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Spin-orbit (SO) coupling is the crucial parameter to drive topological-insulating phases in electronic band
models. In particular, the generic emergence of SO coupling involves the Rashba term which fully breaks the
SU(2) spin symmetry. As soon as interactions are taken into account, however, many theoretical studies have
to content themselves with the analysis of a simplified U(1)-conserving SO term without Rashba coupling. We
intend to fill this gap by studying the Kane-Mele-Hubbard (KMH) model in the presence of Rashba SO coupling
and present the first systematic analysis of the effect of Rashba SO coupling in a correlated two-dimensional
topological insulator. We apply the variational cluster approach (VCA) to determine the interacting phase diagram
by computing local density of states, magnetization, single particle spectral function, and edge states. Preceded
by a detailed VCA analysis of the KMH model in the presence of U(1)-conserving SO coupling, we find
that the additional Rashba SO coupling drives new electronic phases such as a metallic regime and a weak
topological-semiconductor phase which persist in the presence of interactions.
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I. INTRODUCTION

Since their theoretical prediction [1–4] and experimental
discovery [5], topological insulators [6–8] have become one
of the most vibrant fields in contemporary condensed matter
physics. In two spatial dimensions, the topological insulating
state can be interpreted as the spin-type companion of the
charge-type integer quantum Hall effect on a lattice. For the
quantum spin Hall (QSH) effect, the characteristic feature to
drive a given electronic band model into this topologically
nontrivial phase is band inversion due to spin-orbit (SO)
coupling. Because the kinetic and spin degree of freedom are
coupled due to SO coupling, the electronic band structure
loses its SU(2) spin symmetry. Two different types of SO
coupling can be distinguished: (i) the intrinsic spin-orbit
coupling VISO ∼ (Z4)LzSz where the SU(2) spin group is only
broken down to U(1) (i.e., retaining a conserved Sz quantum
number) and (ii) the Rashba SO coupling VRSO ∼ E · (S × p)
which does not retain a conserved continuous subgroup of
SU(2). While the intrinsic SO coupling gives rise to the
topological-insulator phase, the Rashba SO coupling itself is
unable to induce the nontrivial topology. In any experimental
situation, due to the presence of, e.g., a substrate or external
electric fields, Rashba SO coupling needs to be taken into
account.

As the first microscopic model for topological insulators,
the Kane-Mele model was originally proposed to describe the
quantum spin Hall effect in graphene [1,2]. Subsequent band-
structure calculations showed, however, that the spin-orbit gap
in graphene is so small [9,10] that the QSH effect in graphene
is beyond any experimental relevance. Still, Kane and Mele’s
pioneering proposal for a prototypical topological insulator
has triggered an intensive search for possible realizations. In
principle, the spin-orbit coupling λ can be increased using
heavier elements since VISO ∝ Z4 as a function of the atomic
coordination number Z. Hence, promising proposals include
graphene endowed with heavy adatoms such as indium and
thallium [11], synthesized silicene [12,13] (monolayers of

silicon), molecular graphene [14], honeycomb films of tin [15],
monolayers or thin films of the iridium-based honeycomb
compounds X2IrO3 (X = Na or Li) [16,17], and “digital”
transition-metal-oxide heterostructures [18]. Alternatively, the
Kane-Mele model might be realized by using ultracold atoms
in tunable optical lattices [19]. Very recent progress has been
made in realizing honeycomb optical lattices [20], as well
as non-Abelian gauge fields acting as a synthetic spin-orbit
coupling [21–24]. Furthermore, a different route to realize the
quantum spin Hall effect on the honeycomb lattice is to induce
it by virtue of interactions [25–32].

At the noninteracting level, a Rashba SO term has already
been considered in the original work by Kane and Mele where
it is shown that the QSH phase of noninteracting fermions
is stable with respect to a breaking of Sz symmetry. It is also
argued that the otherwise-quantized spin Hall conductance will
deviate from its quantized value in the presence of a Rashba
term [1,2]. Later it was explicitly shown that the QSH phase
survives the combination of disorder and Rashba spin-orbit
coupling but the value of the spin Hall conductance deviates
significantly from the quantized value [33].

For the purpose of including interactions in the Kane-Mele
model, theoretical approaches have preferably constrained
themselves to the exclusive consideration of intrinsic spin-orbit
coupling. There are two main reasons for this development.
First, some theoretical approaches such as quantum Monte
Carlo (QMC) necessitate the U(1) symmetry kept by the
intrinsic SO coupling in order to be applicable, i.e., in the
case of QMC, to avoid the sign problem. Second, calculating
the topological invariant in terms of single-particle Green’s
functions in the absence of inversion symmetry as implied by
Rashba SO coupling is significantly more complicated and
often yields an integral form of the Volovik invariant [34],
which is not amenable to efficient numerical evaluation. The
Kane-Mele model with an onsite Hubbard interaction term and
only intrinsic spin-orbit coupling has been usually referred to
as the Kane-Mele-Hubbard (KMH) model and has attracted
much attention recently; it was investigated from many
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different perspectives [35–55], providing us with a fairly good
understanding of its phase diagram: For weak interactions,
the topological insulator remains stable and the metallic edge
states persist. For intermediate interactions, a phase transition
into a magnetically ordered phase occurs. The latter has been
shown to exhibit easy-plane antiferromagnetic order [35] and
the transition to be of three-dimensional (3D) XY type [38,45].
In the isotropic limit of vanishing spin-orbit coupling, one
finds the semimetallic phase (weak interactions) of graphene
as well as the Néel antiferromagnet (strong interactions), with
the phase transition of regular 3D Heisenberg type [56]. Also,
related correlated TI models have been studied [57,58]. (For
a review of correlation effects in topological insulators, see
Ref. [59].)

