Atom galleries for whispering atoms:
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in stable orbits around an optical resonator
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The external fields of optical whispering gallery modes may be used to confine atoms in stable orbits around
a dielectric microsphere. As an example, a toroidal dipole-force trap (atom gallery) for three-level atoms is
investigated, and the possibility of achieving an atomic (matter—wave) resonator is discussed. The extremely
small electromagnetic mode volumes and high @’s of the whispering gallery modes should permit a circulating
photon to be repeatedly absorbed and reemitted by a trapped whispering atom.

Several research groups, including our own, have
demonstrated optical modes in quartz microspheres
with quality factors @ =~ 2 X 10°.2 In these
whispering gallery modes (WGM’s) light circu-
lates in a thin annular region near the equa-
tor, just inside the surface of the sphere. As
in total internal reflection, WGM’s have a small
evanescent component that propagates just out-
side the surface of the sphere and hence pro-
vides access for interactions of the WGM with
atoms in the external world. The high @’s and ex-
tremely. small electromagnetic mode volumes that
are simultaneously obtainable in quartz micro-
spheres thus make them prime candidates for ex-
periments in cavity quantum electrodynamics and
quantum nondemolition detection.®* Indeed, micro-
spheres of various compositions were the subject
of many studies in nonlinear optics®® and optical
levitation.” .

Light circulating in a WGM with wavelength near
an atomic resonance can exert strong forces on atoms
in the evanescent region. . In this Letter we describe
a scheme for confining atoms in stable orbits by
balancing the dipole forces associated with a pair
of oppositely detuned WGM’s.® An interesting fea-
ture of such an atom-gallery trap is that atoms are
confined to regions in which they can be strongly
coupled to optical modes of the sphere. The cou-
pling coefficient g (corresponding to half the single-
photon Rabi frequency) for atoms interacting with
WGM’s can be made much larger than the atom’s
spontaneous emission rate y to noncavity modes.
Furthermore the WGM’s considered here can have
sufficiently high @ values that g is likewise large
compared with the damping rate x of the cavity
field. In more physical terms, an initially excited
atom can emit a photon that circulates in the WGM
and is then reabsorbed, with this cycle repeating
many times before decay by means of cavity leak-
age or spontaneous emission into free space.® Note
that the term whispering gallery mode originates in
the analogy between optical modes in dielectric res-
onators and acoustic modes in large auditoriums.
Hence the picture of the oscillatory exchange be-
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tween atom and WGM prompts us to speak of a
whispering atom.

The perspective for cavity quantum electrodynam-
ics with trapped atoms becomes even more exciting
when one considers the possibility of using atoms
with Ap < //27a, where a is the radius of atomic
orbits. Such a system should exhibit resonance phe-
nomena (as well as possible collective quantum ef-
fects) associated with the requirement that the de
Broglie wavelength of atoms divide integrally into the
trap circumference.!®! Note that the simultaneous
guantization of atomic center-of-mass motion in con-
junction with that of the internal atomic degrees of
freedom and the cavity field presents a qualitatively
new conceptual frontier.

Turning first to the stable confinement of atoms,
we remark that the various forces and level shifts
associated with externally applied fields'? and elec-
tromagnetic surface effects!® should lead to a num-
ber of ways in which to bind atoms in orbit around a
dielectric sphere. To facilitate the discussion of pos-
sible trap configurations, let us establish a cylindri-
cal coordinate system with axial coordinate z, radius
p, and azimuthal angle ¢. The 2z axis connects the
poles of the microsphere, whereas atoms orbit just
outside the surface of the sphere, principally in the
equatorial plane (z = 0). We shall also refer to a
spherical polar coordinate system with the same ori-
entation (¢ = 7/2 at the equator). In the following
we drop the ¢ coordinate by assuming rotational in-
variance about the z axis and consider the reduced
problem of two-dimensional confinement in the (p, 2)
plane.

The primary requirements for obtaining stable or-
bits are a long-range force that attracts atoms to-
ward the sphere and a short-range repulsive force to
prevent collisions with the surface. The forces must
have functional forms that admit the formation of a
minimum in the sum of their two-dimensional poten-
tials. From the variety of possible schemes we dis-
cuss here the use of dipole forces associated with
the simultaneous excitation of two different WGM’s.
Such a scheme can meet the above criteria if one
chooses WGM’s with wavelengths appropriate to the
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level structure of the atom of interest.

