JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 8, AUGUST 1997 1295

Generalized Bloch Wave Analysis for Fiber
and Waveguide Gratings

Eva Peral and JésCapmany Senior Member, IEEE

Abstract—We have developed a generalized Bloch wave ap-which require as well numerical treatment have also been
proach for the analysis of aperiodic gratings. This method yields developed for the purpose of grating analysis. Noteworthy
both a macroscopic (|._e., ref_lectlor_] or transmission c_oeff|C|ent) as approaches have been the effective index method (EIM) [14]
well as a microscopic (i.e., dispersion diagram and microstructure d th f . hod (TMM) [151. In the f
of the propagating internal field) characterization of fiber and and t e.trar?s e'j matr')F metho ) ( ) [15]. In the former,
waveguide aperiodic gratings. the grating is divided into sections, the length of each one
being much smaller than the smallest value of the corrugation
period and the fields are computed inside each section under
the hypothesis that the refractive index remains constant using

I. INTRODUCTION the effective index method of integrated optics. Fields in each

HE recent advances in fiber and integrated optics fabg€ction are impedance matched to those of its preceding and
T cation methods have provided the possibility of writingucceeding sections yielding a matrix relationship between the
periodic and aperiodic gratings in both technologies in a cod€!ds at the left and right part of each section, the overall
effective way. Especially remarkable have been the achiewtucture is characterized by a global matrix obtained from
ments accomplished in the fabrication of gratings exploitinig€ multiplication of the individual matrices of its sections.
the photosensitivity of the core material in standard opticAhe EIM approach is especially suitable for integrated optic
fibers which in the last few years have rendered up the posgfatings, where the maximum structure lengths are in the order
bility of implementing corrugated structures with almost angf some millimeters, but may require excessive computation
envisaged grating period (uniform or chirped) and couplingne for fiber gratings, where the structure lengths are typically
coefficient apodization [1]-[5]. in the cm range.

The application of these structures and their related devicedn the case of the TMM [15] the grating is divided into
are numerous and include among others, distributed feedb&gktions, where the length of each one is much bigger than the
(DFB) [6] and all fiber lasers, optical filters for wavelengttPiggest period of the corrugation and where the index variation
division multiplexing (WDM) systems [7], pulse compressioni,nSide each one is such that they can be considered uniform
dispersion compensation in both digital [8], [9] and analog [1@ratings (with different parameters for each one). Each section
optical communications, and optical sensors [11]. is described therefore by a transfer matrix corresponding to

The theoretical aspects related to electromagnetic wad@ uniform grating [12], [23], and the overall structure is
propagation in fiber and waveguide gratings have attracted gftaracterized by a global matrix obtained as the product of the
interest of researchers well before their practical availabilitpdividual matrices. This approach is well suited for periodic
and work in this field spans over the last two decades. Seve?ad aperiodic gratings, and is especially recommendable for
methods for the analysis of the field propagation in corrugatéehg gratings, such as those fabricated in fibers.
structures have been developed [12]-[24]. Perhaps the mosDther less known or employed methods have been devel-
widely used has been the coupled mode theory (CMT) [12}ped and published in the literature. For instance, [16] presents
where the counterpropagating fields inside the grating struct@ extension of the well-known Rouard’s method employed in
obtained by convenient perturbation of the fields in the unpéhin film design to the characterization of waveguide gratings,
turbed waveguide are related by coupled differential equatiomnd [17] develops an elegant discrete-time approach based
This method, initially developed for uniform gratings, wasn a digital signal processing formulation for the analysis of
extended to aperiodic structures by Kogelnik [13] and yieldzeriodic gratings. Other methods based on more fundamental
the structure field reflection and transmission coefficients. Thhysics-oriented approaches such as the WKB [18], Hamil-
CMT approach usually involves the numerical solution of twtonian [19], and variational [20] principles are also available
coupled differential equations, since analytic solutions are ority the literature.
possible for the uniform grating. Matrix methods [14], [15] In the case of uniform waveguide gratings the former ap-

proaches provide only an approximate solution, since the exact

Manuscript received January 14, 1997; revised May 2, 1997. solution is obtained using the Bloch theory [21]-[23]. Bloch
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understanding of its dispersion and microstructure. Wheread-or the case of an aperiodic grating, the local modal index

the coupled mode and the rest of methods described abcam be modeled by a quasisinusoidal function [13], thus