Bridging the gap between possible experimental realiza-
tions and theoretical modeling, taking into account Rashba
SO coupling and interactions in the Kane Mele model is
indispensable. Note that the effect of Rashba SO coupling has
so far not been investigated in any two-dimensional correlated
topological-insulator model (with the exception of the one-
dimensional edge theory of topological insulators dubbed a
helical Luttinger liquid [60–63]). In this article, we employ
the variational cluster approach (VCA) [64,65] to investigate
the generalized Kane-Mele-Hubbard model in the presence of
Rashba spin-orbit coupling. The VCA is an efficient method
to investigate interaction effects in correlated electron systems
and to obtain effective electronic band structures. Our main
results are summarized in Fig. 1. For small Rashba coupling,
we find the TI (at small onsite interaction U ) and XY -AFM
phases (at large interactions U ) which are also present in
the Kane-Mele-Hubbard model without the Rashba coupling.
Larger Rashba coupling induces a topologically nontrivial
direct-gap-only semiconductor before the system eventually
becomes metallic. The XY -AFM phase is found to break
down at large Rashba couplings beyond which the evolving
magnetic phase cannot be analyzed anymore via VCA due to
limited cluster size. Involving the knowledge from alternative
approaches, such as pseudofermion functional renormalization
group [66,67], this parameter regime is conjectured to be
dominated by incommensurate spiral order.

TI TS M

XY-AFM (spiral)U

λR/λ

0

2

4

6

 0  0.2  0.4  0.6  0.81 2 3 42
√

3

FIG. 1. (Color online) Schematic U -(λR/λ) phase diagram of
the full Kane-Mele-Hubbard model for λ = 0.2 (t = 1). There are
five different phases: topological insulator (TI), weak topological
semiconductor (TS), metal (M), easy-plane antiferromagnet (XY -
AFM), and possibly a phase with incommensurate spiral order. For
larger λ the TS phase becomes broader while for smaller λ the TS
phase shrinks until it vanishes for λ < 0.1.

The paper is organized as follows: In Sec. II, we introduce
the Kane-Mele-Hubbard model and briefly describe the varia-
tional cluster approach (VCA). In Sec. III, we establish a first
VCA benchmark by showing results for the KMH model in the
absence of Rashba spin-orbit coupling. This scenario serves as
a prototypical framework to illustrate various subtle issues in
the VCA approach such as cluster dependence, where details
are delegated to Appendix A. Subsequently, the results for the
KMH model in the presence of finite Rashba SO coupling are
presented in Sec. IV. In Sec. V, we conclude that the nontrivial
phases of the Kane-Mele model emerging due to Rashba SO
coupling persist in the presence of interactions, and that the
interplay of interactions and Rashba SO coupling establishes
a promising direction of study in theory and experiment.

II. MODEL AND METHODOLOGY

A. Kane-Mele Hubbard model with Rashba spin-orbit coupling

The Kane-Mele-Hubbard model is governed by the Hamil-
tonian

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + iλ

∑
〈〈ij〉〉αβ

c
†
iανij σ

z
αβcjβ

+ iλR

∑
〈ij〉αβ

c
†
iα(σ αβ × d)zcjβ + U

∑
i

ni↑ni↓. (1)

The operator ciα annihilates a particle with spin α on site
i, t is the hopping amplitude (which we set to unity, t ≡ 1,
throughout the paper), λ is the intrinsic spin-orbit coupling, λR

is the amplitude of the Rashba SO coupling, U parametrizes
the local Coulomb (Hubbard) interactions, and νij = ±1
depending on whether the electron traversing from i to j

makes a right (+1) or a left (−1) turn [Fig. 2(a)]. As usual,
〈ij 〉 indicates that i and j are nearest-neighbor sites while
〈〈ij 〉〉 refers to second-nearest neighbors. The vector d points
from site i to site j and corresponds to the nearest-neighbor
vectors δi , (i = 1,2,3) [Fig. 2(b)]; σμ (μ = x,y,z) denotes
the three Pauli matrices corresponding to the spin degree of
freedom. The explicit spin dependence of the Rashba SO term,
(σ × d)z, is visualized in Fig. 2(b). The spin-orbit term ∝λ

breaks the SU(2) symmetry down to U(1), the Rashba term
∝λR breaks the remaining U(1) spin symmetry down to Z2.
It also explicitly breaks the spatial inversion symmetry. The
Rashba spin-orbit term as a part of the original Kane-Mele
model has so far generally been neglected in studies of
the interacting scenario. Note that, in the original work by

t

(a) (b) iλR(−
√

3σx − σy)

iλR(
√
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iλRσyδ3
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FIG. 2. (Color online) (a) Illustration of the hopping term ∝t and
the intrinsic SO term ∝iλσ z. (b) Illustration of the nearest-neighbor
vectors δi (i = 1,2,3) and of the Rashba SO term ∝iλR with different
spin dependencies in different hopping directions δi .
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Kane and Mele, a staggered sublattice potential (Semenoff
mass) has also been discussed which we will not elaborate
on further in the following. This term is particularly useful
to probe the transition from a topological band insulator
phase into a trivial band insulator phase [1,2,68–71] but does
not yield distinctly new phases, which is the focus of our
investigations in the following.

B. Variational cluster approach

1. Method

The zero-temperature variational cluster approach
(VCA) [72] is based on the self-energy functional the-
ory [65,73], which provides an efficient numerical technique
for studying strongly correlated systems, especially in the pres-
ence of different competing, potentially long-ranged orders.
VCA simplifies the lattice problem, as defined in Eq. (1), to an
exactly solvable problem defined in a reference system con-
sisting of decoupled finite-size clusters. The thermodynamic
limit is recovered by reintroducing the intercluster hopping to
the decoupled cluster via a nonperturbative variational scheme
based on self-energy functional theory. The VCA has been
successfully applied to many interesting problems, including
the high-Tc cuprates [74,75] and correlated topological insula-
tors [41]. In particular, this method is suitable for our current
study since the topologically nontrivial properties of the Z2

topological insulators are accounted for appropriately. By
construction, the VCA becomes exact in the limit of U → 0.
Hubbard onsite interactions might give rise to competing
phases (such as magnetic order) which can be accurately
described by the VCA grand potential.

