a 
calculation with Amit = 1.0m is depicted. At  the points where n. is changed all corresponding 
increases and decreases in (yo),,, are qualitatively equal t o  the case of Amit = O.lm (cf. Fig. 
7b). This time, however, the partial equilibrium solution stays much longer in equilibrium. 
Due t o  the strong decrease of behind x - O.lm which is not present in (70)neq. (yO)peq 
deviates very much from the nonequilibrium solution. This is even more pronounced in the case 
of Amit = 10.0rn which is not shown in Fig. 7. 

Finally, in Fig. 8 the state variables of all partial equilibrium calculations are compared with 
the fully nonequilibrium solution at the nozzle exit. It can be seen that A,,,, = 0.01,0.10 and 
1.00m yields good results, i.e. the corresponding solutions are close to  the fully nonequilibrium 
solution. In the case of Amit = 1.0m some state varibles show already a distinct deviation (e.g. 
u, y~~ , y ~ ~ ) .  If Xait = IO.Om, however, the deviations from nonequilibrium become very strong. 
This solution is thus no longer acceptable. 

The CPU-times of the partial equilibrium computations are not always shorter than the 
one of the fully nonequilibrium calculation. In the case of  the very small critical relaxation 
length (A,,, = 0.01m) the CPU-time is even larger (by about 14%) than in the case of a fully 
nonequilibrium computation. The reason is not clear, but the following remarks may provide 
some ideas of what happens. Every time when the dimension of the equiiibrium reactior! subspace 
changes, the integration in (-direction of the ordinary system of equations is started anew, i.e. 
the code which performes this integration initializes itself. When the equations are stiff this needs 
some time. If A,,*, = 0.01m, the equations are still stifF when they are switched to  nonequilbrium. 
Then, restarting the code could lead to  a higher consumption of time than is saved by a partial 
equilibrium computation. The code needs not necessarily to  be restarted. However, if it is not 
restarted at those positions where the dimension of the equilibrium subspace changes, the code 
has some trouble with the change in the equations. This again leads to  larger CPU-times. 

In ail other cases of partial equilibrium the CPU-times are smaller than in fully nonequi- 
librium. The savings are about the same in all of these cases (28% (A,,,, = 0.10rn), 32% 

(A f f i t  = 1.00m) and 31% (A,*, = 10.00m)). The savings would be greater if only the time 
which is neecded for computing that part of the fiow field where partial equilibrium is actually 
assumed, is compared. The results of computations with ACT,, = 0.OI.m and 0.1Om are both 
very close to  the nonequilibrium solution. Some more pronounced deviations are present in the 



case of X,it = 1.00rn, the results can still be regarded as close to  nonequilibrium though. I f  
Xmt = 10.00m this is no longer the case. Among the partial equilibrium computations which 
provide a saving in CPU-time, the one with A,,*, = O.lm yields the best agreement with the 
nonequilibrium solution. It is therefore suggested that Amit = O.10m is a good choice of the 
critical relaxation length. For that reason this case was chosen to  be the 'standard case' in the 
beginning of chapter 6. 

6.3. Expansion of an ideal aas 

The program Surf can also be used for calculating flows of an ideal gas. In the case of 
ideal gases the thermal state equation is of the form p = p R* . T ,  where R* is a constant. The 
caloric state equation shows a linear relationship between the enthalpy and the temperature: 
h = c, . T + hO where the specific heat at constant pressure, c,, is constant. The formation 
enthalpy hO enters the equation due to  the special choice of some reference state. 

As an example the expansion of an ideal diatomic gas is calculated. Essentially the same case 
as in the preceding chapters is considered, namely the flow through the T5/100 nozzle at  the 
reservoir temperature and pressure To = 9000K and po = 200. 105Pa. However, in order to  model 
an ideal diatomic gas, the number of species and their thermodynamic properties are changed. 
Further, a frozen flow computation is performed. In contrast to  the frozen flow computation 
presented in chapter 6.1., the initial conditions are already approximated by a frozen flow. The 
input data used in this ideal gas computation are listed in Fig. 9. It would be sufficient t o  
consider just one species. The program Surf, however, requires at least one dependent and one 
independent species to  be specified. Here, diatomic and monatomic oxygen are chosen. The 
formation enthalpy of O2 is taken as zero as usual, but the formation enthalpy of 0 is artificially 
increased by a factor of ten. At  the present reservoir conditions this results in a very small 
equilibrium (= reservoir) concentration of monatomic oxygen (-yo = 2 .  10-llmole/kg). A frozen 
flow computation is performed (i.e. no reactions are considered, on input ir = 0) which starts 
from initial conditions that are obtained by assuming already a frozen flow between the reservoir 
and the upstream boundary (input parameter i2d = -1 , cf. Surf report). Hence, pratically the 
flow of purely diatomic oxygen is calculated and the thermal state equation is of the correct 
form. The thermodynamic state is modeled using the statistical mechanics formulation. This 
is done by chosing a negative switch temperature, TFIT = -3 .D3. Then, no coefficients for a 
polynomial f i t  need to  be provided (cf. Surf report). In the thermodynamic model vibrational 
and electronical excitations are nectected. The corresponding characteristic temperatures are 
assumed t o  be zero. The caloric state equation is then given by: 