do provide an overall description of the grating operation _

with a highly complex and difficult to interpret picture of e(z) = &(2) + Ae(z) cos [Gz + 6(2)] (2.4)

the internal field, the Bloch wave approach has the addgf\ereqs is the mean wave vector of the perturbation &)

bonus that it provides a clear picture of the field dispersiogcounts for spatial deviations from the mean period. It is

and microstructure. _ _ _ worth noting that the first term in the right-hand side (RHS) of
In the case of aperiodic gratings, it would be desirable {9 4) that represents the slowly varying part of the modal index

dispose of an approach with similar characteristics in termis ofien disregarded, but we will keep it thorough the entire

of simple description of field dispersion and microstructur@arivation. On the other hand, the more general case where

In this case an e>§tenS|on of .the Blo.ch wave approach dggg perturbation is not assumed to vary rapidlycas(Gz)

lead to an approximate solution, which has to be computRdsiaightiorwardly analyzed following the same procedure as

numerically. The advantage is that while other methods stjf{;t presented here.

require this numerical computation and provide also approxi-|n grder to obtain the dispersion map of the modal field we

mate solutions, the generalized Bloch wave analysis deveIoR%}form a transformation and express the spatial spectrum of

in this paper benefits as well from a powerful description CZJ(;:) in terms of wave vector. Leti(k) be defined as
the physics involved in the field propagation.

The objective of this paper is therefore to present the A(k) = 1 /Oo a(z) exp (jkz) dz. (2.5)
derivation of a generalized Bloch wave analysis, suitable 21 )

for aperiodic waveguide gratings. The paper Is struciured &fhice the wave vector can be complex in the case of evanes-
follows. Section Il presents the formulation of the generalizeéjent waves, the expression above is actually the bilateral
Bloch wave p'roblem for aperiodic gratings 'that leads 10 3,156 transform ofi(z). The region of convergence of this
fundamental eigenvalue system. The specialized treatment ot < . will be a horizontal stipn < Imag {k} < 7

this eigen_vaIL_Je sys_tem is then consi_dered bo_th for periodic (r?lqtthe complex wave vector plane. The inverse formula can
necessarily sinusoidal) and for aperiodic gratings separately, I readily obtained by realizing that(k = k. + ik;) is the

the later case a finite element technique is used. In Section Il . <o Forier transform 0f(z) exp (—kiz). Thus
we apply the generalized method to the solution of spechllc i e

cases of practical interest, that include, uniform, sampled, a(z) = exp(kiz)/ Alky + ik;) exp (= jkyz) dk,

and linearly chirped gratings. The results show that both i oo

macroscopic (reflection coefficient) as well as microscopic ootk

(field dispersion diagrams) characteristics are available using = / A(k) exp (—jkz) dk. (2.6)
—ootjk;

this approach.
Similarly, we define

Il. FORMULATION OF THE I A .
GENERALIZED BLOCH WAVE PROBLEM e(2) _/ &kr) exp (=jkyz) dhy. 27

The perturbation in the grating can be expressed in a gengtgl example, the spectral representation of the source or

— o0

way as [12] perturbation will be given by an inverse Fourier transform
of £(z) over the real axis of the compléxplane.
e(w, y, 2) = eo@, y) + Ae(, y, 2). 2.1) By introducing the spectral representations:0f) ande(z)

. . . in the wave equation (2.3), we end up with
It can be shown that by writing solution to the wave equation

Of the TE mOdeS as / . _kQA(k) exp (—ij) dk + kg - exp (kZZ)
Ey(x, y, 2) = a(z)es(z, ) (2.2) T
/ A(ky + ki) exp (= jknz) dk
wherew is the mode number(z) is the slowly varying field oy
amplituQe ancte,(z, y) is the. modal field in the unperturbed / e(ky) - exp (—jkez) dk, = 0. (2.8)
waveguide, the wave equation reduces to —oo
d2 A simple change of variable yields the following equation:
2 a(z) + k3e(2)a(z) = 0 (2.3) sot ki -
/ . [—/#A(k) + k3 / A(k = ED)e(KL) dK.
—oo+jk; —0