In the self-energy functional theory, the grand potential
of a system defined by a Hamiltonian H = H0(t) + H1(U) is
written as a functional of the self-energy �:

�[�] = F [�] + Tr ln
(
G−1

0 − �
)−1

, (2)

where F [�] is the Legendre transform of the Luttinger-
Ward functional and G0 = (ω + μ − t)−1 is the noninteracting
Green’s function. It can be shown that the functional �[�] be-
comes stationary at the physical self-energy, i.e., δ�[�phys] =
0 [72]. Because the Luttinger-Ward functional is universal, it
has the same interaction dependence for systems with any
set of t′ as long as the interaction U remains unchanged.
Note that the functional �[�] itself is not approximated by
any means; we restrict, however, the “parameter” space of
possible self-energies to the self-energies of the reference
system. Thus, the stationary points are obtained from the
self-energy �′ = �[t′] of a system defined by the Hamiltonian
H ′ = H0(t′) + H1(U), which we label as reference system. Let
us define V = t − t′. Now we are able to conveniently define
the VCA-Green’s function,

G−1
VCA = G′−1 − V. (3)

In terms of the reference system, the VCA grand potential is
calculated more conveniently as

�[�′] = �′ + Tr ln
(
G−1

0 − �′)−1 − Tr ln(G′), (4)

with �′, �′, and G′ denoting the grand potential, the self-
energy and the Green’s function of the reference system,

respectively. The reference system is chosen such that it can be
treated exactly. Here, we choose an array of decoupled clusters
with open boundary conditions and calculate �′, �′, and G′
via exact diagonalization. While the correlation beyond the
reference system size are included on a mean-field level, the
short-range correlations within the reference system are fully
taken into account in the VCA, resembling related (cluster)
dynamical mean-field theory approaches.

2. Cluster size and shape

Since a spinful Hubbard model involves four basis states
for each lattice site, we are generally restricted to rather small
clusters with a maximum of ten sites [Fig. 3(b)]. Furthermore,
the choice of the reference system, i.e., the cluster shape and
size, is constrained by the requirement that the honeycomb
lattice needs to be fully covered, either by using periodic
boundary conditions (PBCs)—as realized on a torus—or
cylindrical boundary conditions. We consider six-, eight-, and
ten-site clusters in the case of PBCs and eight-site clusters for
cylindrical boundary conditions with zigzag edges (Fig. 3).
[Note that the six- and ten-site clusters could also be used for
ribbons (cylinders) with armchair edges which is not further
considered here; see also Ref. [38].] While one generally
expects to obtain more accurate results with a larger cluster, the
effect of the lattice partitioning, i.e., the cluster dependence,
is rather strong. We therefore extract our physical results from
the joint consideration of all cluster sizes reachable by VCA,
which is indispensable to obtain physically meaningful results
from finite-cluster approaches in general.

In the topological-insulator phase we explore the edge states
connecting the valence and conduction bands of the system.
These edge states typically penetrate a few unit cells into the
bulk. If the ribbon height (i.e., the distance between upper and
lower edges) does not exceed a few unit cells it might happen
that the penetrating edge states from the upper and lower edges
couple to each other and gap out. To avoid this, we have to
make sure that the ribbon height is sufficiently large; we build a
supercluster which consists of n normal clusters (as described

(a) (b)

(c) (d)

FIG. 3. (Color online) Honeycomb lattice covered with single
clusters in VCA: (a) six-site clusters (PBC). (b) Ten-site clusters
(PBC). (c) Eight-site clusters (PBC). (d) Honeycomb ribbon (cylin-
der) covered with eight-site clusters.
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above) and stack them on top of each other as illustrated in
Fig. 3(d). The supercluster corresponds to the unit cell of the
effectively one-dimensional superlattice and is defined by the
tridiagonal matrix

G′−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G′−1
1 t1,2

t2,1 G′−1
2 t2,3

t3,2 G′−1
3 t3,4

. . .
. . .

. . .

tn−1,n−2 G′−1
n−1 tn−1,n

tn,n−1 G′−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where G′ is the Green’s function of the supercluster with the
dimension 2Lc × n, G′

i are the cluster Green’s functions, and
ti,i+1 is the hopping matrix connecting the two cluster Green’s
functions G′

i and G′
i+1; Lc is the number of cluster sites. To

separate edge states from the the upper and lower edges we
stack at least eight clusters to form a supercluster from which
we compute the single-particle spectral function (displaying
the edge states). The single-particle spectral function A(k,ω)
is defined as in the standard case of PBCs via

A(k,ω) = − 1

π
Im{GVCA(k,ω)}, (6)

where the VCA-Green’s function depends on the momentum
k retained by the circumferential direction of the cylinder.

3. Symmetry-breaking Weiss fields

In quantum cluster approaches (and dynamical mean-field
theory) manifestations of spontaneous symmetry breaking for
finite-size clusters is resolved by introducing artificial mean-
field-like Weiss fields of the form

HX-AF = hx
∑
iαβ

(
a
†
iασ x

αβaiβ − b
†
iασ x

αβbiβ

)
, (7)

where the operator ai (bi) acts on sublattice A (B). Equation (7)
is the simplest example of an antiferromagnetic Weiss field
with Néel order in the x direction (in plane). Given an external
Weiss field for a certain order parameter, a stable magnetic
solution is characterized by a stationary point in the grand
potential at a finite field strength. Furthermore, in order to
represent the physical ground state, such a stationary point
needs to have a lower energy than the zero-field solution. In
principle, similar to a mean-field treatment, this procedure
needs to be repeated for all possible configurations of Weiss
fields. The order parameter can then be determined from
the magnetic solution with the lowest energy. The cluster
decomposition of the lattice, however, restricts the possible
choices of Weiss fields to those which are compatible with the
cluster size and shape, i.e., a Weiss field needs to have the same
periodicity as the array of clusters. Typically, for a given cluster
only a few types of magnetic order may be investigated. For
example, a Néel pattern cannot be implemented on a three-site
cluster. Likewise, incommensurate spiral order is incompatible
with any finite cluster.

4. Variation of single-particle parameters

The variational procedure of VCA works such that the
amplitudes of every single-particle term as well as the chemical
potential δμ need to be varied. It is well established, however,
that for practical purposes the variation of δμ is often sufficient
and the additional variation of, say, the hopping δt does
not lead to a new stationary point. For the KMH model, in
principle we have to vary not only the chemical potential,
but also the hopping, spin-orbit coupling, and Rashba terms
independently. In Appendixes A and B, we show exemplarily
the difference between (i) variation of δμ, (ii) variation of
δμ and δt , (iii) variation of δμ, δt , and δλ, as well as
(iv) variation of additional antiferromagnetic Weiss fields.
Essentially, we find that variation of δt has a significant effect
on the phase diagrams, including magnetic phase transitions.
Additional variation of δλ or δλR , respectively, does not seem
to influence the variational procedure. Still, performing VCA
on the honeycomb lattice with variation of δμ only might lead
to numerical artifacts and should be avoided. Further details
are illustrated in Appendixes A and B.