5 
21 m, . (k;, + [-5 + (4 - I)] - R . 7') = cp T + hz2 

where the contribution of monatomic oxygen was neglected and 'b '  is the molar enthalpy. 
The results of the ideal gas computation using the input data discussed in the last paragraph, 

are compared with the 'standard case' and the frozen flow solution in Fig. 10 and 11. In contrast 



t o  the ideal gas case in which a frozen flow is assumed as well, the frozen flow computation 
starts at  the same initial conditions as the 'standard casef calculation, i.e. from the reservoir to  
the upfiream boundary of  the computational domain an equilibrium flow is assumed. Further, 
in the frozen flow case the electronical and vibrationai excitation of  the species are taken into 
account, hence the caloric state equation does not satisfy the conditions of  an ideal gas. Fig. 
10a shows contour lines of  the temperature. These can be compared with Fig. 3c where the 
corresponding contour lines of the 'standard case' are depicted. In Fig. 10b the temperatures of 
the three flows considered, are plotted along the nozzle axis. The two frozen flow cases reveal 
a similar behaviour o f  the temperature. First it decreases quickly and later an almost constant 
value is assumed. These final values are very close to  each other. This is probably due to  the 
special conditions considered in this example. 

Fig. 11 shows the radial variation of the state variables at  the nozzle exit. Species concen- 
trations are not plotted, because they are of no importance in an ideal gas flow. In the ideal 
gas case the flow is frozen everywhere. Hence, no energy is released due t o  recombination in 
the convergent part of the nozzle. At the upstream boundary of the computational domain the 
total energy flux of the gas is therefore not the same in the ideal gas and the other two cases. 
Further, already in the reservoir the composition of the gas is different. This leads to  difFerent 
reservoir enthalpies ((hO )id = 0.8185 . 10'I~/kg, (hO)pcq = 0.2292 - 1 0 ~ ~ l k g ) .  The numerical values 
of the state variables displayed in Fig. 11, can therefore not be exactly compared. It can be 
seen, however, that in some sense the ideal gas flow is similar t o  the frozen flow. In particular 
the strong variation of the density in radial direction is present in both flows. 

6.4. Remarks on the initial conditions 

At the upstream boundary the initial conditions are approximated by a one-dimensional 
equilibrium or frozen flow solution. Thereby the state variables are assumed to  be constant on 
the whole inflow cross section. Only the condition of a tangential flow is satisfied at the walls. 
The radial variation of the flow which is known to  be present in nozzle flows, is thus neclected. 
In this chapter the influence of this approximation on the solution is investigated by considering 
slightly changed initial conditions in which the state variables are functions of  the radius. The 
results o f  computations with two difierenf radial variations of the initial conditions are compared 
with those in which the state variables are constant on the inflow cross section. 

The radial variation of the initial conditions is obtained by a modification of subroutine ini- 
cond. This subroutine determines the initial data by computing the one-dimensional equilibrium 
or frozen flow solution at the upstream boundary at z, (cf. Surf report). Its modified form is 
listed in Fig. 12. The initial conditions at digeerent radial positions q,  but constant X, = (x,),, 
are obtained by approximating the initial state at difFerent q by an equilibrium solution which 
corresponds t o  difFerent cross sectional areas. This is accomplished by a sinusoidal variation with 
q of that X ,  which is used in calculating the one-dimensional equilibrium state: 

Here, (x,)~ is the true position of the upstream boundary and n is the line number (method of 
lines) corresponding to  the radial position. At = 0 (i.e. n = I) the cross sectional area assumed, 



is always equal to  the actual one. Using the plus sign in eq. (6.2) yields a radial variation of  
the state variables which is qualitatively equal t o  the one expected in nozzle flows. This case 
will be called 'physical case'. A minus sign yields unphysical initial conditions, the velocity has 
a maximum on the axis and the pressure on the wall. This case will be called 'unphysical case' 
hereafter. Computations with these two formulations of the initial conditions are compared with 
the standard case, in which the state variables are constant on the inflow boundary. The input 
data of the standard case are also used in the other two computations. 

