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Generalized Bloch Wave Analysis for Fiber
and Waveguide Gratings
Eva Peral and José Capmany,Senior Member, IEEE

Abstract—We have developed a generalized Bloch wave ap-
proach for the analysis of aperiodic gratings. This method yields
both a macroscopic (i.e., reflection or transmission coefficient) as
well as a microscopic (i.e., dispersion diagram and microstructure
of the propagating internal field) characterization of fiber and
waveguide aperiodic gratings.

Index Terms—Bloch waves, gratings.

I. INTRODUCTION

T HE recent advances in fiber and integrated optics fabri-
cation methods have provided the possibility of writing

periodic and aperiodic gratings in both technologies in a cost-
effective way. Especially remarkable have been the achieve-
ments accomplished in the fabrication of gratings exploiting
the photosensitivity of the core material in standard optical
fibers which in the last few years have rendered up the possi-
bility of implementing corrugated structures with almost any
envisaged grating period (uniform or chirped) and coupling
coefficient apodization [1]–[5].

The application of these structures and their related devices
are numerous and include among others, distributed feedback
(DFB) [6] and all fiber lasers, optical filters for wavelength
division multiplexing (WDM) systems [7], pulse compression,
dispersion compensation in both digital [8], [9] and analog [10]
optical communications, and optical sensors [11].

The theoretical aspects related to electromagnetic wave
propagation in fiber and waveguide gratings have attracted the
interest of researchers well before their practical availability
and work in this field spans over the last two decades. Several
methods for the analysis of the field propagation in corrugated
structures have been developed [12]–[24]. Perhaps the most
widely used has been the coupled mode theory (CMT) [12],
where the counterpropagating fields inside the grating structure
obtained by convenient perturbation of the fields in the unper-
turbed waveguide are related by coupled differential equations.
This method, initially developed for uniform gratings, was
extended to aperiodic structures by Kogelnik [13] and yields
the structure field reflection and transmission coefficients. The
CMT approach usually involves the numerical solution of two
coupled differential equations, since analytic solutions are only
possible for the uniform grating. Matrix methods [14], [15]
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which require as well numerical treatment have also been
developed for the purpose of grating analysis. Noteworthy
approaches have been the effective index method (EIM) [14]
and the transfer matrix method (TMM) [15]. In the former,
the grating is divided into sections, the length of each one
being much smaller than the smallest value of the corrugation
period and the fields are computed inside each section under
the hypothesis that the refractive index remains constant using
the effective index method of integrated optics. Fields in each
section are impedance matched to those of its preceding and
succeeding sections yielding a matrix relationship between the
fields at the left and right part of each section, the overall
structure is characterized by a global matrix obtained from
the multiplication of the individual matrices of its sections.
The EIM approach is especially suitable for integrated optic
gratings, where the maximum structure lengths are in the order
of some millimeters, but may require excessive computation
time for fiber gratings, where the structure lengths are typically
in the cm range.

In the case of the TMM [15] the grating is divided into
sections, where the length of each one is much bigger than the
biggest period of the corrugation and where the index variation
inside each one is such that they can be considered uniform
gratings (with different parameters for each one). Each section
is described therefore by a transfer matrix corresponding to
an uniform grating [12], [23], and the overall structure is
characterized by a global matrix obtained as the product of the
individual matrices. This approach is well suited for periodic
and aperiodic gratings, and is especially recommendable for
long gratings, such as those fabricated in fibers.

Other less known or employed methods have been devel-
oped and published in the literature. For instance, [16] presents
an extension of the well-known Rouard’s method employed in
thin film design to the characterization of waveguide gratings,
and [17] develops an elegant discrete-time approach based
on a digital signal processing formulation for the analysis of
periodic gratings. Other methods based on more fundamental
physics-oriented approaches such as the WKB [18], Hamil-
tonian [19], and variational [20] principles are also available
in the literature.

In the case of uniform waveguide gratings the former ap-
proaches provide only an approximate solution, since the exact
solution is obtained using the Bloch theory [21]–[23]. Bloch
waves are the eigenmodes of periodic media in the same way
as plane waves are the natural modes of free space propagation.
Furthermore, as pointed elsewhere [23] the field propagation
in waveguide gratings is difficult to interpret without an
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understanding of its dispersion and microstructure. Whereas
the coupled mode and the rest of methods described above
do provide an overall description of the grating operation
with a highly complex and difficult to interpret picture of
the internal field, the Bloch wave approach has the added
bonus that it provides a clear picture of the field dispersion
and microstructure.