III. KANE-MELE-HUBBARD MODEL WITHOUT
RASHBA SO COUPLING (λR = 0)

A. Topological insulator

1. Z2 invariant

In the presence of inversion symmetry the topological
invariant can be conveniently calculated by probing bulk
properties only, which is even applicable in the interacting
case. In particular, within VCA this can be achieved for any
cluster size.

Expressing topological invariants in terms of single-particle
Green’s functions was pioneered by Volovik [34]; more
recently, Gurarie [76] conveniently reformulated Volovik’s
invariant for the field of topological insulators. Recently, Wang
et al. [77,78] derived simplified expression for inversion-
symmetric Hamiltonians. The Z2 topological invariant rel-
evant for topological insulators is computed from the full
interacting Green’s function through a Wess-Zumino-Witten
term [77], motivated from the concept of dimensional reduc-
tion in topological field theory [7,79].

In the presence of inversion symmetry (i.e., when λR ≡ 0
and antiferromagnetic order is absent), we follow Wang et al.to
compute the topological invariant formula [78] via the parity
eigenvalues of the Green’s function obtained within VCA at the
time-reversal invariant momenta (TRIM) �i and zero energy.
The Green’s function is a N × N matrix with N = 2Lc, where
Lc is the number of sites per cluster. Both G and G−1 can be
diagonalized, yielding

G(iω,k)−1|α(iω,k)〉 = μα(iω,k)|α(iω,k)〉, (8)

with μα ∈ C. The Green’s function matrix G(iω,k) has
the same eigenvectors |α(iω,k)〉 but the inverse eigenvalues
μ−1

α (iω,k). The states at the TRIMs, |α(iω,�i)〉, are simulta-
neous eigenstates of G and P and satisfy [78]

P |α(iω,�i)〉 = ηα|α(iω,�i)〉. (9)

Since μα(0,�i) is real, one can distinguish between positive
[μα(0,�i) > 0] and negative [μα(0,�i) < 0] eigenvalues,

165136-4



RASHBA SPIN-ORBIT COUPLING IN THE KANE-MELE- . . . PHYSICAL REVIEW B 90, 165136 (2014)

U

λ
0

2

4

6

0 0.1 0.2 0.3

TI
SM

0 π 2π
-2

0

2

ω

low

high

(b)

(a)

k
FIG. 4. (Color online) (a) Phase boundary in U -λ plane between

topological insulator and trivial band insulator (“nonmagnetic” solu-
tion) obtained by a periodic eight-site cluster computation of the Z2

invariant. (b) Edge spectrum in the TI phase obtained for cylindrical
geometry; parameters (λ = 0.2, U = 3, λR = 0) correspond to the
light-blue star in the phase diagram in panel (a). Panels (a) and (b)
show complementary approaches to detect the topological-insulating
phase.

denoted as R-zeros and L-zeros, respectively. This allows us
to define the topological invariant 
 via

(−1)
 =
∏

R-zero

η1/2
α = ±1. (10)

In Fig. 4(a) we show the U -λ plot of this invariant. Note again
that 
 cannot be calculated when an antiferromagnetic Weiss
field is present due to breaking of inversion symmetry. As a
consequence, in VCA we independently investigate the mag-
netically ordered regime. The onset of a finite magnetization
likewise sets the boundary for which the topological character
of the insulating state vanishes.

2. Edge states

As an alternative to a bulk measurement of the topological
invariant, the topological-insulator phase can also be identified
by detecting the helical edge states which are a hallmark of Z2

topological insulators considered here. This is accomplished
by solving the Hamiltonian (1) on a cylindric geometry as
explained in the previous section. This method is reliable and
is also applicable when the computation of the topological
bulk invariant is too complicated, such as for finite Rashba
SO coupling addressed later. In Fig. 4(b) the single-particle
spectral function A(k,ω) defined for a ribbon geometry is
shown (λ = 0.2, λR = 0, U = 4). In the effectively-one-
dimensional Brillouin zone, one clearly sees a band gap
between the upper and lower bands, which are connected by
helical edge states crossing at the TRIM k = π .

FIG. 5. (Color online) Heat map of the grand potential �(hx,hz)
as a function of antiferromagnetic Weiss fields hx and hz for various
values of λ. All plots haven been obtained for the six-site cluster and
U = 6. Global minima of � are indicated by green points (lines).
For λ = 0.1 we find a second stationary point (blue point) which is a
saddle point at finite hz �= 0 with higher energy.

B. XY antiferromagnet

For λ → 0 the Hamiltonian (1) becomes invariant under
SU(2) spin rotations and the antiferromagnetic Néel order is
isotropic. Finite SO coupling λ �= 0 drives the system into an
easy-plane antiferromagnet with an ordering vector in the xy

lattice plane [35], which has been confirmed by QMC [36,39],
VCA [41], and pseudofermion functional renormalization
group [66]. In order to compute the magnetic phase diagram
within VCA, we apply antiferromagnetic Weiss-fields in x and
z direction for various values of λ.

For λ = 0 we find a circle of degenerate minima in the
hx-hz plane, indicating isotropic magnetic order. For finite
λ > 0, this degeneracy is lifted and magnetic order in the x

direction is energetically preferred. For small λ = 0.1 there
is an additional stable solution (a saddle point in � indicated
by the blue point in Fig. 5 right-top panel) corresponding to
a magnetization in the z direction. This solution, however, is
not a global minimum in � and the system is still an easy-
plane antiferromagnet. For larger λ, this metastable solution
disappears. In total, the VCA confirms the established results
about magnetic order in the KMH.