The drawback of this formulation of different radial dependencies of the initial conditions is 
that the total energy flux through the inflow boundary is not the same in all three cases. The 
difference, with respect to  the standard case, amounts to  -7.6% in the unphysical and to  +6.6% 
in the physical case. The solutions obtained in the three cases can therefore be qualitatively 
compared only. 

The initial conditions resulting from the formulation introduced in the last paragraph, are 
compared in Fig. 13. On the nozzle axis the state variables assume the same values since at 
q = 0 the cross sectional area on which the one-dimensional solution is based, is equal in all 
cases. At  the wall large differences are present. In the physical case the pressure, for example, is 
26% smaller than in the standard case. In the unphysical case the difference is +35%. In Fig. 13 
only the concentration 3.0 is piotted.The radial variation of the other concentrations is similar. 

At  the exit the dependence on the radius of the state variables is qualitatively the same 
(cf. Fig. 14). The difierences, which are approximately independent of 11, are mainly due t o  
the differences in the total energy flux at the upstream boundary (see below). In the pressure 
the differences with respect to  the standard case amount to  -14% (physical case) and to  + l l %  
(unphysical case). 

Fig. 15 shows contour lines of the temperature in an upstream section of the full computa- 
tional domain. It can be seen that the curvature of the contour lines is different only in the very 
beginning. At  x = 0.03m the maximum of the temperature is already on the axis in all three 
cases. Behind this position the contour plots are qualitatively the same. 

Finally, in Fig. 16 the temperature and the concentration yo are plotted along the axis. It 
can be seen, especially in 70, that the characteristic changes in these curves which are caused 
by the decrease in the dimension of the equilibrium reaction subspace, are the same in ail cases. 

in order to  verify that the differences in the solutions are mainly due to  different total energy 
fluxes a t  the inflow boundary, another computation is performed. In this computation the initial 
conditions are approximated in the usual way by exactly one one-dimensional equilibrium flow 
solution, thus assuming a constant state on the inflow boundary. This time, however, the one- 
dimensional flow solution does not correspond to  the 2-position of the upstream boundary but 
to  some position X, < z,. Here, 2, is chosen so that the total energy flux at the inflow boundary 
is within 0.1% of the energy flux o f  the physical case. In Fig. 17a the the temperature and 
pressure are plotted versus the non-dimensional radius at the inflow boundary. As in the cases 
dicussed above, the difierences between the two initial conditions are large (on the axis, e.g., 
temperature: 1.8%, pressure: 18.1%). Fig. 17b contains the results for the temperature and 
pressure at the nozzle exit. The solutions agree well both, qualitatively and quantitively. On the 
nozzle axis where the differences are largest, these differences are: temperature: 0.9%, pressure: 
3.1%, density: 2.l%, velocity: -0.1%, 7 ~ :  5.0%. 70: 0.1%. ?NO: 0.0%. ~ N Q -  : 0.0%. 



Neither of the considered initial conditions is fully correct. Nonetheless, except for a small 
region downstream of the inflow boundary, the solutions which are based on different formulations 
of the initial conditions, agree qualitatively. DifFerences were shown to be due to different total 
energy fluxes at the inflow boundary. Thus it is reasonable t o  approximate the initial conditions by 
the corresponding one-dimensional flow solution as done by Surf. If more exact initial conditions 
are required, this can be achieved by rewriting subroutine inicond. 

6.5. On the step size in the method of lines 

A finite difference method is used for solving the system of differential equations modeling 
partial equilibrium flows. The numerical solution depends on the step size. In the limit of 
vanishingly small step sizes the numerical solution should converge towards the true solution. 
Here, the method of lines is applied (cf. Surf report for details). The independent variable of 
the resulting system of ordinary differential equations is the axial coordinate f (%). A solver 
is used for solving this system of ODES. It selects the step size (in () automatically. The step 
size is limited by the length of the interval A( = ( x d  - z , ) / (mma,  - 1) between two succeeding 
output points. Thus the choice of the number m,,, of cross sections of constant f a t  which the 
solution is printed to the second output file, determines the maximal step size in I-direction. 
it was shown by sample calculations that the special choice of m,,, has no influence on the 
solution. 

