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Abstract

Variability in gene expression among genetically identical cells has emerged as a central 

preoccupation in the study of gene regulation; however, a divide exists between the predictions of 

molecular models of prokaryotic transcriptional regulation and genome-wide experimental studies 

suggesting that this variability is indifferent to the underlying regulatory architecture. We 

constructed a set of promoters in Escherichia coli in which promoter strength, transcription factor 

binding strength, and transcription factor copy numbers are systematically varied, and used 

messenger RNA (mRNA) fluorescence in situ hybridization to observe how these changes 

affected variability in gene expression. Our parameter-free models predicted the observed 

variability; hence, the molecular details of transcription dictate variability in mRNA expression, 

and transcriptional noise is specifically tunable and thus represents an evolutionarily accessible 

phenotypic parameter.

The single-molecule events underlying gene expression, such as transcription factor binding 

and unbinding or RNA polymerase (RNAP) open complex formation, are inherently 

stochastic—a stochasticity inherited by gene expression itself. Over the past decade, 

theorists have sought to elucidate how changes in molecular kinetic parameters such as 

transcription factor binding and unbinding rates affect variability in expression (1, 2), 

whereas experimentalists have measured variability in gene expression at both the mRNA 

and protein level in prokaryotes and eukaryotes (3–6). Possible phenotypic consequences (4, 

7–9) include the intriguing hypothesis that transcriptional noise may increase the fitness of 

microbial populations by providing phenotypic variability in a population of genetically 

identical cells (10, 11).

Models of transcription hinge on the molecular details of the promoter architecture (where 

“promoter architecture” refers collectively to the locations and strengths of transcription 
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factor and RNAP binding sites governing a particular gene) and make quantitative 

predictions for the dependence of the variability on these details. For example, two 

extremely common promoter architectures (12) are shown schematically in Fig. 1A. Here, 

each rate parameter (r, , , and γ) has a physical interpretation (Fig. 1B) as an element 

that can be tuned independently by genetic manipulation. The effect of promoter architecture 

on mean levels of gene expression is well established in prokaryotes, where thermodynamic 

models successfully predict gene expression as a function of promoter architecture (13–15). 

However, the associated predictions for how transcriptional noise depends on these 

parameters remain untested in any systematic way. In direct contrast to such models, some 

high-throughput experiments have culminated in the assertion that the cell-to-cell variability 

in gene expression is “universal,” dictated solely by the mean level of expression and 

insensitive to the details of the promoter driving the expression (3, 5, 6).

To confront this divide, we constructed a library of synthetic promoters driving a LacZ 

reporter in E. coli and measured the resulting mRNA copy number distributions using 

single-molecule mRNA fluorescence in situ hybridization (FISH) (16). Our approach 

ensures that differences in promoter sequence between constructs have clear interpretations 

in terms of the molecular parameters underlying transcription (e.g., transcription factor 

unbinding rate, basal transcription rate). This allows us to directly compare predictions of 

models incorporating those parameters with experimentally observed mRNA distributions, 

and hence to directly link the molecular events underlying transcription with observed 

variability in gene expression.

For the case of constitutive expression, shown schematically in Fig. 1A, mRNA transcripts 

are produced and degraded stochastically at rates r and γ, respectively, with constant 

probability per unit time. It can be shown (17) that the resulting steady-state mRNA copy 

number distribution is given by a Poisson distribution with mean r/γ. In the following 

experimental results, we use the Fano factor, defined as the variance divided by the mean, to 

characterize variability in gene expression. This metric reports the fold change in the 

squared coefficient of variation (CV2 = variance/mean2) with respect to a Poisson process, 

for which ; hence, . Therefore, the 

predicted Fano factor for constitutive expression equals 1 identically. However, this analysis 

is incomplete: The schematics of Fig. 1A represent the dynamics of the stochastic processes 

(transcription factor binding and unbinding, mRNA degradation, transcription initiation) that 

contribute to so-called “intrinsic” variability in gene expression, but do not account for the 

fact that rate parameters such as the repressor binding rate  and transcription rate r are 

themselves subject to fluctuations due to cell-to-cell variability in repressor and RNAP copy 

numbers, respectively. Such effects, collectively termed “extrinsic variability,” tend to 

increase the measured variability (18).