C. Phase diagram

As the final result, the interacting U -λ phase diagram
exhibits a semimetal for λ = 0 which is detected via a linear
density of states near the Fermi level. It transcends into
a topological-insulator phase for finite λ up to moderate
interaction strengths. For stronger interactions, the system
acquires XY antiferromagnetic order. Obtaining a phase
diagram such as Fig. 6 via a quantum cluster approach
is challenging: (i) Stabilizing semimetals within real-space
quantum cluster methods is rather involved; in particular
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FIG. 6. (Color online) Schematic phase diagram of the Kane-
Mele-Hubbard model (λR = 0) as obtained from VCA.

the six-site cluster may suffer from artifacts of the lattice
partitioning. (ii) Clusters which do not have the shape of
closed honeycomb rings underestimate the critical interaction
strength Uc associated with the onset of magnetization.
(iii) Exclusive variation of the chemical potential might lead to
an erroneous nonmagnetic insulator phase up to small intrinsic
spin-orbit coupling [41]. In our analysis, where we also
varied the hopping in order to minimize the grand potential,
we could not find this nonmagnetic insulator phase. Note
that this erroneous nonmagnetic insulator phase was linked
to a proposed quantum spin-liquid phase. Recently, it was
shown by using large-scale QMC calculations that there is
no such spin liquid on the honeycomb lattice [56,80], being
in perfect agreement with our analysis. [For an extensive
discussion and details about (i)–(iii) we refer the interested
reader to Appendix A.] The analysis done so far shows that a
careful multisize cluster analysis has to be employed in order
to determine an artifact-free physical phase diagram. This
prepares us for our subsequent investigations of the KMH
model in the presence of Rashba SO coupling studied in the
next section.

IV. KANE-MELE-HUBBARD MODEL INCLUDING
RASHBA SO COUPLING (λR > 0)

In their seminal papers, Kane and Mele showed that the
topological-insulator phase persists until λR = 2

√
3λ where

the gap closes and the system enters a metallic phase [1,2].
They computed the Z2 invariant to explore the corresponding
phase diagram. In their work, they considered rather small
values of SO coupling such as λ = 0.03 or 0.06, and in general
λ � t . For a description of graphene, which was the original
intention of this work, such small SO coupling seemed to be

realistic. However, with regard to the many different candidate
systems potentially realizing the quantum spin Hall effect in a
honeycomb lattice compound which have been proposed in the
meantime, it is justified to consider larger spin-orbit coupling
such as λ = 0.2. It turns out that, for sufficiently large λ � 0.1
and λR close to the predicted phase transition at λR = 2

√
3λ,

the system is not gapped anymore. The Rashba SO coupling
bends the bands such that there is no full gap. On the other
hand, there is always a direct gap for each wave vector k, i.e.,
the conductance and valence bands neither touch nor cross
each other—this is the reason why the topological invariant
(computed for U = 0) labels this region as a topological
insulator. In fact, in this “metallic” region the edge states are
well defined and clearly visible [see the second-right panel
in Figs. 7 and 8(b)]. At each momentum k the system has
a gap, but globally the system is gapless. Therefore we call
this region a weak topological-semiconductor phase where
“semiconductor” refers to a direct-gap-only insulating phase.
In the presence of disorder individual k values cannot be
distinguished anymore, leading to the attribute weak, as the
phase breaks down in the presence of disorder. Still, this phase
is stable for the clean case in the presence of interactions, as
we explicate below.

A. Weak-to-intermediate interactions

For λ < 0.1, we only find TI and metallic phases at U = 0,
which persist for moderate interaction strength. Fixing λ = 0.2
we find three different phases at U = 0: TI, weak topological-
semiconductor (TS) phase, and metal [see Figs. 8(a) and 8(b)].
The TS phase is stable with respect to interactions; see
Fig. 8(c). To gain further insight, we compute single-particle
spectral functions on cylindrical geometry (using the eight-site
cluster) to determine the edge-state spectrum (see Fig. 9).
For λ = 0.2 and λR = 0.6, the TS phase is stable up to
moderate values of U . At around U = 4 the system enters
a magnetically ordered phase. Upon further increasing U the
bulk gap increases rapidly; however, no edge states connect
the valence and conductance bands anymore, indicating the
trivial topology of the magnetic phase.

We perform an additional test to verify that the two modes
crossing at k = π in Fig. 9 (U = 0 and U = 2) are indeed
edge states: we repeat the computation of the single-particle
spectral function A(k,ω) on a cylindrical geometry but with
additional links connecting the two edges of the cylinder. These
additional links are chosen such that they are compatible with
the band structure of the KMH model. As such, moving from

λR = 0.8λR = 0 λR = 0.2 λR = 0.4 λR = 0.6E

2

0

−2

k
2π 0 2π 0

k
0

k
2π 0

k
2π 0

k
2π

FIG. 7. (Color online) Single-particle spectra on a cylinder geometry for U = 0, λ = 0.2, and different values of λR . From left to right:
λR = 0, 0.2, 0.4, 0.6, and 0.8. The spectra interpolate from a topological-insulating phase (λR = 0, 0.2, and 0.4) to a metallic phase (λR = 0.8).
In between, for λR = 0.6 we find an additional weak topological-semiconductor phase (see also Fig. 8).
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FIG. 8. (Color online) (a) λR-λ phase diagram for the nonin-
teracting Kane-Mele model displaying the TI, metal (M), and
topological-semiconductor (TS) phase. (b) Zoom into the edge
spectrum for λ = 0.2, λR = 0.6, U = 0 shown in Fig. 7. (c) U -λR

phase diagram for λ = 0.2 in the nonmagnetic regime: the weak TS
phase persists in the presence of interactions.

FIG. 9. (Color online) Spectral function A(k,ω) on cylindrical
geometry [as defined in Eq. (6)] for λ = 0.2, λR = 0.6, and various
values of U . For better illustration, only the weights of the outermost
sites on the cylinder are taken into account. From top to bottom:
U = 0, 2, 4, and 6. For U = 0 and U = 2 we find the weak TS phase;
for U = 4 and U = 6 we find a magnetically ordered insulating phase.

a cylindric to a toroidal geometry, the bulk spectra should be
unchanged with the only difference being that the edges have
disappeared, which is exactly what we find.

B. Strong interactions and magnetic order

For finite λ > 0 and λR = 0, the magnetic region of the
phase diagram is an XY antiferromagnet as discussed above.
Treating the Rashba term as a small perturbation leaves the
magnetic phase unchanged. Thus we expect an XY -AFM in
the weak-λR region.

First, we use the six-site cluster and compute the grand
potential � as a function of hx and hy . As expected we find
the XY -AFM. � as a function of hx and hy shows a perfect
circle at finite Weiss fields hx/y (Fig. 10).