where N(z) = \/e(z) is the waveguide local modal index .
of the unperturbed waveguide aig = w,/noe, is the free- -exp (—jkz)dk =0 (2.9)
space wave vector. This equation turns out to be identical %t will be satisfied if
the wave equation describing reflection of TE plane waves in oo
a inhomogeneous medium. A similar expression can be found _ K2 A(K) + k2 / AK — EDe(K)dk!. =0. (2.10)
for TM modes. —oco
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Note that the variablé has been replaced Iy to express the where ¢;(k,.) = (ko/2)e:(k,) is the spectral representation
fact that, given the frequenay, the integral equation aboveof the coupling coefficient. In writing (2.14), we have taken
has solution for a set of eigenvalués. Incidentally this is into account the aforementioned fact that the spatial content
one of the objectives of the present analysis, i.e., to obtadfia(z), (=), and Ae(z) extends only over a limited portion

a dispersion relation of the forrv = w(K) [or similarly of the wavevector spectrum, namefy B, BJ.

ko = ko(K)] that permits the representation of dispersion Equation (2.13) takes the form of a generalized eigenvalue
maps. In the case of an aperiodic grating, the spectrum gfstem that can be numerically solved. Nevertheless, in the
(z) is continuous and therefore there is an infinite continuuosual case of weak perturbation, within which the approximate
of eigenvalues. On the contrary, for finite length periodiwave equation (2.3) holds, we can assumpG < 1, and
perturbations, i.e., whesL 1 (z), eo(z), ande1 (=) are periodic neglect second-order terms. This yields a simple eigenvalue
functions (not necessarily sinusoidal), an infinite set of discrgbeoblem that requires less computational effort. If we further

eigenvalues is found. considereg(k,.) = eo 6(k.), i.e., no low spatial frequency
On substitution of the general expression for an aperiodrariation of the modal refractive index, and study incident
perturbation (2.4) into (2.7), we obtain fields near the Bragg frequency, i.6.,= ko — G/2 < G,
&(ky) =e_1(ky) % 8(ky + G) + eo(ky) we obtain
+ ey (k) * 6(k, — G). (2.11) <{ f5 (il:|> { A(K) } :7{ A(K) } (2.15)
In the case of a lossless medium with real permittivity, then -G =6 AK - G) AK -G)

e_1(k,) = €7 (k,), where the star denotes complex conjugate.

We further assume thai(z) and Ae(z), as well asa(z), In general, the numerical solution of both eigensystems (2.13)
are slowly varying functions with a finite spatial spectrunand (2.15) is not possible to obtain analytically, but numerical

bandwidth. Thus we can clearly distinguish three spectm@chniques are easily implemented. Subsequently, we tackle
components centered, respectivelysat —G, k = 0, andk = the periodic and aperiodic case separately.

G. Moreover, thek spectrum can be divided into two sets of

eigenvalues, either continuous or discrete, one correspondkr;gl:)eriodiC Perturbation
to copropagating waves and the other to counterpropagating

waves. Thus, (2.10) can be expressed as In the case of a periodic perturbation (not necessarily
sinusoidal), the spectrum of the modal index consists of trains

~K*A(K) + ki of delta functions spaced by where2r /g; is the period of the
. / A(K — I)eo(kL) i + K2 slowly varyinge;(z) for ¢ equal to—1, 0, and 1, and centered,

—oo respectively, ak = —@G, 0, and@G. For the sake of simplicity
eo we assume all the periods to be the same, and thus the

/_Oo AK + G = K)e-1(K) dk, + k% spectral components resonantly coupled &f& — G + mg)
oo and A(K + myg) for m an integer ranging from-N to N

/ A(K — G = k;)er(k,.) dk,. = 0.(2.12) whereB = Ny is the spatial bandwidth considered. Now the
e integral system (2.13) has been reduced to an eigensystem

If a forwar_d prqpagating wave is incident in the grating4N x 4N) that, for the simpler example yielding (2.15),
structure with initial wave vectok;, = G/2, two spectral js shown in (2.16) at the bottom of the next page where
regions are resonantly coupled, namely those centerlee=al ¢, are the weights of the delta functions fat= G — mg
andk = G or equivalentlyA(k — &) and A(k). On the other and, in order to simplify the notation, we have s&f, =
hand it is known [24] that the real part of the wave vector ipj( K — mg) and B,, = A(K — G — mg). The eigenvector
the grating will also be around /2 and in order to simplify corresponding to the eigenvalug, will be represented as
the notation we introduce a new parametee= K — G/2. y(m) — [A_y -+ Ay -+ Ay B_x - By --- ByJ.
Using (2.12), we can obtain two coupled equations that onfihe resultant field will consist in a linear combination of
maintain the phase matched terms and can be expressed iReasolution eigenvectors, or in other words, a summation
matrix fashion as over co- and counterpropagating Bloch waves with different