The step size in ?-direction is determined by the number n,,, of lines used in the method 
of lines. The dependence of the solution on nmaz is shown in Fig. 18 by comparing results 
of computations with n,,, = 4, 10, 20, 30 and 40 a t  the nozzle exit. Except for the value of 
n,., the standard case is assumed in all cases. It can be seen that the solution converges well 
with increasing n,,,. If n,,, 2 20 the difference in the results is small. In order to obtain a 
quantitative measure, the difference between the total energy fluxes a t  the inflow and outflow 
boundary is compared. There should be no difference. In the case of amax = 1 the difference 
amounts to I l % ,  whereas for n,,, = 40 it is less than one percent. The difFerence in the total 
energy flux decreases slightly better than linearly with n,,.. Further, the increase in CPU-time 
with n,,, is less than quadratic. In order to  obtain a resonable compromise between CPU-time 
and accuracy, n,,, = 20 was chosen in the standard case computation. 

6.6. Remarks on the nozzle contour 

The program Surf cannot handle shock waves. Accordingly, in using Surf it is important to 
avoid conditions where shocks are formed in the flow field. If shocks are nevertheless present, 
this can result in strange results since the program Surf does not recognize shocks. This is 
demonstrated by an example. 

As in the preceding chapters the expansion of high temperature air through a convergent- 
divergent nozzle is considered. The properties of air and the chemical reactions are the same as in 
the standard case. The only exception is the switch temperature which is still Tf,, = 6000K as in 
the computations presented in the Surf report. This time an expansion through the nozzle of the 



HEG shock tunnel o f  the DLR, Gottingen, is examined. Actually, the HEC nozzle without 

boundary layer correction is considered (cf. Hannemann, 1990). The reservoir temperature and 
pressure are To = 137801c and po = 2000. 1 0 ~ P a .  I n  a first computation, the geometry o f  the 

HEC nozzle was no t  'well defined'. Actually, the nozzle contour was already very smooth (cf. 

Fig. 19a). However, in the first derivative o f  the radius a small discontinuity was present (Fig. 
19b). In flow direction a step like decrease o f  the first derivative o f  the radius takes place a t  the 

discontinuity. This has the same effect like a wedge and a shock will be  formed in a supersonic 

flow. The effect o f  the discontinuity on  the computational result is shown i n  Fig. 20. For 

comparison, the results o f  a computation based on a nozzle geometry w i t h  a smooth derivative 

o f  the radius (cf. Fig. 19c) are also included in  Fig. 20. The corresponding two nozzle contours 

are practically the same, differences cannot be resolved on  the scaled o f  Fig. 19a. In  the case 
w i th  the discontinuity the contour plots o f  Fig. 20a reveal something like a 'boundary layer 

effect' though an inviscid flow is considered. This effect is caused by the boundary condition 

a t  the wall which requires the flow t o  be tangential t o  the wall. For tha t  reason, the boundary 

layer effect appears only in  the velocity, no other state variables are affected. As an example 

the temperature is plotted versus the radius at the nozzle exit i n  Fig. 20b. This is also done 

for the velocity. It can be seen that  the deviation o f  the velocity is l imited t o  the wall point. 

A small difference between the solutions which can still be seen on  the axis, is due t o  the 

geometries o f  the two computational versions o f  the HEG nozzle being slightly different. (At 
the inflow boundary the cross sectional areas o f  the two versions o f  the HEG nozzle differ by 
less than 0.1%. I n  a one-dimensional equilibrium flow this results in  a difFerence of the velocity 
o f  Au = 8in/s a t  this position.) 
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In this appendix the finite difFerence equations for partial equilibrium flows are listed. Since 
these equations are similar to  the ones for nonequilibrium flows which were listed in Appendix 
B of the Surf report, this section of the Surf report is copied here. Included are, however, those 
modifications necessary for partial equilibrium. 