In the case of aperiodic gratings, it would be desirable to
dispose of an approach with similar characteristics in terms
of simple description of field dispersion and microstructure.
In this case an extension of the Bloch wave approach does
lead to an approximate solution, which has to be computed
numerically. The advantage is that while other methods still
require this numerical computation and provide also approxi-
mate solutions, the generalized Bloch wave analysis developed
in this paper benefits as well from a powerful description of
the physics involved in the field propagation.

The objective of this paper is therefore to present the
derivation of a generalized Bloch wave analysis, suitable
for aperiodic waveguide gratings. The paper is structured as
follows. Section II presents the formulation of the generalized
Bloch wave problem for aperiodic gratings that leads to a
fundamental eigenvalue system. The specialized treatment of
this eigenvalue system is then considered both for periodic (not
necessarily sinusoidal) and for aperiodic gratings separately. In
the later case a finite element technique is used. In Section III
we apply the generalized method to the solution of specific
cases of practical interest, that include, uniform, sampled,
and linearly chirped gratings. The results show that both
macroscopic (reflection coefficient) as well as microscopic
(field dispersion diagrams) characteristics are available using
this approach.

II. FORMULATION OF THE

GENERALIZED BLOCH WAVE PROBLEM

The perturbation in the grating can be expressed in a general
way as [12]

(2.1)

It can be shown that by writing solution to the wave equation
of the TE modes as

(2.2)

where is the mode number, is the slowly varying field
amplitude and is the modal field in the unperturbed
waveguide, the wave equation reduces to

(2.3)

where is the waveguide local modal index
of the unperturbed waveguide and is the free-
space wave vector. This equation turns out to be identical to
the wave equation describing reflection of TE plane waves in
a inhomogeneous medium. A similar expression can be found
for TM modes.

For the case of an aperiodic grating, the local modal index
can be modeled by a quasisinusoidal function [13], thus

(2.4)

where is the mean wave vector of the perturbation and
accounts for spatial deviations from the mean period. It is
worth noting that the first term in the right-hand side (RHS) of
(2.4) that represents the slowly varying part of the modal index
is often disregarded, but we will keep it thorough the entire
derivation. On the other hand, the more general case where
the perturbation is not assumed to vary rapidly as
is straightforwardly analyzed following the same procedure as
that presented here.

In order to obtain the dispersion map of the modal field we
perform a transformation and express the spatial spectrum of

in terms of wave vector. Let be defined as

(2.5)

Since the wave vector can be complex in the case of evanes-
cent waves, the expression above is actually the bilateral
Laplace transform of . The region of convergence of this
transform will be a horizontal strip Imag
in the complex wave vector plane. The inverse formula can
be readily obtained by realizing that is the
inverse Fourier transform of . Thus

(2.6)

Similarly, we define

(2.7)

For example, the spectral representation of the source or
perturbation will be given by an inverse Fourier transform
of over the real axis of the complex plane.

By introducing the spectral representations of and
in the wave equation (2.3), we end up with

(2.8)

A simple change of variable yields the following equation:

(2.9)

that will be satisfied if

(2.10)
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Note that the variable has been replaced by to express the
fact that, given the frequency, the integral equation above
has solution for a set of eigenvalues. Incidentally this is
one of the objectives of the present analysis, i.e., to obtain
a dispersion relation of the form [or similarly

] that permits the representation of dispersion
maps. In the case of an aperiodic grating, the spectrum of

is continuous and therefore there is an infinite continuum
of eigenvalues. On the contrary, for finite length periodic
perturbations, i.e., when , , and are periodic
functions (not necessarily sinusoidal), an infinite set of discrete
eigenvalues is found.

On substitution of the general expression for an aperiodic
perturbation (2.4) into (2.7), we obtain

(2.11)

In the case of a lossless medium with real permittivity, then
, where the star denotes complex conjugate.