For example, for a three-level atom in a V con-
figuration one of the WGM’s may be red detuned
with respect to the lower-energy atomic transition,
whereas the other is blue detuned with respect to
the higher-energy atomic transition, as depicted
in Fig. 1. We suppose that only the |0) « [1) and
}0) — |2) transitions are dipole allowed, with (w1, ws)
and (yi1, v2) as the corresponding transition frequen-
cies and decay rates. Let the light fields be de-
noted as E,(r)cos(w,t) and E;(r)cos(w,t). Note that
wp > wy > w; > w,. For simplicity we consider
the case in which the detunings 8,2 = w,p — @12
satisfy |8, = |8:] = 8, and 6§ < wy — w;. In the
electric-dipole and rotating-wave approximations the
position-dependent strength of the atom’s interac-
tion with the light fields is characterized by the two
Rabi frequencies ,5(r) = d; - E,;(r)/A, where d; 2
are the respective dipole transition matrix elements.
One can then derive light shifts to first order in
Q12(r)/8 by employing the dressed-state formalism!*
and assuming § >> Q;5(r) > y;5. The simple re-
sults are indicated in Fig. 1; the ground state |0)
shifts by A(Q2(r) — Q2%(r))/48, level |1) shifts up by
hQ2(r)/48, and level |2) shifts down by —AQZ(r)/45.
In the limit considered we may assume that there is
negligible excitation of atomic population and hence
may identify the position-dependent ground-state
light shift with the overall dipole potential Uy(r).

The form of Uy(r) thus follows immediately from
the mode functions of the WGM’s. The electric-field
distribution inside the sphere for traveling-wave
modes with TM polarization may be expressed in
spherical polar coordinates (r, 8, ¢) as'®
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where j; is a spherical Bessel function and P is
an associated Legendre function. Outside the sphere
the field distribution is obtained by the replacements
Jir— h; and &y, — kyp/ns = wy,/c, where hy; is an out-
going spherical Hankel function and n, is the index of
refraction of the sphere. For each choice of [ the elec-
tromagnetic boundary conditions determine a char-
acteristic equation whose roots give a discrete set of
resonant wave numbers k;,, with [ = &, R for spheres
of sufficiently large radius B, Note that the index p
corresponds to the number of maxima that ji(&;,r)
has in the interior region r < R.

The results of a numerical calculation for the
cesium 6Sy, «* 6Py, 7TP3p manifold (A; = 894 nm,
Az = 456 nm)interacting with the TM({ = 492,
m =488, p=1) and TM({l = m = 971, p = 1) modes

(corresponding to w, and w;, respectively) in a quartz
microsphere of radius R = 50.0404 ym are shown in
Fig. 2. To approximate the effects of cavity quan-
tum electrodynamic level shifts,’® we have included
a Van der Waals potential U,(r) = —a/(r — R)3,
with « = 30 Hz um? for the cesium ground state,
as given in Ref. 16. The well depth for the to-
tal potential U(r) = Uu(r) + U,(r) is ~1 uK,
and the well size is roughly 0.8 um in the z di-
rection and 0.13 um in the p direction (FWHM).
The centrifugal barrier associated with an atomic
orbital kinetic energy E.» = 40 wK would flat-
ten the well by ~10%. The saturation parame-
ters s15(r) = 1/2Q,5(r)/(8% + yi,/4 + Q%,/2) are
< 5 X 1077 within the well region, so the mean time
for an atom to be heated out of the trap!’ is quite
long, roughly 4.5s. At E,3 = 10 uK this time per-
mits ~450 full orbits.

The stable orbits of the potential shown in Fig. 2 lie
well within the region in which atoms can be strongly
coupled to near-resonant optical modes. A quantita-
tive measure of the strength of the atom-field in-
teraction is given by the spatially varying coupling
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Fig. 1. Level diagram for an atom interacting with
WGM’s of frequencies w, and wp. The first-order light
shifts are indicated. .
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Fig. 2. Two-dimensional potential for atomic motion in
the (p,z) plane around a sphere of radius R, where p
is the radial and z is the axial coordinate. The p axis
ranges from p; = R + 0.0006 um to ps = R + 0.5006 um,
the z axis from —2 to 2 um (centered at zero), and
the height of the potential from -1 to +1 uK. The
detunings of the WGM’s used are 8,/27 = —2.2 X 10!2 Hz,
8o/27 = 2.3 X 1012 Hz. Note that the mode structure of
the sphere does not permit |[§;] = |85] exactly. Maximum
Rabi frequencies in the well region of the external field are
QF /27 = 8.45 x 108 Hz, Q) /27 = 3.58 X 108 Hz.
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Fig. 8. Coupling coefficient g/y, at r = (R, 6/2) versus
size parameter x = 27 R/ A for the cesium D2 transition at
A = 852.36 nm (mp = F = 4 — my = F' = 5) interacting
with WGM’s in microspheres of various size.

coefficient g(r). Let |¢(r)| < |E(r)| be the mode func-
tion of the WGM, normalized to have a maximum
value equal to unity. Then® g(r) = v, |¢(x)lvV/Vo/ Ve,
where V,, is the electromagnetic mode volume of the
WGM and V, = 8cA%/47y, is the effective volume of
the atom for purely radiative interactions. Here 7y,
is the transverse decay rate of the transition of in-
terest and r is the atom’s position outside the micro-
sphere. We take V,, to be the integral of |e(r)y(x)I?
over a spherical region of radius R, that includes both
the interior of the sphere and the evanescent zone
just outside the surface, where (r) is equal to the
dielectric constant of quartz for » < R and to 1.0 for
r > R. The result of such a calculation is not sen-
sitive to the exact value of the cutoff radius R, for
R. — R > A\ 2.