To solve the system of  equations (3.9-14) by the method of lines, the 7-direction is discretized 
yielding n,,. lines. The finite difierence approximation of the 7-derivatives is obtained according 
to  the appropiate characteristic directions (cf. eq. (3.8)). In the method of lines formulation 
the dependent variables at different q,, 11, = (n - I)/(n,., - I), n = 1, ..., n,,,, are to  be 
taken as different functions. For instance, now there are n,,, different pressure functions p,(t), 
n = 1, ..., n,,., replacing p((,q). The system (3.9-14) is then written separately for each line 
n and the corresponding dependent variables (u,,~,,~,, etc.), n = 1, ..., n,,.. Here, first some 
abbreviations are introduced: 

The second expression for Sr (y- = 0) is derived from the first one in the limiting case of 9- - 0 

by using L'Hospital's rule. The equation for y follows from the definition of the new coordinate 
7j (cf. chapter 3.). 

At the boundaries (n = 1, n = nmaz) the boundary conditions v l  = ul 5 Q and vnme= = 

unmm= 9 replace those compatibility equations whose characteristics enter the flow field from 
outside. This eventually leads to  the following system of ordinary difFerential equations where 
the subscript n, enumerating the lines, has been omitted: 

lower boundary. i.e. n = 1 (at (t.81 0)) - .  - .  
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flow field, i.e. 2 < n < n,,, - 1 [ a t  (k?,, - - ('n - l)/(nsnp - 1))): 
definition: In := 3 + s - c  + ( n  - 2) . (4 + s - c )  



(A.Zn+4+1, 1 = 1  ,..., s - c - n , )  

(A.ln+4+1, 1 = s - c - n , + 1 ,  ..., s - c )  

1= 1 

uooer boundarv. .e. n = n,., ( a t  (E- = 1)): 

definition: Zm := 3 + s - c + (n,.. - 2) . (4 + s - C) 

(A.lrn+3+Z, Z = s - c - n , + 1 ,  ..., s - c )  

These are (n,, = n,,. . (4 + s - c)  - 2) equations; (3 + s - c) equations at each of the boundaries 
and (4 + s - c )  equations at each of the (n,,, - 2) lines within the flow field. In this system the 
derivatives of the enthatpy with respect to  the density and to the species concentrations will be 
replaced by: 



The equation system (A.1-(lm+3+s-c)) can be written in matrix form: 

where A is the coefficient matrix, B the vector containing the r.h.s. and f is a vector con- 
taining the dependent variables, f = (ul,pl,pt, rc+l,l. ..., YSJ, ~ 2 ,  v2,p2, .--...., unmaa,pnmas, prima=, 

~ c + ~ , n m a a r  ... , yr,n,a=)t. Here, a solver for ordinary difFerential equations will be used to  solve the 
equation system. For applying this solver, the system needs t o  be in the form 

which is easily obtained by solving eq.(A.neq + 2) for numerically. 
In the course of the numerical integration of the equation system (e.g. in the form of eq. 

(A.n,, -t 3)) by a suitable solver, the dependent variables p,, p, and r,,,, j = c + I, ..., s, are 
transformed to  new variables: 

where y; denotates the maximum value possible for the concentration 7, of the dependent 
species. The pressure, density and species concentrations are thus always greater or equal zero, 
and further, always y, 5 y,", j = c + 1, ..., s, holds. In this manner, these quantities do never 
assume unphysical values. 



Comment: 

apf 2 

coevc ( j  , k) 

fm(1, j - ic)  

fmon(1, j )  

ibsvc (1) 

idim 

idmnsn (n) 

i e  

iear (k) 

iek(k,n) 

iprint 

nl ine  

rlmbda 

rrnult(j-ic,l ,n) 

in subroutine nmatrix af is used as the 
sound speed, this may be the partially frozen or 
frozen sound speed 
= a2pr 
matrix containing the reduced reaction vectors 
e 

R k ,  k = 1 ,..., r ,  (cf. chapter 4.3.) as 
columns ( j  = 1, ..., s - c) 

matrix containing the formation reaction 
vectors F j ,  j = c + 1 ,..., s, as columns, I = 1 ,..., s 

matrix containing an orthonormat basis for the 
reaction su bspace as column vectors ( I  = 1, ..., s t  

j = 1, ..., s - c)  

the first n, components of this vector are the 
reaction numbers of the set of linearly indepen- 
dent equiii brium reactions which provide a basis 
for all equilibrium reactions 
the first n, components of this vector are the 
reaction numbers of the set of linearly indepen- 
dent equilibrium reactions which provide a basis 
for all equilibrium reactions (for every line n,  

