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ABSTRACT

A template containing two secondary dialkylammonium ion recognition sites for encirclement by olefin-bearing dibenzo[24]crown-8 derivatives
has been used to promote olefin cross metatheses with ruthenium −alkylidene catalysts. For monoolefin monomers, the rates of metatheses
and yields of the dimers are both amplified in the presence of the template. Likewise, for a diolefin monomer, the yield of the dimer is
enhanced in the presence of the template under conditions where higher oligomers are not formed.

Nature employs template-directed synthesis1,2 by using
noncovalent bonding andπ-π stacking, in the formation of
DNA, RNA, and proteins, to obtain well-defined biopolymers
in respect to their precise lengths and specific sequences.
For chemists to be able to synthesize artificial heteropolymers
with such well-defined structures, an alternative set of
molecular recognition motifs and catalysts have to be
identified and developed. Ruthenium-alkylidene-mediated
olefin metathesis,3 using catalysts such as1 and2 shown in

Figure 1, has proved to be a highly convenient method for
the synthesis of natural products4 and artificial polymers,5

as well as mechanically interlocked compounds,6 e.g.,
catenanes and rotaxanes. Ring-closing methathesis3 (RCM),

† University of California, Los Angeles.
‡ California Institute of Technology.
(1) Diederich, F., Stang, P. J., Eds.Templated Organic Synthesis; Wiley-

VCH: Weinheim, 2000.
(2) (a) Busch, D. H.; Stephenson, N. A.Coord. Chem. ReV. 1990, 100,

119-154. (b) Anderson, S.; Anderson, H. L.; Sanders, J. K. M.Acc. Chem.
Res. 1993, 26, 469-475. (c) Cacciapaglia, R.; Mandolini, L.Chem. Soc.
ReV. 1993, 22, 221-231. (d) Hoss, R.; Vo¨gtle, F.Angew. Chem., Int. Ed.
Engl. 1994, 33, 375-384. (e) Fyfe, M. C. T.; Stoddart, J. F.Acc. Chem.
Res. 1997, 30, 393-401. (f) Breault, G. A.; Hunter, C. A.; Mayers, P. C.
Tetrahedron1995, 55, 5265-5293. (g) Hubin, T. J.; Kolchinski, A. G.;
Vance, A. L.; Busch, D. H.AdV. Supramol. Chem. 1999, 5, 237-357. (h)
Hubin, T. J.; Busch, D. H.Coord. Chem. ReV. 2000, 200, 5-52. (i) Stoddart,
J. F.; Tseng, H.-R.Proc. Natl. Acad. Sci. U.S.A.2002, 99, 4797-4800. (j)
Cantrill, S. J.; Chichak, K. S.; Peters, A. J.; Stoddart, J. F.Acc. Chem. Res.
2005, 38, 1-9.

(3) (a) Trnka, T. M.; Grubbs, R. H.Acc. Chem. Res. 2001, 34, 18-29
(b) Grubbs, R. H.Tetrahedron2004, 60, 7117-7140.

(4) For some recent examples, see: (a) Deiters, A.; Martin, S. F.Chem.
ReV. 2004, 104, 2199-2238. (b) Cheung, A. K.; Murelli, R.; Snapper, M.
L. J. Org. Chem. 2004, 69, 5712-5719. (c) Chen, J.; Forsyth, C. J.Angew.
Chem., Int. Ed. 2004, 43, 2148-2152. (d) Nicolaou, K. C.; Montagnon,
T.; Vassilikogiannakis, G.; Mathison, C. J. N.J. Am. Chem. Soc. 2005,
127, 8872-8888.

Figure 1. Ruthenium-alkylidene catalysts1 and2.
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used in concert with the molecular recognition that exists7,8

between secondary dialkylammonium ions (RCH2NH2
+-

CH2R) and dibenzo[24]crown-8 (DB24C8), which readily
form [2]pseudorotaxanes in aprotic solvents as a result of
highly stabilizing [N+-H‚‚‚O] hydrogen bonds and
[C-H‚‚‚O] interactions, has led previously6,9 to the template-
directed synthesis1,2 of catenanes,6f rotaxanes,6d and a mo-
lecular bundle6e under thermodynamic control.

