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• )lote: Boundary-layer parameter• at .II.., = 2.5, :1.5. anJ L5 obtained by in terpolating and t<Xtrapolating data meaoured at JJ .., - 2, 3, and 4 

model, compnterl§ for Lhe measured value of pre·,ure, 
Pb = 0.424 p.. Taking p. = Pb lo be the pre,,.:<ure in the ex­
l<'rnal flow at the edge of the "hear layer, which i" a ,.,-umed to 
ha.\'e expanded i."entropically from p., the corre,;pondinJr 
Jf, = 2.64. If rontinued to the "houlder, lhi:> line coincide,, 
\\ith the shear layer vi:-ible on the photograph. ,-kekhcd 
is a line indicating l he theoretical position of an oblique shock 
wa\·e originating; al r in the invllici<I model. It may be com­
pared, in the photograph, lo the dark reeompre-,..ion region 

:>omewhat up.;;tream of r. AL"<> -illown i- the meas­
ured di triburion along the and, for com­
parison, the pre:;:,;ure jump at r in the inviscid mo<:lel. (The 
other notation on the figure is explained later.) 

Figure 4 i;, a plot of the prc,,.:mrc distribution-. mcarured 
along the down.;;tream of the at three :\farh 
numbers for three different :>tep heights. The broken 
(Fig. 4) are the pre:;.sure di.:>niburions (for zero step 
height) due to the nose shape (cf. pre\ious remarks) com­
puted by the method of characteristics. The measw·ed 
prc.."Sure dktribution;:; for the various step heighb all tend 
toward thi>< ba::-ic di,tribution far dowru;tream. For the 
larger :,tep height,, the in the reattachment region 

the di;,i:ribution, due to an a\i!!:yrnmetric 
effect in the cqui,·alent free .. treamline flow. 1: The effect 
dimini>'hes with deneasing hf R. or with incrca.-.ing 
number; i.e., smaller step height or higher number 
tends to make the flow in the \'icinity of the :.tep more nearly 
two-dimen. ... ional. Thus, in Fig. 4, for the ,,mallest step (h 
= 0.25 in.), the pre:-."Ure ri"e" monotonically and fairs into 
the basic pre ·sure distribution without o\'en•hooc. A.l::;o, 
with increa:-ing :\lach number, the larger );teps show le ' 
over ... hoot. • :\ leasurements of circumferential pre;:.:,11re di:s­
tribution ga\·e \'Blue"- lha.t were uniform within 0.5% in the 
ba."(' region and ";thin 2% in the region of ri:.inir pre "ure. 

In F ig. 4 it i,, difficult to ::-ee the detail· of the pre' 'mre 
in the ffi-called dead-air region near the step face; 

the,,,e are shown in Fig. 5, in which the pre:;.-;ures o\·er the ;;tep 
face (repre:>ented as - I < x/ h < 0) and -everal '>lep height>­
downslream are plotted. The \'alues for the ba.><e 

are inditated by broken lines. It may he that 
the.-.c are bia,,ro toward the rnluc ... on the :.tep face, and that 
there a charactcri.-tic :>mall dip in pre;;;sure just beiore the 
reat taehment prei;,,ure ri. c bei.,rin '. For each value of base 

Pb ( = p,) , the corre"ponding value of J£. (Fig. 3) 
wa,, computed o..<..:>uming an isentropic expan:-ion from 
(.11,, p.). The--e \·alues arr listed in Table I. WC' are not 

§ We made 11.:-e uf the free >S treamline calculation., in Ref. l l. 
\Ye are i11debte<l to J. Xeriko,,, of the Douglas Air eraft Com­

pany, for providing 11;; vdth 1 he-;e re,,ult'-, whit·h nre de>rrihed 
more fully in Ref. 9. 

inrluding here plots of bike pre.""'11re again,,t uumher; 
the...-.e can, however, readily be rletennined from the informa­
tion in Table l , in which data for boundary-layer correlation ... 
also may lw found. 

