A Caltech Library Service

Effects of a synthetic jet acting on a separated flow over a hump

Suzuki, Takao (2006) Effects of a synthetic jet acting on a separated flow over a hump. Journal of Fluid Mechanics, 547 . pp. 331-359. ISSN 0022-1120.

See Usage Policy.


Use this Persistent URL to link to this item:


The effects of an oscillatory zero-net-mass-flux jet (i.e. synthetic jet) acting on a separated flow over a hump are investigated in terms of two actuation parameters – actuator position and forcing frequency. By considering the vorticity flux balance and introducing a centroid of vorticity production over the hump surface, lift and drag acting on the hump can be expressed as a function of this centroid and the rate of vorticity production. To study the parametric dependence of lift and drag, direct numerical simulation (DNS) is performed by solving compressible, unsteady, laminar flows over a half-cylindrical hump in two dimensions. The DNS results show that periodic actuation significantly reduces the rate of vorticity production at the wall and shifts the centroid upstream so that the drag is reduced and the lift is increased, respectively. When the actuation parameters are varied, it is found that the lift is governed by the horizontal coordinate of the vorticity-production centroid, while the drag is determined by both the vertical coordinate of the centroid and the rate of vorticity production over the hump. This paper explains by using ideal flow models that the vorticity-production centroid is controlled by two factors: one is the actuator position at which clockwise vorticity is generated, and the other is the point where the separation vortex is pinched off, thereby the clockwise vorticity being absorbed.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:©2006 Cambridge University Press. Reprinted with permission. Received 22 November 2004 and in revised form 19 July 2005. Published online 11 January 2006 The author would like to acknowledge useful discussions with Dr D. MacMynowski, Professor T. Colonius, and Professor A. Leonard at the California Institute of Technology as well as Professor H. Nagib at the Illinois Institute of Technology.
Record Number:CaltechAUTHORS:SUZjfm06
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:5324
Deposited By: Lindsay Cleary
Deposited On:10 Oct 2006
Last Modified:02 Oct 2019 23:21

Repository Staff Only: item control page