For the six-site cluster, the saddle point associated with
the XY -AFM phase is found at decreasing Weiss fields hx/y

when we increase the Rashba coupling. For λR = 0.3 (at fixed
λ = 0.1), we do not find any magnetic solution anymore (see
lower panels in Fig. 10). This implies that there is either a true
nonmagnetic insulator phase or there is a magnetically ordered
phase which cannot be detected within VCA. For instance, this
is the case for incommensurate spiral order, where the Weiss
field is incompatible with the cluster partitioning. A spiral
phase is likely to occur since the spin Hamiltonian [i.e., the
Hamiltonian obtained in the strong-coupling limit U → ∞ of
Eq. (1)] contains terms of Dzyaloshinskii-Moriya type [66].
Recently, spiral order was also found in a Kane-Mele-type
model [16], with multidirectional SO coupling in the presence
of strong interactions [66,81,82].

In principle, we cannot rule out the existence of the
nonmagnetic insulator phase for large U and large Rashba
spin-orbit coupling. The existence of such a phase would be
exciting, in particular, since it could be related to a recently
proposed fractionalized quantum spin-Hall phase (dubbed
QSH�) [83].

FIG. 10. (Color online) Heat map of the grand potential as a
function of antiferromagnetic Weiss fields �(hx,hy). On the six-site
ring-shaped cluster we find easy-plane AFM order for λR < 0.3 (at
λ = 0.1 and U = 6). For larger Rashba coupling we do not find any
saddle points at finite Weiss fields.
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C. Phase diagram

As the final result of this section and this paper, the U -λR

phase diagram contains, for moderate Rashba SO coupling λR ,
a TI phase (weak interactions) and an XY -AFM phase (strong
interactions). Stronger Rashba SO coupling drives the TI into
a metallic phase. If the intrinsic SO coupling λ is sufficiently
large (λ � 0.1) an additional weak topological-semiconductor
phase emerges between the TI and the metallic phase. In
the strong-interaction regime, we do not find a magnetic
solution whose unit cell would be consistent with the available
cluster sizes in VCA, a regime which is hence likely to
host incommensurate spiral magnetic order. All these findings
cumulate in the schematic phase diagram shown in Fig. 1.

V. CONCLUSIONS

We investigated the effect of Rashba spin-orbit cou-
pling in the Kane-Mele-Hubbard model as a prototypical
correlated topological insulator. We applied the variational
cluster approach and determined the phase diagram via
the computation of local density of states, magnetization,
single-particle spectral function, and edge states to detect
the topological character. The topological-insulating phase
persists in the presence of Rashba spin-orbit coupling and
interactions. Furthermore, in the strong-coupling regime, the
Rashba term induces magnetic frustration which leads to
incommensurability effects in the magnetic fluctuation profile
and is conjectured to predominantly give rise to spiral magnetic
phases. Rashba spin-orbit coupling also gives rise to peculiar
metallic phases. We find a weak topological-semiconductor
phase, for a wide range of Hubbard interaction strengths as well
as intrinsic and Rashba spin-orbit couplings. It will be exciting
to investigate some of these effects in future experiments which
exhibit the Rashba term due to external fields or intrinsic
environmental effects.
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APPENDIX A: CLUSTER ANALYSIS OF KMH MODEL
(λR = 0)

1. Semimetallic phase for λ = 0

The semimetal phase of the honeycomb lattice is more
sensitive to the lattice partitioning as compared to other phases

and lattices. As we discuss in the following, cluster size and
shape influence the results. A six-site cluster [having the
shape of a single hexagon; see Fig. 3(a)] immediately opens a
single-particle gap for U > 0. In contrast, an eight-site cluster
[a hexagon with two additional legs; see Fig. 3(c)] provides
an extended semimetallic region before the gap opens at Uc.
It is insightful to further analyze the features of VCA for
the different cluster sizes. Let us consider the six-site cluster
in the following. As mentioned in Sec. II A, one solves the
small cluster exactly by using exact diagonalization (ED). In
the absence of any SO coupling, we expect a semimetallic
region for 0 < U � Uc where the effect of the interactions
just causes renormalization of the Fermi velocity of the system.
In case of our small cluster, we expect a renormalization of
the hopping parameter t which we call t̃ . In the next step of
the VCA, an (infinitely) large lattice is covered by these ED
clusters, and the clusters are coupled by the hoppings of the
original noninteracting band structure, i.e., by t . Hereby, the
intracluster hoppings may be varied in order to find a stationary
point in the grand potential. That is, for finite but not-too-
large values of U , we effectively obtain a plaquette-isotropic
honeycomb model [38], as shown in Fig. 11(a). Remarkably,
for nearest-neighbor hoppings the band gap opens immediately
when t̃ �= t . Indeed, an infinitesimal anisotropy opens an
infinitesimal gap [38]. In agreement with this idea, we find that
the VCA method using the six-site cluster finds a semimetal
only for U = 0. For any finite U a nonmagnetic insulator phase
appears [Fig. 11(d)].

We also tested the influence of bath sites for the six-site
cluster [84]. For each correlated site we added one bath site
(resulting in an effective twelve-site cluster computation). We
still found instant opening of the single-particle gap, although
the size of the gap was reduced compared to the results
without bath sites (in agreement with Ref. [84]). Variation
of the intracluster hoppings t seems to have a similar effect
as adding bath sites. Variation of the hoppings and adding
bath sites simultaneously further decreases the size of the
single-particle gap; it does not change, however, the qualitative
behavior.