We further assume that and , as well as ,
are slowly varying functions with a finite spatial spectrum
bandwidth. Thus we can clearly distinguish three spectral
components centered, respectively at , , and

. Moreover, the spectrum can be divided into two sets of
eigenvalues, either continuous or discrete, one corresponding
to copropagating waves and the other to counterpropagating
waves. Thus, (2.10) can be expressed as

(2.12)

If a forward propagating wave is incident in the grating
structure with initial wave vector , two spectral
regions are resonantly coupled, namely those centered at
and or equivalently and . On the other
hand it is known [24] that the real part of the wave vector in
the grating will also be around and in order to simplify
the notation we introduce a new parameter .
Using (2.12), we can obtain two coupled equations that only
maintain the phase matched terms and can be expressed in a
matrix fashion as

(2.13)

Here is the identity matrix, is the matrix and
the operator is given by:

(2.14)

where is the spectral representation
of the coupling coefficient. In writing (2.14), we have taken
into account the aforementioned fact that the spatial content
of , , and extends only over a limited portion
of the wavevector spectrum, namely, .

Equation (2.13) takes the form of a generalized eigenvalue
system that can be numerically solved. Nevertheless, in the
usual case of weak perturbation, within which the approximate
wave equation (2.3) holds, we can assume , and
neglect second-order terms. This yields a simple eigenvalue
problem that requires less computational effort. If we further
consider , i.e., no low spatial frequency
variation of the modal refractive index, and study incident
fields near the Bragg frequency, i.e., ,
we obtain

(2.15)

In general, the numerical solution of both eigensystems (2.13)
and (2.15) is not possible to obtain analytically, but numerical
techniques are easily implemented. Subsequently, we tackle
the periodic and aperiodic case separately.

A. Periodic Perturbation

In the case of a periodic perturbation (not necessarily
sinusoidal), the spectrum of the modal index consists of trains
of delta functions spaced by where is the period of the
slowly varying for equal to 1, 0, and 1, and centered,
respectively, at , 0, and . For the sake of simplicity
we assume all the periods to be the same, and thus the
spectral components resonantly coupled are
and for an integer ranging from to
where is the spatial bandwidth considered. Now the
integral system (2.13) has been reduced to an eigensystem
( ) that, for the simpler example yielding (2.15),
is shown in (2.16) at the bottom of the next page where

are the weights of the delta functions at
and, in order to simplify the notation, we have set

and . The eigenvector
corresponding to the eigenvalue will be represented as

.
The resultant field will consist in a linear combination of
the solution eigenvectors, or in other words, a summation
over co- and counterpropagating Bloch waves with different
propagation constants and weights

(2.17)
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Fig. 1. Dispersion map of the uniform grating: real (dashed) and imaginary
part (solid).

that, when transformed back into the expression for the field,
yields

(2.18a)

for the forward field and

(2.18b)

for the backward field.
Application of the boundary conditions at and

yield the coefficients of the series expansion. For

a forward wave impinging on the grating at and no
backward wave entering the grating at , this condition
translates into

...
...

...
...

...
...

...
...

...

...

...

...

(2.19)

where the eigenvector is split into two block vectors
, and is the total number of

eigenvalues. The reflection coefficient is readily obtained as
.

B. Aperiodic Perturbation

We have previously argued that an aperiodic perturbation
would result in a continuum of eigenvalues and the field would
be obtained from an integral over all of them. However this is
not easily tractable analytically apart from for a few specific
cases and a numerical solution turns out to be necessary. The
best way to tackle this problem is by using a finite element
approach, where the unknown functions are first discredited
and then interpolated. We can employ first-order interpolation

(2.20)

...
...

...
...

...
...

...
...

...
...

...

...
...

...

...
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...

...

...

...

(2.16)
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(a) (b)

(c)

Fig. 2. Dispersion map of the sampled grating: (a) reflectivity (dashed) and imaginary part (solid), (b) real part, and (c) detail at� = 0 real (dashed)
and imaginary part of eigenvalues (solid).

or second-order interpolation

(2.21)

Higher orders of interpolation do not yield better results
and are much more complex. Thus, we have nodes
(either equally or not equally spaced), and we need the same
number of equations in order to solve the system. These can be
obtained by evaluating (2.10) at the different node locations,
i.e., . Care must be taken when calculating the

integrals, especially for second-order interpolation, because
some of the integrals are over different elements for
and . It is important to note that the original continuum
has turned into a discrete spectrum. Nevertheless, by using
a sufficiently fine interpolation, the main features of the
dispersion map can still be obtained. The final eigensystem
looks like (2.16) where the terms are now the result of the
integration.