One important contribution to extrinsic noise comes from variability in gene copy number 

due to chromosome replication (Fig. 2A, bottom panel). It can be shown (16) that the effect 

of gene copy number variation on the variability in expression is independent and additive to 

the variability predicted from transcriptional noise, such that
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(1)

where 〈m〉1 is the mean mRNA copy number from a single gene copy, and f is the fraction of 

the time a cell has two copies of the gene of interest. The first term is simply the promoter 

architecture–dependent Fano factor of a single copy of a gene, whereas the second term is 

the contribution due to gene copy number variation.

To quantitatively test the predictions of the model for constitutive expression, we measured 

the mRNA copy number distribution using mRNA FISH for 18 unique constitutive 

promoters (19). In Fig. 2B, we plot the Fano factor versus mean expression for each of this 

set of promoters (see fig. S9 for full mRNA copy number distributions for each promoter). 

The solid black line is the prediction resulting from consideration of intrinsic noise alone. 

The shaded regions represent the effects of what we believe are the three most important 

additional sources of noise (16). The green shaded region, quantization error, is the 

variability introduced by our measurement and analysis process. The red shaded region 

covers the expected contribution from cell-to-cell differences in RNAP copy number; the 

blue region is the expected contribution from gene copy number variation. Note that the red 

shaded region is an indirect estimate based on literature sources, whereas the blue and green 

regions are supported by direct measurements (16). The data and theoretical predictions are 

in good accord, implying that the dynamics of constitutive transcription are Poissonian with 

some additional extrinsic noise. In Fig. 2C, we plot the Fano factor minus the predicted gene 

copy number contribution and observe a quantitative disagreement between the measured 

noise in expression and the prediction of the “universal” noise model as reported in (5). But 

to conclusively demonstrate the architecture dependence of the variability, we need to look 

at alternative regulatory architectures.

To that end, we consider an architecture in which transcription can be blocked by a repressor 

transcription factor. As shown in Fig. 1A, the promoter transitions from the transcriptionally 

active (repressor unbound) to inactive state (repressor bound) at rate , and from the 

inactive to active state at rate . The predicted mean expression and Fano factor depend on 

each of these rates (Fig. 1A, right half); we can tune  by changing the concentration of 

repressor in the cell, and can tune  by changing the repressor binding site sequence. Note 

that the predicted relationship between the mean and the Fano factor has a characteristic 

form depending on which of these rates is being tuned (Fig. 3, A and B, dashed lines).

To test the predicted effect of changing , we took two of the constitutive promoters 

described above and placed them under simple repression via a LacI Oid binding site 

immediately downstream of the promoter (16). The difference in transcription rate for the 

two constructs is reflected in different values of r/γ. At the same time, we introduced into 

our cells a genetic circuit enabling inducible control of LacI expression, effectively 

permitting systematic changes in repressor number. In Fig. 3A, we plot the measured Fano 

factor as a function of the mean expression over LacI concentrations ranging from ~0 to 50 
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LacI molecules per cell, for both promoters. In addition, we plot the zero-free-parameter 

theoretical prediction for the Fano factor as a function of mean using the measured value of 

r/γ from the constitutive data and the LacI unbinding rate from (20).

Similarly, we vary  by altering the sequence of the LacI binding site. Holding the RNAP 

binding site constant (and thus r/γ constant), we created constructs corresponding to four 

different LacI binding sites (16). At constant repressor concentration (i.e., constant ), 

tuning mean expression by altering  is predicted to yield a characteristic curve, whereas 

different repressor concentrations (and hence  values) correspond to distinct instances of 

this curve. In Fig. 3B, we plot the Fano factor resulting from changing  at each of three 

different repressor concentrations. We find agreement in the trends between theory and 

experiment, although this agreement is less good than in the case of tuning . One possible 

explanation [reported in (20)] is that changing transcription factor–DNA binding affinity 

affects the transcription factor–DNA association rate  as well as the dissociation rate , 

contrary to our assumption that  is constant along each curve in Fig. 3B. However, the 

most important outcome of this set of measurements is a demonstration of the qualitatively 

distinct variability profile when a different set of transcriptional parameters are controlled, 

illustrating once again the systematic dependence of variability on promoter architecture.