Point of Rcallachme n t 

Two technique were u:.e<.I to locate the point oi reathwh­
ment. One of the.:se wru: a "urface flow technique u,,ing a 
coating of titanium dio:ddc in oil. Figure 6 ... how-; a11 

example of the flow pattern at Jf_ = 3 for the -tep, Ji = 
1.68 in. The line of flow rever'!l.l is quite well defined.•• 
The position>< of flow reve1-,;a.l points located in thi;; wn,· 
indicated by sf in Fig". 3 and 4 and are li,,tc<l in Table i. 1n 
the second technique, mall ob"tructions (0.05 in. high and 
0.15 in. wide), which we calJ orifite d&Illi:, were cementc<l ju ... t 
up 'tream of each of the orifice< along the surface 7). 
Each :::uch orifice and dam is a rough approximation to a .-ur-
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F ill. 4 ::\lea3ured 1)l'e!'sare di;,u ·ibutio ns . 

"*Also evidenl a pattern thal is -imihu· (fl 

that observe<l hy Ginoux11 in laminar two-<limensional flow over 11 

-tep, and which is indicative of :::econdary mot.ions in the ret1.l­

tachment region. Their efTeN on the reattaC'hing flow is un­
known. "' me detailed pre;sure distribution.,, iu that region indi­
cate that these motion>' have very effect on tl1E­
static pres.sure distribution, a11d it that the over-all 
pressure i" affected. 
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face pitot (Prc,,ton) tube: in forward How it should ;;:how a de­
crell.1'e of prc .... ure, compared to the clear surface, since the 
orifice is on the "ba e" side of the dam; whereas in rernrse 
flow it should :;how an increa$C, the orifice now being on the 
"fll('e" ide. Thu..:, the s.lreamwii,.e pre:<sure di41ibutions 
";th and without orifice dam dlould cro· at the point, of How 
reYersal. 

An example of the re ults obtained is ~hown in Fig. 7. I t 
may be seen tht\t the effect i;; ,·cry l>mall, an indicat ion of the 
low dynamic pressures in the reYcr;,e flow region up to the re­
attachment point. .\. plot (not :'hown) of the ratio of the two 
prc,..-.ure5 p and µ' (the cro""o,·er point bein~ at p' / p = 1) 
impro,·ed the resolution considerably. The re,,ult was quite 
unrunbiguouo:: for the lowest :\fach number, 2.09, but rather 
lc:ss arcurate for the other two, due to catter. The method 
was not applied to the smalle<"t l0.25 in .) step. Locations of 
flow rever al poin ts delemlined in thb way are indicated by 
od in Figs. 3 and -1 and are listed in Table 1. 

.\.n unexpected re,ult irom the orifice dam technique was 
the appearance of a peak in the pre&;ure distribution, as in 
fjg. 7. The decrra~ in pre~ure afier the peak, even though 
the general oto.tic pressure ii> still rio-ing. indicates that the 
fio" over the dam has become ~trong enough to produce an 
nppreciable dynnmit• effect and a Hrong dccrea.--e of the base 
prei',ure on the dam. Thus, the peak i!' a good indication of 
the end of the (nearly) dead-air region. The locations of the;e 
peak pre,,sure point. are indicated by pp in Figs. 3 and -1 and 
are listed in Table I. It may be seen that they always lie 
. clo~e to the point.' marked r, which are the theoretical loca-
1 ion - of the reattachment points in the corresponding inYiscid 

fig. 6 Reattach ment flow pattern obtained u s ing oil-Bow 
vis ualhation technique; U , = 3.02, h = 1.68 in. 

Fig. 5 )Jeas ured pres~ure dis tributions 
aloog Lhe perime ter of the base region. 
Broken lines iodicale values used for PblP•· 

tep face is represeoted b y n egative •·alucs 
of x/h. 

free streamline model (Fig. 3). On the other hand, the point of 
Bow re\·ersal, whether sf or od, alway,, occur at filllaller \"alues 
of x/ h. (The one exception, for the smallest step at JI, = 
2.09, may be in error ; the t"orre:;ponding flow pattern wa~ not 
distinct.) Taken together. these re:.'Ult- 1:-u~est that the real 
point of "reattachment" (better called the point of flow re­
versal) lie. ju:;t inside the region of low dynamic pres.-.ure, 
which itself corresponds fairly well to the ,;o..called dPad-s.ir 
region of the free streamline model. 