n = 1, ..., nmaz) 
= n. (locally) 
= n. (for every line n, n = 1, ..., n,,,) 
parameter which is set i e  = 1: equilibrium Row; 
i e  = -1: partial equilibrium or nonequilibrium 
flow; i e  = -10: partial equilibrium or non- 
equilibrium flow: at least one vector of basis fur 
equilibrium reactions did change 
= 0: reaction k is not in the equilibrium reaction 
su bspace 
= 1: reaction k is in the equilibrium reaction 
su bspace 
= iear(k) for every line n, n = 1, ..., n,,, 
parameter which steers output (if iprint = 1 
some output is provided) 
n (number of line in method of lines) 
= A: proportionality factor (cf. eq. (3.15)) 
matrix containing the multipliers n,,l, 

j = c + 1, ..., S ,  for the rate equations (for every 



q o n ( 1 ,  j) 

uaa(k, j-ic ,n) 

line n, n = 1, ..., a,,,), 1 = 1 ,  ..., ( s  - c) - n, 
matrix containing a basis for the nonequilibrium 
reaction subspace as the last ( S  - c - n,) 

column vectors (i-e. j = n, + 1 ,..., s  - c )  
= (R;,iq) - C:=l(~z;q)  . c x , ~ ,  k = 1, ..., s - c - n e ,  

j = c + 1, ..., s  (matrix containing coefficients of 
eq. (2.33) for every line n) 



Nozzlo: T5/100 (GALCIT), usual throat 
oxpansion of air (8 species, 22 reactions) 
c.1. (mcoment line): names of output data files 
yr2Oupl 
yr2Oup2 
c.1.: job id. no.,iequiltifrzn,i2d,iout 

100 0 0 1 1 
c.1.: XU, xd, mmax, nmax 

.O1 1. 200 20 
c.1.: TO, pO 

9000. 2.00E+07 
c.1.: Tv 

3 .D3 
c.1.: ichkd, rminlt 

1 2. 
c.1.: dcrit 

.I 
c.1.: ic, is, ir 

4 8 2 2 
c.1.: indep. species: symb(i), gO(i), i=l,.,ic 
E- .OD0 
N2 .78112D0 
02 .20954DO 
AR .00934DO 
c.1.: alph(j,i), j=ic+l,.,is, i=l,*,ic: 

0. '5 0. 0. 
0. 0. .5 0. 
0. .s -5 0. 

-1. * S  .5 0. 
c.1.: thermodynamic proporties of (is) species: 
E- 

5.48470-7 1 0.0000000E+00 3-03 
1. 1 * 1 0 

2.000000 
0.0000000E+00 
0.0000000E+00 
20.78675D0,0.D0,0.D0,O.DOI0.DO, 
-97.57301DO 
N 2 

28.0160D-3 2 0.0000000E+00 3.03 
2.86 2, 4 1 

1.000000 3.000000 6 .OOOOOO 1.000000 
0~0000000E+O0 72352.91 85843 '07 88323.06 
3353.240 

28.69805D0,5~1357108D-3,-1.0604805D-6,9.1105665~11,-2.27333721~15, 
25.53668130 
02 

32.0000-3 2 0.0000000E+00 3.03 
2.07 2 , 5 1 

3.000000 2.000000 1.000000 3 .000000 3.000000 
0.0000000E+00 11096.78 18996.51 51965.59 71700.80 
2238.970 

27.01839D0,8.253918D-3~-1.67169210-6I114778012D-10,-441585184D-15, 
49.18163 

Fig. 1: Input data file for the program Surf as used in the standard case computation 



Fig. 1: continued 



Fig. 1: continued 



Fig. 2: Nozzle T5/100 of the GALCIT shock tunnel: 
(a) nozzle contour 
(b) first derivative of the radius 
(c) second derivative of the radius 



Fig. 3: Partial equilibrium Row, A,+, = 0.lm (standard case): 
(a) contour lines of n., displaying regions of different degree of equilibrium 
(b) sound speed along nozzle axis: a,j (solid line), a. (dashed line), af (dotted line) 
(c) temperature contours: on the first upstream line T = 7800K 



Fig. 3: Partial equilibrium flow (continued) 
(d) 7~ contours: on the first upstream line 7~ = 8.64moIelkg 
(e) 70, contours: on the first upstream line 70, = 0.062mole/kg 
(f) ynro contours: on the first upstream line = 1.05mo1e/kg 