The ratio g(r)/y, depends on the atom’s po-
sition only through |¢(r)l. We therefore present
calculations of cavity quantum electrodynamic cou-
plings for the case g(r = R, 6 = 7/2) = g only; cou-
pling strengths for atoms located at arbitrary radii
may be scaled by use of Eq. (1). Figure 3 shows
g/v. versus resonant size parameter x = 27 R/A for
TM(l = m, p = 1) WGM’s in spheres of various sizes
interacting with a particular hyperfine component of
the cesium D2 transition (A = 852.36 nm, v, /27 =
2.5 MHz). Note that g/y, varies roughly as R™2
over the displayed range of x. All modes shown
have intrinsic @’s > 102, so that the cavity-damping
rates « for such modes should certainly be limited
by bulk absorption and surface scattering in the
microsphere.!

In a sphere of 50-um radius the relevant mode
for the cesium D2(F = 4 — F' = 5) transition is
TM(I = m = 520, p = 1). At the equilibrium ra-
dius a = 50.2 um for atoms trapped in the poten-
tial of Fig. 2 the scale factor |¢(a)l/|¢(R)| determined
from Eqgs. (1) is 0.31, which yields an expected cou-
pling strength of g(a)/y, =1.9. For @ =2 X 10°, as
in Refs. 1 and 2, g(a)/x = 54. However, the data
of Fig. 3 show that g/y, = 50 would be possible
if one could bring cesium atoms very close to the
surface of a sphere with R = 9 um. If @ = 10U
could be achieved as well (as projected in Ref. 5),
one would have g/« = 7.1 X 10%. For comparison
we note that, to our knowledge, the highest reported
values achieved with cesium atoms in a Fabry—Perot
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cavity’ are g/y, = 2.9 and g/k = 12. Note that,
although our discussion has been limited to cesium
atoms, yet higher values of g/y, may be expected for
transitions in other atoms (e.g., the 28 — 2P tran-
sition in He*, for which g/y, = 78 with a sphere of
R = 11.7 pm), and improved trap parameters might
be achievable as well.

Our calculations thus strongly encourage the pur-
suit of experimental cavity quantum electrodynamics
with atoms strongly coupled to the external fields of
WGM’s in dielectric microspheres. The atom-gallery
system described here promises not only large g/y.
and g/k, but also the possibility of observing in-
teresting mechanical effects of strong coupling. In
addition, recent progress in laser cooling and atom
interferometry suggests that the goal of confining
atoms with Ax =~ 27a to study de Broglie resonance
phenomena may be achievable.

This study is supported by the National Science
Foundation and the U.S. Office of Naval Research.
H. Mabuchi is supported by an NDSEG fellowship.
The authors gratefully acknowledge their ongoing col-
laboration with V. B. Braginsky’s group at Moscow
State University.

References

1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Iichenko,
Phys. Lett A 137, 393 (1989); “Optical whispering-
gallery microresonators,” Proc. Soc. Photo-Opt. In-
strum. Eng. (to be published).
. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Ralmond
and S. Haroche, Europhys. Lett. 23, 327 (1993). .
. G. S. Agarwal and S. Duttagupta, Opt. Commun. 93,
173 (1992).
. H. J. Kimble, H. Mabuchi, A. B. Matsko, and S. P.
Vyatchanin, unpublished data.
. P. W. Barber and R. K. Chang, eds., Optical Ef-
fects Associated With Small Particles (World Scientific,
Singapore, 1988).
6. See session QTuC in Quantum Electronics and Laser
Science, Vol. 12 of 1993 OSA Technical Digest Series
(Optical Society of America, Washington, D.C., 1993),
pp. 45-49.
7. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
8. Y. B. Ovchinnikov, S. V. Shulga, and V. 1. Balykin, J
Phys. B 24, 3173 (1991).
9. H. J. Kimble, in Cavity Quantum Electrodynamics,
Advances in Atomic, Molecular, and Optical Physics,
Supplement 2, P. R. Berman ed. (Academic, San
Diego, Calif., 1994).
10. V. L. Balykm and V. S. Letokhov, Appl. Phys. B 48,
517 (1989).

11. H. Wallis, J. Dalibard, and C. Cohen-Tannoudji, Appl.
Phys. B 54, 407 (1992).

12. C. Cohen-Tannoudji and W. D. Phillips, Phys. Today
43(10), 33 (1990); S. Chu, Science 253, 861 (1991).

13. S. Haroche, in Fundamental Systems in Quantum
Optics, Les Houches Summer School Session LIII, J.
Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (El-
sevier, Amsterdam, 1992), p. 771.

14. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,
Atom—Photon Interactions (Wiley, New York, 1992).

15. J. A. Stratton, Electromagnetic Theory (McGraw-Hill,
New York, 1941), p. 554.

16. M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D.
Bloch, and M. Ducloy, J. Phys. II (Paris) 2, 631 (1992).

[ B - - ]