Shape and Scale of Pressure Dis tribution 

To study the shape of the pressure di>-tributions of Fig. 4, 
the curves were replotted against the din1Pn:::ionl~ distance 
x/ h. In Fig. the distributions are arranged in group of 
constant ::\Jach number, to bring out the effect of geometry, 
wherw in Fig. 9 they are arranged in groups of constant h, 
to display the :\Jach number effect for given geometry. 

Due to the crowding together of the,..e curves, the location 
of the point sf, r, and pp from Fig. 4 are not reproduced in 
Figs. and 9, but their ranges are indicated in Fig. . . \.n 
interesting trend is that, the location of r (or pp) tend" to re­
main nearly fixed (at a value of x/ h :>lightly greater than 3), 
but U1e location of sf tends to move toward the step with in­
creasing :\Iach number. This should be ' ·iewed with "°me 
re.-;errntion, since re:.-ults from surface flow techniques are 
notoriously difficult to evaluate; on the other hand, there i 
indication of the same trend in od from the orifice dam ex­
periments . 
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Fig. 8 Effect of s tep height on shapes of m eas u r ed pres­
s ur e dis u ·ihutions; ranges of pp, r , a nd sf noled. 

In Fig. 9, the effect of :'.\Iach number are compared for fixed 
geometries. The group for the smallest step height (0.25 in.) 
is particularly interesting since it includes fiye different rnlues 
of ~fach number and since h/ R. = 0.04 is small enough that 
the reattaching flow surely can be regarded as two-dimen­
sional. A noteworthy feature is the branchin.,. of the curves 
just downstream of the reattachment point; ~ break in the 
pressure distribution. there becomes more pronounced with 
increasing l\Iach nwnber. The same trend is evident for the 
other two ya}ues of h. 

Figures 8 and 9 are remarkable in the tendencv shown for 
the pressure distributions to be superimposed o; each other 
in the region of steepe~t pressure rise, approximately 2 < x/ h 
< 4. One might expect the length scale of the pressme rise to 
depend on the thickness to which the shear layer has 
grown before it reattaches, and the scaling with h eems to 
imply that the initial thickness is small enough to be unim­
portant for the len!,rth scale of the reattachment region (not 
necessarily for the dynamic, ). On the other hand, the initial 
thickness o, for our smallest step height i:> comparable to h 
(Table 1); furthermore, some measurements by Hastings14 

included cases in which o. was considerably larger than h, and 
till the pressure rise region tended to uperimpose on those 

for smaller o./h; the base pressures, however, were affected 
considerably. All this suggests that the dead-air or inner 
portion of the flow is governed largely by deYelopments along 
the dividing streamline, i.e. , that an inner shear layer, be­
ginning at the eparation point and growing linearly, will be 
consistent with a scaling that depends mainly on step height 

It has been remarked earlier that, up to the reattachment 
point, dynamic pressures seem to play a small role, and the 
pres.sure ri e in this region must be balanced mainly by turbu-
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lent shear stress. The breaks in the pre;;sure distribution just 
downstream of reattachment and, in particular, the bump 
at x/ h = 3 for JI. = 4.37, (Fig. 9), may be related to the lip 
shock phenomena discussed by W einbaum 16 and observed by 
Hama.16 

. F~all>:', as noted earlier, the uperposition of the pressure 
distnbut10ns up to reattachment contrast with the variet.y of 
developments further downstream, suggesting an inde­
pendence from the flow downstream of reattachment· this 
independence ha been observed more explicitly in e~'J)eri­
ments by Bogdonoff et al. 17 and Carriere and irieix, 4 as well a! 

in the theoretical results of Crocco-Lees-Reews,6·s where it is 
attributed to the appearance of a critical condition just after 
reattachment. The peak pressure ob~erved in the orifice 
dam experiments (described previously) also occurs at this 
point, suggesting a large and sudden acceleration of the 
boundary layer there. 
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