Fig. 4: Partial equilibrium flow, A,.., = O.lm (standard case): state variables versus non- 
dimensional radius ? a t  the nozzle exit (solid lines), comparison with nonequilibrium flow 
(dotted lines), equilibrium flow (dashed lines) and frozen flow (chain-dotted lines) [the 
partial equilibrium flow solution cannot always be distinguished from the nonequilibrium 
solution, further, the frozen flow solution is not always plotted] 



Fig. 4: Partial equilibrium flow, Amit = O.lm (standard case) continued 



- 
E 
L", 0.0 

- E- 
L", 0.0 

Fig. 5: Partial equilibrium flow with different A,;,: 
(a) dimension n. of the equilibrium reaction subspace along nozzle axis, A,;, = O.OIm 
(dotted line), Xmit = O.lm (dashed line), A,;, = 1.m (chain-dotted line). Xmit = 1O.m 
(solid line) 
(b) contour plot of n., displaying regions of difFerent degree of equilibrium for the case 
of  Anit = 1.m 
(c) same as (b), this time for the case of Jicvit = 1O.m 



Fig. 6: Temperature along nozzle axis, comparison of partial equilibrium flow (solid line), equilib- 
rium flow (dotted line), nonequilibrium flow (dashed line) and frozen flow (chain-dotted 
line): (a) = O.lm. (b) X,it = 1.m. (c) Xcrit  = 10.m 

1 



Fig. 7: Concentration TQ of monatomic oxygen along nozzle axis, comparison of partial equi- 
librium flow (solid line), equilibrium flow (dotted line), nonequilibrium flow (dashed line) 
and frozen flow (chain-dotted line): (a) A-i, = 0-01m, (b) Amit = O.lm, (c) A,,, = 1.m 



Fig. 8: State variables versus non-dimensional radius rj a t  the nozzle exit: comparison of nonequi- 
librium flow (solid lines) and partial equilibrium flows with Amit = D.Olm (short-dashed 
lines). A&, = O.Im (dotted lines). Awit = 1.m (chain-dotted lines), Xmi, = 1O.m (long- 
dashed lines) 





Nozzle: T5/100 (GAZCIT), usual throat 
expansion of an ideal gas 
e.1. (uconrarent line): names of output data files 
yrigasl 
yri gas2 
c.1.: job id, no,,iequil,ifrzn,i2d,iout 

166 0 0 -1 1 
c.1.: XU, xd, lnarax, nmax 

.or 1, 200 20 
c.1,: TO, PO 

9000. 2,00E+07 
c.1.: Tv 

0.03 
c.1.: ichkd, rrminlt 

1 2. 
c,le: dcrit 

1 .D-2 
c.1.: ic, is, it 

1 2 0 
c.1.: indop. species: symb(i1, gO(i), i=l,.,ic 
02 1.00 
eele: alph(j,i), j=ic+l,*,is, i=l,-,ic: 

.5 
c.1.: therasdynamic properties o f  (is) spacies: 

0 2  
32.000D-3 2 0, -3. D3 
2.07 2. 1 0 

2 * 
0 * 
0. 
0 

16*000P-3 1 246857.841E+1 -3 + 03 
1. 1. 1 0 

2. 
0 ,  
0. 

c.1.: ibet(1,k) ,1=l,,,is, k~l,.~ir: 
c.1.: irnp(1,k) ,l=18.,is, k=l,.,ir: 
c.1.: rkltk), rk2(k), rk3(kl, k=l,.,ir: 
c.1,: ithb(k), k=l,.,ir: 

Fig. 9: Input data file for the program Surf as used in the ideal gas computation 



Fig. 10: Ideal gas flow: 
(a) temperature contours: on the last downstream line 2' = 800K 
(b)temperature along nozzle axis, comparison with frozen flow (dotted line) and partial 
equilibrium flow, Xmit = O.lm, (dashed line) 



Fig. 11: ldeal gas flow, state variables versus non-dimensional radius at  the nozzle exit (solid 
lines), comparison with partial equilibrium flow, = O.lm, (dashed lines) and frozen 
flow (dotted lines) 



subroutine inicond 
modified version: the initial conditions at different eta-postions 
(but constant x u) are obtained by approximating the initial data at 
different eta by an equilibrium solution which corresponds to different 
cross sectional areas. ~t eta n 0 the assumed cross section equals the 
actual cross section of the nozzle considered. 