The same issue was recently addressed by Liebsch and
Wu [85] and also by Hassan and Senechal [86]. There, it
is argued that one bath site per correlated cluster site is not
sufficient; at least two bath sites per cluster site should be taken
into account [86]. Liebsch and Wu disagreed and attributed
the opening of the single-particle gap in case of the ring-
shaped six-site cluster only to the geometry of the cluster and
the breaking of translational symmetry in methods such as
VCA [85]. We confirm in our analysis that the breaking of
translational symmetry is problematic, if not detrimental, for a
semimetal state; we explain below, however, that the breaking
of translational symmetry affects other clusters as well which
do not possess the six-fold rotational symmetry of the six-site
cluster. In any case, both Ref. [86] and Ref. [85] agree that the
opening of the single-particle gap for infinitesimal U , as seen
for the six-site cluster, is a numerical artefact of the approach
and not physically relevant. Inspired by Ref. [85], we plot
the single-particle gap as a function of U (λ = 0) for various
different clusters (Fig. 12). As the main result we observe that
the semimetallic phase is never stable with respect to U for
the six-site cluster.
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FIG. 11. (Color online) (a)–(c) Coupled-cluster tight-binding scenarios. Red thick links are associated with t̃ and black thin lines with
t . The second-neighbor spin-orbit links are treated analogously but are omitted for clarity of this figure. (a) Six-site plaquette anisotropic
honeycomb lattice. (b) Eight-site lattice and (c) ten-site lattice. (d)–(f) Phase diagram of the Kane-Mele-Hubbard model for different cluster
sizes. Note that, in the limit λ = 0, the system displays a magnetic Néel phase and a semimetal phase for all cluster sizes. (d) Six-site cluster.
We find a nonmagnetic insulator (NMI), easy-plane antiferromagnetic insulator (XY -AFM), and topological insulator (TI). The semimetal
(SM) only exists for U = 0. The cyan line indicates the onset of magnetic order (Uc = 3.8 for λ = 0). (e) Eight-site cluster. We find SM, TI,
and XY -AFM phases. The SM is realized up to Uc = 2.4 where we observe the onset of magnetization. (f) Ten-site cluster. We find SM, TI,
and XY -AFM phases. The SM is realized up to Uc = 2.9.

In contrast, the eight- and ten-site clusters seem to provide a
stable semimetallic phase up to finite Uc, which we now study
in more detail. None of these clusters exhibit the rotational
symmetry of the honeycomb lattice. The eight- and the ten-
site clusters consists of a single hexagon with two additional
“legs” on opposite sites and two hexagons located next to
each other, respectively [Figs. 3(b) and 3(c)]. We calculated
the band structure with an increased unit cell corresponding
to the eight-site cluster. This allows us to take into account
the anisotropy. We find that the semimetallic phase present in
the isotropic case persists for weak anisotropies. To be more
specific, it turns out that the gap does not open; the position
of the Dirac cones moves, however, away from the K and K ′
points. (This is understandable, because the three-fold discrete
rotation symmetry protects the position of the Dirac cones in

FIG. 12. (Color online) Single-particle gap 
sp as a function of
U (λ = 0) for six-, eight-, and ten-site clusters (Lc = 6,8,10) with
variation of (i) δμ and (ii) δμ, δt . In addition, we show 
sp vs U for
the six-site cluster with additional bath sites Lb (blue curve). Only
the paramagnetic solutions, i.e., in the absence of Weiss fields, are
displayed.

momentum space.) A rather large anisotropy is required to
merge the Dirac cones and gap them out. The situation here
is reminiscent of the t1-t2 model on the honeycomb lattice
where a similar behavior is known [87]. By performing a VCA
analysis for the eight-site cluster, we find that the semimetallic
phase of graphene persists up to U = 2.4. We also observe
within VCA that the position of the Dirac cones is not at K or
K ′ anymore, in agreement with the anisotropic band-structure
calculation discussed previously (K (′) refers to the positions of
the Dirac cones at U = 0). The phase diagram with additional
SO coupling is presented in Fig. 11(e). A similar analysis
for the ten-site cluster leads to the same conclusions as for the
eight-site cluster [Fig. 11(c)]. Quantitatively, we find a slightly
larger Uc = 2.9 where the semimetal-to-Néel–AFM transition
occurs [Fig. 11(f)].

2. Magnetic transition

Our findings indicate that the symmetric six-site cluster
has the smallest tendency towards the formation of magnetic
order. The less-symmetric eight-site cluster, in contrast, is
significantly more sensitive towards formation of magnetic
order and thus underestimates Uc. This is intuitively clear since
the eight-site cluster exhibits two “open legs,” i.e., links which
have an end site. These end sites are particularly sensitive
towards the formation of magnetic order. Ring-shaped clusters
such as six- or ten-site clusters, i.e., clusters without end sites,
require stronger interactions to acquire magnetic order.

Interestingly, we find that the six-site cluster, while inappro-
priate for the study of the semimetal phase, is a good choice
in order to study magnetism. For the eight-site cluster we
can draw the opposite conclusion. The ten-site cluster might
be an acceptable compromise; it turns out, however, that for
the study with Rashba SO coupling also the ten-site cluster
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FIG. 13. (Color online) Single-particle gap 
sp as a function of
U at λ = 0.1 for the six-site cluster. Different combinations of single-
particle parameters (δλ, δμ, δt , and Weiss fields δhx) are varied to
yield a saddle-point solution of the grand potential �. Varying δhx ,
one can see that the single-particle gap does not close at the phase
transition between the TI and the XY -AFM phase (red and green
curves).

is problematic regarding the investigation of magnetism (see
Appendix B for details).

3. Variation of single-particle parameters

We briefly discuss the influence of the variation of different
single-particle parameters within the VCA. In principle, any
single-particle parameter (i.e., δμ, δt , δλ, δλR) can, and should,
be varied. Note that the actual value of a single-particle
parameter is, e.g., μ + δμ, where μ is the chosen parameter
and δμ comes from the variational scheme. For practical
purposes, however, the variation is often restricted to the
variation of δμ only. It is then argued that the additional
variation of other single-particle parameters does not affect
the results anymore. For the six-site cluster, we have already
shown for λ = 0 in Fig. 12 that the additional variation of
δt quantitatively changes the 
sp curve. We also studied this
influence for the TI phase at λ = 0.1 for six- and eight-site
clusters. In Fig. 13 the single-particle gap 
sp of the six-site
cluster is shown for the case where (i) δμ only is varied
(dark-blue curve), (ii) δμ and δt are varied (dark-red curve),
(iii) δμ and δλ are varied (pink), (iv) δμ, δt , and δλ are varied
(light blue). Additional variation of the Weiss field δhx is also
considered for cases (ii) and (iv) (green and red), which reveals
that the single-particle gap is not closing at the transition
between the TI and the XY -AFM phase [38,71], in agreement
with QMC results [36].