Olefin cross metathesis (CM) has also been investigated
with peptides10 and peptide-based templates11 where the
formation of the new carbon-carbon bond is controlled by
the preorganization exerted by the conformation of the
peptide chain. Herein, we report an approach utilizing a
template-mediated CM, employing the (RCH2NH2

+CH2R)/
DB24C8 recognition motif, in the formation of dimeric
crown ethers, a satisfactory outcome of our preliminary
efforts to template the synthesis of oligomeric and polymeric
structures by acyclic diene metathesis (ADMET).

Particularly relevant to the task we have in hand is the
ability to use the thermodynamic control we associate with
supramolecular12 and dynamic covalent13 chemistry (DCC),
both practices in chemistry which rely upon the reversible
noncovalent and covalent bond making and breaking pro-
cesses as part of key proofreading and crucial error-checking
mechanisms, to template the formation of a well-defined mol-
ecular compound during a reaction that, if it were performed
under kinetic control, would afford a myriad of products. Thus,
the thermodynamically controlled protocol depends, at the
outset for its success, on the formation of ternary and higher
complexes that are extremely stable prior to the catalyst (1
and2 in Figure 1) carrying out an olefin cross metathesis.

Our initial experiments were carried out (Scheme 1) with
a DB24C8 derivative (3aor 3b in Figure 1) to which a tether
comprising a single terminal olefin was added and a
dicationic template5‚2BArF containing two-CH2NH2

+-
CH2- centers (Figure 2). It has been demonstrated previ-
ously14 that the two-CH2NH2

+CH2- centers present in52+

(as its 2PF6- salt) can each thread and bind a DB24C8. Since
5‚2PF6 is insoluble in solvents such as CHCl3 and CH2Cl2,
where the noncovalent bonding interactions between the two
recognition partners is strongest, the BArF

- salt of52+, which
is soluble in these solvents, was prepared for use in the
preliminary experiments. The association constants,Ka1 and
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Scheme 1. Templated Dimerization of the DB24C8
Derivatives3a/b and4
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Ka2, in CH2Cl2 (at 298 K) for the complexation of5‚2BArF

with 1 and then 2 equiv of DB24C8, forming first a 1:1
complex and then subsequently a 1:2 complex, were found15

to be 4.53× 106 and 7.17× 107 M-1, respectively. The
relationship betweenKa1 and Ka2 (i.e., Ka2/Ka1 > 0.25)16a

implies that there is positive cooperativity16 between the two
binding sites. When a 5 mMsolution of5‚2BArF in CD2Cl2
is treated with 2 equiv of3a, the template is bound by this
olefin-bearing DB24C8 derivative as determined (see Sup-
porting Information) by1H NMR spectroscopy. The1H NMR
spectrum reveals that both sites on the52+ template are
occupied (>95%) by crown ethers, namely,3a. After the
formation of [(3a)2 ⊃ 5]2+, the catalyst1 was added to the
CD2Cl2 solution, which was then heated to 40°C; the
formation of the dimer was followed by1H NMR spectros-
copy. The dimerization of [(3a)2 ⊃ 5]2+ was established to
be 73% complete within 40 min, whereas the dimerization
of 3a in the absence of the template52+ resulted in only
48% conversion under identical reaction conditions in the
same amount of time. The template affected (Figure 3) the
rate of the reaction as well. In the presence of52+, the cross

metathesis of3a occurred faster than the reaction in the
absence of the template.

The homodimerizations of the olefin-bearing DB24C8
derivatives 3a and 3b were studied17 (Table 1) at a

concentration of 1 mM by HPLC. Each reaction was
performed in the presence of both catalysts1 and2 separately
for a period of 2 h at 40°C. In the presence of 10 mol %1,
the dimerization of either3a or 3b in the absence of a
template resulted in a 35% yield of the respective dimers in
each case. However, under the same conditions, [(3a/b)2 ⊃
4]2+ reacted to afford a 72% yield of the respective dimer.
Using catalyst2 in the reactions of either3a or 3b in the
absence of the template resulted in much lower conversions
to dimers. Templating the dimerization of the olefin-bearing
DB24C8 derivatives using catalyst2 produced higher yields
of the dimers relative to the reactions without the added
template. Notably, when [(3a)2 ⊃ 5]2+ was treated with 25
mol % 2, a 78% yield of the dimer was obtained, compared
with only 17% for the reaction in the absence of the template.
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Figure 2. Olefin-bearing crown derivatives3a/3b and4.