G\? R R propagation constants and weights
- 5) - 2kodo —2kog1
I+ G~I + . a\2 A AN42 o
2kodt —<5> + 2kodo ARy =Y am{A(_"}\),é{k - <5 Ty — Ng)} T
A(K) :| m=1 ) .
: =0. 2.13 m G
{A(K - @) @13) +A0 6|k — <5 + Ym + Ng)

Here [ is the identity matrix,l is the matrix] = [} _9] and ) e| b T
the operatorg; is given by: +B N6 |k — <5 + Ym — Ng) +o

_B 2

i _ _
6K = [ gUDAK-E)dE (@14) 88 k= (§ 4+ v0) |} (2.17)
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Fig. 1. Dispersion map of the uniform grating: real (dashed) and imaginary

part (solid).
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a forward wave impinging on the grating at= zo and no
backward wave entering the grating at z;, this condition
translates into

exp (—jmz) AW exp (—jyazo) AGD
exp (—jvizp) BW exp (—jymz;) BOD
i ) ]
ai 1
a2 5 (2.19)
= _
apr 0
0

that, when transformed back into the expression for the field,

yields

a2
52) Z am{

m=1

E*(z) = exp <— J

(’Vm —Ng)z] +eeet
(’Vm + Ng)z]}

AT exp[-j
AW exp[—j (2.18a)

for the forward field and

(2.18b)

for the backward field.
Application of the boundary conditions at = z, and

where the eigenvectofm) is split into two block vectors
o™ = [A7)], and M = 4N + 2 is the total number of
eigenvalues. The reflection coefficient is readily obtained as

r(8) = E—(20)/E*(20).

B. Aperiodic Perturbation

We have previously argued that an aperiodic perturbation
would result in a continuum of eigenvalues and the field would
be obtained from an integral over all of them. However this is
not easily tractable analytically apart from for a few specific
cases and a numerical solution turns out to be necessary. The
best way to tackle this problem is by using a finite element
approach, where the unknown functions are first discredited
and then interpolated. We can employ first-order interpolation

ey k k
AK-k)= > N1<94)Am+N2<gi)Am+1

m
m=—

z = z; yield the coefficients of the series expansign. For (2.20)
6 — Ng 0 0 qo qN 0 A_N A_N
0 6 0 q-nN qo - qn Ag Ag
0 e 0 §+Ng 0 g_nN - 0 A.N B A.N
—q —qk 0 _§— Ny 0 ... 0 B.x | =7 B & (2.16)
—q* —qN 0 -6 0 By By
0 —q —q 0 0 -6+ Ng By By
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Fig. 2. Dispersion map of the sampled grating: (a) reflectivity (dashed) and imaginary part (solid), (b) real part, and (c) detailDateal (dashed)
and imaginary part of eigenvalues (solid).

or second-order interpolation integrals, especially for second-order interpolation, because
some of the integrals are over different elements40K —k,.)

N—-1 2 andq(k,.). It is important to note that the original continuum
AK — k) = Z N1<J)Am has turned into a discrete spectrum. Nevertheless, by using

m=—N Im a sufficiently fine interpolation, the main features of the
meven i i dispersion map can still be obtained. The final eigensystem

+ N2<J>Am+1 + N3<J>Am+2. looks like (2.16) where the termg are now the result of the
m m integration.

(2.21) The expression for the field is given by

Higher orders of interpolation do not yield better results oo+jki
and are much more complex. Thus, we havé 4 2 nodes E(z) = Z am / " A (k) exp (—jkz) dk (2.22)
(either equally or not equally spaced), and we need the same m _;oL.Jk:
number of equations in order to solve the system. These can bE‘(z) - Z U / Ak — Q) exp (—jkz) dk.
obtained by evaluating (2.10) at the different node locations, m —oo+jk;
i.e., k = K —mg. Care must be taken when calculating the (2.23)
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Fig. 3. Linearly chirped grating. Reflectivity (dashed) and imaginary part of dominant eigenvalues (solid) foe{dp =, (b) F = 27, and (c)F = #/2
(here only envelope is shown). The dispersion map is symmetric.