Essentially, we find that the additional variation of δt is
important and has significant effects, which also applies to
parameter regimes at finite λ. It should, hence, be generally
taken into account in the variational scheme. The additional
variation of δλ, however, might lead to new stationary points
but can be neglected because it has only negligible effects
(Fig. 14). The same conclusion can be drawn for δλR . Since
the effect of additional variation of t affects all the phases and
all the cluster shapes, we find that at least on the honeycomb
lattice, one should always vary δμ and δt to obtain reliable
VCA results.

FIG. 14. (Color online) Single-particle gap 
sp as a function of
U at λ = 0.1 for the eight-site cluster analogous to Fig. 13.

APPENDIX B: CLUSTER ANALYSIS OF KMH MODEL
(λR > 0)

1. Cluster dependence of phase diagram

In Fig. 15 we show the phase diagram for the eight-site
cluster at λ = 0.1. For this parameter, the TS phase is
extremely small and very difficult to detect. Therefore, we
consider larger intrinsic SO coupling. Figure 16 displays
the phase diagrams for the six-, eight-, and ten-site clusters
at λ = 0.2. Only for the eight-site cluster (middle panel)
we computed edge states which allows us to determine the
phase boundary between the TS phase and the metal (red
squares). Note that we could likewise perform the analogous
computation for armchair edges in the case of six- and ten-site
clusters. We do not expect, however, further insights from such
an additional computation.

For the eight- and ten-site clusters, calculating the magnetic
domain for strong interactions is different from the six-site
cluster. The Rashba term acts differently on different links
since it depends on σ × d. Consequently, the results also
depend on the orientation of the cluster. The three different
nearest-neighbor links of the honeycomb lattice δ1, δ2, and
δ3 are shown in Fig. 2. It is obvious that a cluster (e.g.,
the eight-site cluster) which consists of different numbers
of δ1, δ2, and δ3 links, induces a certain anisotropy. Only

FIG. 15. (Color online) U -λR KMH phase diagram for λ = 0.1
obtained for an eight-site cluster. In the weak-λR region, only TI and
XY -AFM phases exist. The topological-semiconductor (TS) phase is
very small for λ = 0.1, but increases with λ. At larger λR the system
is in a metallic phase. In the regime of large U and large λR no
magnetic solution commensurate with the eight-site cluster is found.
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FIG. 16. (Color online) U -λR KMH phase diagram for λ = 0.2 using the (a) six-site cluster, (b) eight-site cluster, and (c) ten-site cluster.
Besides the TI and XY -AFM phase, we find a metal (M) phase (green) and a topological-semiconductor (TS) phase (yellow) which is
characterized by the joint occurrence of helical edge states and zero indirect bulk gap. The topological-to-metal phase transition for U = 0
takes place at λR = 2

√
3λ (yellow-to-green phase). The green boundary is obtained by checking whether (i) the bulk gap is closed via a

finite local density of states and whether (ii) edge states are present. At the red boundary, the edge states eventually vanish and one enters a
conventional metallic state. For the six- and ten-site clusters we do not find magnetic solutions for λR > 0.4. For the eight-site cluster, we still
find Néel order and an antiferromagnetic metal state characterized by magnetic order and a zero indirect bulk gap (see also Fig. 17).

the ring-shaped six-site cluster exhibits equal numbers of all
δi links. Therefore, we should consider the results obtained
using the six-site cluster as the most reliable reference. Note,
however, that we also incorporated the results for eight- and
ten-site clusters and eventually argue that the semiquantitative
phase diagram should look like Fig. 1.

2. AFM metal phase and magnetism

For the eight-site cluster, another interesting situation
arises. Even for strong λR and U , we find XY -AFM order (for
λ = 0.1 and 0.2). For λR > 0.5 and λ = 0.2, however, there is
a narrow intermediate-U phase which is an antiferromagnetic
metal. Similar to the topological-semiconductor (TS) phase,

(a)

(b)

FIG. 17. (Color online) (a) Fermi surface in the AFM metal
phase (λ = 0.2, λR = 0.6, and U = 3.3). (b) Single-particle spectral
function A(k,ω) in the AFM metal phase for periodic boundary
conditions, plotted along the trajectory shown in panel (a).

the strong Rashba coupling bends the bands and gives rise to a
metallic density of states. Locally (in momentum space) there
is always a direct gap for each wave vector k. In contrast
to the TS phase, there are no edge states but instead a finite
magnetization; thus we call the phase an antiferromagnetic
metal. To provide a better understanding of this phase, we
show in Fig. 17 the bulk spectral function A(k,ω) along the
path K → � → M → K → A. In this plot, one can easily
observe that the system is globally gapless, but locally in
momentum space there is always a direct gap for each wave
vector k. We stress that the eight-site cluster exhibits some
bias to support such a phase since the onset of magneti-
zation appears for weaker U as compared to other clusters
(Fig. 16).

We further find that the antiferromagnetic order loses its
U(1) rotation symmetry in the xy plane. We attribute this effect
to the different numbers of δ1, δ2, and δ3 bonds in the eight-site
cluster, which induces anisotropies when Rashba coupling is
present. In Fig. 18 we show the grand potential � as a function
of hx and hy , indicating an antiferromagnetic state pointing
in the y direction. We emphasize, however, that changing the
orientation of the eight-site cluster also rotates the direction

FIG. 18. (Color online) Grand potential heat map as a function
of antiferromagnetic Weiss fields, �(hx,hy) for λ = 0.2, λR = 0.5,
and U = 4 on the eight-site cluster. Due to cluster anisotropy, the
magnetization points in the y direction.
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of the antiferromagnetic order. This shows that anisotropies in
the xy plane are cluster artifacts. We hence conclude that the
actual magnetic order is of XY -AFM type. For larger Rashba
coupling, we still find magnetic solutions using the eight-site
cluster (e.g., the XY -AFM persists up to λR ∼ 1.36 at U = 8).

The ten-site cluster likewise contains different numbers of
δi links, leading to similar anisotropies as for the eight-site
cluster. Around λR ∼ 0.4 we observe a breakdown of the

magnetic phase (compatible with the results for the six-site
cluster). Therefore, we conclude that the resulting VCA phase
diagram does not exhibit a magnetically ordered phase for large
λR and large U which would be consistent with a magnetic
unit cell provided by the small cluster. The aforementioned
AFM metal phase, not present for the ten-site cluster, is most
likely an artifact of the eight-site cluster and is hence omitted
from the final phase diagram in Fig. 1.
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