Figure 3. Formation over time (using catalyst1) in CD2Cl2 at
40 °C of the dimer from the monomer3a for the reaction in the
presence (b) and absence (9) of the template52+, as determined
from 1H NMR spectroscopy using the olefin resonances as a probe.
The concentration of3a and5‚2BArF were both 0.1 mM.

Table 1. Conversion of Either3a or 3b,a in the Presence and
Absence of the Template52+, to the Expected Dimer as
Determined by HPLC

component catalyst yield (%) of dimer

3a 10 mol % 1 35
[(3a)2 ⊃ 5]2+ 10 mol % 1 72
3a 10 mol % 2 6
[(3a)2 ⊃ 5]2+ 10 mol % 2 39
3a 20 mol % 2 27
[(3a)2 ⊃ 5]2+ 20 mol % 2 56
3b 10 mol % 1 35
[(3b)2 ⊃ 5]2+ 10 mol % 1 72
3b 25 mol % 2 17
[(3b)2 ⊃ 5]2+ 25 mol % 2 78

a Concentration of crown ether) 1 mM.
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To extend the concept of a template-directed olefin
metathesis toward the formation of oligomers (Scheme 1),
the DB24C8 derivative4, carrying an aromatic tether bearing
two olefin-containing sidearms, was synthesized. While this
monomer is expected to have the ability to form polymers
by ADMET at higher concentrations, the templated reaction
under more dilute conditions should yield only well-defined
oligomers. When a 1 mM solution of crown4 in CH2Cl2
was exposed to the catalyst1, the dimer was formed (Table
2) in 56% yield. The concentration of terminal olefin

functions in this case is twice that of the DB24C8 derivative
since4 contains two homoallyl functionalities. Thus, when
the dimerization of4 was performed where the concentration
of the crown was decreased to 0.5 mM (and therefore 1 mM
in olefin), the yields employing catalyst1 were comparable
to those for the dimerization of3aand3b. Higher oligomers
were not observed as a result of the dilute concentration of
the reactions. In the presence of5‚2BArF, the DB24C8
derivative4 forms a 2:1 complex ([(4)2 ⊃ 5]2+) with the
template5. The productive CM for this complex at 1 mM
in the template-directed reaction using the catalyst1 was

elevated to a yield of 76%. Similar trends were observed
for the dimerization of4 using the catalyst2.

In conclusion, a template presenting two RCH2NH2
+CH2R

recognition sites promotes the efficient formation in dichlo-
romethane at low concentrations of dimeric DB24C8 deriva-
tives by means of CM from olefin-bearing DB24C8 mono-
mers in the presence of ruthenium-alkylidene catalysts. The
CM experiments with both monoolefins3a and 3b as
monomers demonstrated that the rates as well as the yields
of dimers in the catalyzed reactions are enhanced by the
presence of the template52+. When the diolefin4 was used
as the monomer instead of3a or 3b, the same template was
found to be effective in amplifying the production of the
expected dimer at the expense of higher oligomers.18 Cur-
rently, our efforts are being focused on developing templates
capable of templating the formation of larger oligomers of
well-defined constitutions and chain lengths by ADMET.
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Table 2. Conversion of4 in the Presence and Absence of the
Template52+ to the Expected Dimer as Determined by HPLC

component catalyst yield (%) of dimer

4 10 mol % 1 56a

[(4)2 ⊃ 5]2+ 10 mol % 1 76a

4 10 mol % 1 34b

[(4)2 ⊃ 5]2+ 10 mol % 1 72b

4 20 mol % 2 37a

[(4)2 ⊃ 5]2+ 20 mol % 2 71a

a Concentration of crown ether) 1 mM. b Concentration of crown ether
) 0.5 mM.
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