The expression for the field is given by

(2.22)

(2.23)
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(a) (b)

(c)

Fig. 3. Linearly chirped grating. Reflectivity (dashed) and imaginary part of dominant eigenvalues (solid) for (a)F = 10�, (b) F = 2�, and (c)F = �=2
(here only envelope is shown). The dispersion map is symmetric.

By a change of variable this can be transformed into

(2.24)

and similarly for . These integrals can be evaluated from
the previously calculated nodes and interpolation functions,
whereas the coefficients follow from the boundary conditions
as above.

III. EXAMPLES

A. Uniform Grating

Before tackling more complicated problems, let us review
the simple case of a uniform grating [23] with constant
coupling coefficient . The dispersion

map consists in this case of two eigenvalues .
These have been plotted in Fig. 1. We see that for the
eigenvalue is imaginary, corresponding to a forbidden band,
whereas for , the eigenvalue tends to the propagation
constant in free space for both the forward and backward
traveling waves.

B. Sampled Grating

Sampled Bragg gratings are gratings whose refractive index
amplitude is itself periodically modulated [24]. The coupling
coefficient can be represented as

(3.25)

where is a square function centered at the origin and
with total width . The spatial spectrum of the refractive
index consists of trains of delta functions spaced by
and amplitude .
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As an example we consider a sampled grating with
, total length and amplitude . The

reflection coefficient has been calculated using the herein
presented Bloch wave analysis and the standard coupled wave
equations. Both coincide, what constitutes an additional check
on the validity of our method. Fig. 2(a) shows the reflectivity
together with the imaginary part of the eigenvalues. Since the
ratio is small enough, the reflectivity peaks are spaced
far enough that the dispersion map is a superposition of that for
the uniform grating, with weights at , where
the reflectivity peaks. Therefore at each of these frequencies

the eigenvalues have nonzero imaginary part that resembles
that of the uniform grating in Fig. 1 where now the radius of
the circles is . The real part of the eigenvalues [see Fig. 2(b)]
tends to that corresponding to traveling waves with wave
vectors separated by far from the forbidden bands. The
dispersion map near a reflectivity peak can be better visualized
in Fig. 2(c) for the fundamental harmonic at where we
observe the same features as in Fig. 1.

C. Linearly Chirped Gratings

The coupling coefficient of a linearly chirped grating can
be expressed as [13]

(3.26)

In this case, we are dealing with an aperiodic perturbation, and
we can apply the method developed above. In order to find
the spatial spectrum of the coupling coefficient, we assume
a Gaussian apodization with very large width, so that within
the extension of the grating the amplitude can be considered
as constant. Although the eigenvalues form a continuum, it
turns out that some of them have more weight that others
in the sense that the coefficients that appear in the field
expansion (2.18) are much larger.

We have computed the dispersion map for several values of
the chirp parameter and amplitude . In all cases
we observe that the imaginary part of the coupling coefficient
consists of circles that extend over a range coincident with
maximum reflectivity, what we call extended forbidden band.
As increases, the circles not only extend over a larger range
of (the width of the extended forbidden band increases),
but are also farther apart and become more distinct (Fig. 3).
This provides a physical interpretation of the chirped grating:
as the chirp parameter increases, the structure behaves as
a superposition of uniform gratings centered at progressively
farther spaced wavelengths. This is the origin of the ripples
in the reflection coefficient, that are shallower but have faster
oscillation as the value of is raised. It is also remarkable
the absence of dips in the extended forbidden band. On the
other hand, for smaller the dominant eigenvalue follows the
envelope of the circles, tending to the dispersion of a single
uniform grating. The circles are closer to each other, and the
reflectivity is smoother, but only as long as the imaginary
part of the eigenvalue is not zero. Outside of the forbidden
band, an oscillatory behavior of the reflectivity with narrower
dips appear. Finally, the real part of the eigenvalues presents a

Fig. 4. Linearly chirped grating. Real part of dominant eigenvalues for
F = 10�.

lattice-type map, and if we focus on the dominant eigenvalues,
we can see that this is in essence the wave vector of the
forward traveling wave (Fig. 4).

IV. CONCLUSIONS

We have developed a generalized Bloch wave approach for
the analysis of aperiodic gratings. We believe, that this method
will contribute to a better understanding of these structures,
since it provides microscopic characterization (i.e., dispersion
diagram and microstructure of the propagating internal field),
which more conventional methods lack. It can also be applied
to the study of nonlinear waveguides, where the knowledge of
the forbidden bands is important.
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