This subroutine determines the initial conditions for the calculation 
of a 2-dimensional nozzle flow at xmx u by using the solution of the 
1-dimensional case. The initial solution is stored in twodtn, i f , 
n-l,...nmax, ill, ..., d+is-ic. The 1-D solution must be provided in 
oned(rn,i), m=f,...,max. 

implicit real*8(a-h,o-zf 
parameter for array declarations: 

parameter (icm=l0,ism=25,idscm=15,i4dscm=19,irm~100) 
parameter (mmaxm=200,nmaxm=2S) 
parameter (ifem=lO,ifvm=4) 

coramon /mp/iequilIifrzn,i2d 
common /constl/ic,is,idsc,iddsc 
common /varl/p,rho,g(ism),t 
common /var3/oned(mmaxm,i4dscmf,twod(nmaxmIi4dscrn) 
common /stgntn/tO,pO 
common /geom/xu,xd,rnmax,nmax,ip 
data pi/3.14159/ 

geometry at x=xu: 
xusave=xu 
x=xu 
call geomtr(x,ym,yp,dymdx,dypdx,d2ymdx,d2ypdx) 
YPm=YP-Ym 
dy=ypm/(nmax-1.) 

approximate two-dimensional initial conditions by one-dimensional 
solution: 

do 20, n=nmax,l,-1 
determine one-dimensional equilibrium (iZd-1) or frozen (i2d=-lf flow 
solution at x=xu: 

t=tO 
P"PO 
xu=xusave*(l.+(l.-cos(pi/2.*fl0at(n-l)/float(nmax-l~))*~5~ 
inic-1 
if(i2d.eq.l) then 
call equil(inic) 

else 
call frznfinic) 

end if 
total velocity f=tlf: 

tl=onsd(l,l) 
y=ym+(n-1) *dy 
t2=((yp-y)*dymdx+(y-ym)*dypdx)/ypm 
twod(n,l)=tl/sqrt(l.+t2**2) 
twod(n,2)-twod(n,l)*t2 
twodfn,3)=oned(l13) 
twod(n,4)=oned(l14) 
do 21, l=l,idsc 
twod(n,4+l]=oned(l,4+1) 
continue 
xu-xusave 
return 
end 

Fig. 12: Modified version of  subroutine inicond as used in computations with difFerent initial 
conditions 
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Fig. 15: Different initial conditions: temperature contours 
(a) physical case: on the first upstream line T = 7600K 
(b) standard case: on the first upstream line T = 7800K 
(c) unphysical case: on the first upstream line T = 7800K 



Fig. 16: Different initial conditions: physical case (dotted line), standard case (solid line), 
unphysical case (dashed line) 

(a) temperature along nozzle axis 
(b) concentration 70 along nozzle axis 



Fig. 17: Different initial conditions but same energy flux a t  inflow boundary: temperature and 
pressure versus non-dimensional radius 7: 

(a) a t  inflow boundary (z = s,) 
(b) a t  nozzle exit (I = zd) 



Fig. 18: DifFerent number nma= of lines (standard case): state variables versus non-dimensional 
radius r )  at the nozzle exit (n,.. = 4: solid lines, nmaz = 10: short-dashed lines. 
n,.. = 20: dotted lines, nmaz = 30: chain-dotted lines, n,.. = 40: long-dashed lines) 



r(NO+/e-)  [mole/kg] 

Fig. 18: different number n,.. of lines (standard case) (continued) 



Fig. 19: Nozzle of the HEG shock tunnel: 
(a) nozzle contour (smooth case): on this scale the smooth contour cannot be distin- 
guished from the one in which a discontinuity is present in the derivative of the radius 

(b) first derivative of the radius (case where a discontinuity is present) 
(c) first derivative of the radius (smooth case) 



Fig. 20: Comparison of results obtained by a computation of a flow through two diflerent 
versions of  the nozzle o f  the WEG shock tunnel: 

(a) velocity contours (section showing upstream part of nozzle), upper half: case in which 
a discontinuity is present in the derivative of the radius, lower half: smooth case, on 
the last downstream line u = 8300rnls 

(b) temperature and total velocity versus non-dimensional radius at  the nozzle exit: 
smooth case (solid lines), case in which a discontinuity is present in the derivative of 
the radius (dashed lines) 
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