We have shown that transcriptional noise is well predicted by molecularly detailed models 

for the two most common promoter architectures in E. coli as the various genetic knobs are 

tuned. This agreement is not the result of fitting theory curves to data, because the predicted 

curves are generated using physical parameter values reported elsewhere in the literature and 

in that sense are zero-parameter predictions. Earlier reports of “bursty” transcription (5, 21) 

are based on the observation that the Fano factor is greater than 1 for constitutive mRNA 

production (as well as direct kinetic measurements). Various explanatory hypotheses have 

been proposed, including transcriptional silencing via DNA condensation by nucleoid 

proteins (22), negative supercoiling induced by transcription, or the formation of long-lived 

“dead-end” initiation complexes (23). Although our data do not rule out these hypotheses, 

we find that extrinsic noise is sufficient to explain the deviation from Fano = 1 in our 

constitutive expression data (Fig. 2B). Thus, we find no need to invoke alternative 

hypotheses to explain the observed “burstiness” of constitutive transcription.

Many interesting earlier experiments make it difficult to interpret differences between 

promoters and induction conditions in terms of distinct physical parameters because of the 

wide variety of promoter architectures in play as well as the diverse mechanisms of 

induction. We have instead taken a “synthetic biology” approach of building promoters from 

the ground up. By directly controlling aspects of the promoter architecture, our goal has 

been to directly relate changes in promoter architecture to changes in observed gene 

expression variability. We believe that this work has demonstrated that mutations in 

regulatory DNA can alter gene expression noise. This suggests that gene expression noise 

may be a tunable property subject to evolutionary selection pressure, as mutations in 

regulatory DNA could provide greater fitness by increasing (or decreasing) variability. 
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Demonstrating the relevance of this hypothesis in natural environments remains an ongoing 

challenge.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematics of the kinetics of transcription for two simple regulatory architectures
(A) Theoretical treatment of two common promoter architectures and the predicted 

expression (both mean and variability) as a function of the relevant rate parameters. (B) 

Examples of the experimental knobs available for tuning the various model rate parameters: 

Basal transcription rate r is tuned by RNAP copy number and RNAP binding site affinity 

(left); repressor binding rate  is tuned by repressor copy number (center); and repressor 

unbinding rate  is tuned by its binding site affinity (right).
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Fig. 2. Variability in gene expression for constitutive expression
(A) Examples of additional noise sources (not accounted for in models of chemical kinetics) 

present in expression measurements. (B) Fano factor (gene copy number variation not 

subtracted) versus mean expression, plotted for each of 18 constitutive promoters along with 

estimates of the contributions shown schematically in (A). These factors can account for 

essentially the entirety of the deviation from Fano = 1. (C) Measured Fano factor for various 

promoters under constitutive expression, with gene copy number variation subtracted. For 

reference, the predictions of pure Poissonian production (black solid line) and the “universal 

noise” curve observed in (5) (red dashed) theories are shown. In (B) and (C), each strain is 

represented by a unique symbol, and each instance represents repeated measurements with 

error bars from bootstrap sampling expression measurements of individual cells.
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Fig. 3. Variability in gene expression for systematic tuning of repression
(A) Fano factor versus mean mRNA copy number for two promoters (choices of r/γ) while 

tuning  by inducing LacI to varying levels. For reference, the black data are the 

constitutive data from Fig. 2. (B) Fano factor versus mean mRNA copy number for lacUV5 

while tuning  by changing repressor binding site identity at fixed repressor copy number; 

each color represents a different induction condition from red (lowest LacI induction) to 

blue (highest LacI induction). For both (A) and (B), the parameter-free predictions from 

kinetic theory are shown as dashed lines in the corresponding color, holding promoter (r/γ) 

and (A) repressor binding strength  or (B) repressor binding rate  constant. In both 

cases, the Fano factor at a given mean depends on the choice of molecular parameters and 

agrees with the expectations from theory. The effect of gene copy number variation was 

subtracted from all data points; error bars result from bootstrap sampling expression 

measurements of individual cells.
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