By a change of variable this can be transformed into map consists in this case of two eigenvalges ++/62 — ¢2.
a These have been plotted in Fig. 1. We see thalfox |q| the
Et(z) = exp <—j—z) Z A €XP (—JYm2) eigenvalue is imaginary, corresponding to a forbidden band,
2 m whereas follé| >> |q|, the eigenvalue tends to the propagation
°° ) constant in free space for both the forward and backward
/_Oo A(K — k) exp (jk,z) dk, (2.24) traveling waves.

and similarly forE~(z). These integrals can be evaluated frorg . Sampled Grating

the previously calculated nodes and interpolation functions,S led B i i h fractive ind
whereas the coefficients follow from the boundary conditions ampled bragg gratings are gratings whose refractive index
amplitude is itself periodically modulated [24]. The coupling

as above. -
coefficient can be represented as
ll. EXAMPLES — % = nZy L
q(z) = KOE,;H( Z |z] < 5 (3.25)
A. Uniform Grating wherell(z/Z) is a square function centered at the origin and

Before tackling more complicated problems, let us reviewith total width Z. The spatial spectrum of the refractive
the simple case of a uniform grating [23] with constarihdex consists of trains of delta functions spaced2hyZ,
coupling coefficienty(z) = ¢ = (w/\) (Ae/2). The dispersion and amplitudey,, = x,(Z1/Zo)[sin(wnZ1/Zo)/(mnZ1 [ Zo)].
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As an example we consider a sampled grating \¥ithz, = 4 : . . : . :
5, total lengthL = 10Z, and amplituderoZ, = 1. The
reflection coefficient has been calculated using the herein 351 A ]
presented Bloch wave analysis and the standard coupled wave 3} 1
equations. Both coincide, what constitutes an additional check
on the validity of our method. Fig. 2(a) shows the reflectivity 2] ] 1
together with the imaginary part of the eigenvalues. Since the&: 5} \>?(\ |
ratio Z; /Z, is small enough, the reflectivity peaks are spacedi{ el
far enough that the dispersion map is a superposition of that foF 15 - \)\?2\ |
the uniform grating, with weights,, at ,, = nn/Z,, where 1t _-\_\(2(
the reflectivity peaks. Therefore at each of these frequencies ,“:?'2-(
6, the eigenvalues have nonzero imaginary part that resembles 05 ;—;\ 2 |
that of the uniform grating in Fig. 1 where now the radius of ok 1
the circles isy,,. The real part of the eigenvalues [see Fig. 2(b)]
tends to that corresponding to traveling waves with wave '0'50 05 . s 5 2'_5 3 3',5 4
vectors separated & /2, far from the forbidden bands. The
dispersion map near a reflectivity peak can be better visualized 8L
in Fig. 2(c) for the fundamental harmonic &5 where wWe iy 4 inearly chirped grating. Real part of dominant eigenvalues for
observe the same features as in Fig. 1. F = 107.
C. Linearly Chirped Gratings lattice-type map, and if we focus on the dominant eigenvalues,

The coupling coefficient of a linearly chirped grating caM/e can see that this is in essence the wave vector of the
be expressed as [13] forward traveling wave (Fig. 4).

4() = ro exp |:LF(%)2:| (3.26) IV. CONCLUSIONS
We have developed a generalized Bloch wave approach for

In this case, we are dealing with an aperiodic perturbation amT3 analysis of aperiodic gratings. We believe, that this method
we can ap[;Iy the method developed above. In order to’ fi | contribute to a better understanding of these structures,
the spatial spectrum of the coupling coefficient, we assu gice it provideg microscopic characterizatiqn (i._e., dispe_rsion
a Gaussian apodization with very large width, so that withi lagram and microstructure of the propagating internal field),

' Bich more conventional methods lack. It can also be applied

the extension of the grating the amplitude can be considerd

as constant. Although the eigenvalues form a continuum,tﬂ the study of nonlinear waveguides, where the knowledge of

turns out that some of them have more weight that otheﬁ%e forbidden bands is important.
in the sense that the coefficients, that appear in the field
expansion (2.18) are much larger.

We have computed the dispersion map for several values oE. Peral is grateful to A. Bcker for very helpful discussions.
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