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Controlled Lagrangians and the Stabilization of
Mechanical Systems II: Potential Shaping

Anthony M. Bloch Member, IEEEDong Eui Chang, Naomi Ehrich Leonafdember, IEEEand Jerrold E. Marsden

Abstract—We extend the method of controlled Lagrangians These matching conditions ensure that the Euler—Lagrange
(CL) to include potential shaping, which achieves complete equations derived from the controlled Lagrangian are consistent
state-space asymptotic stabilization of mechanical systems. Thewith available control inputs, i.e., they match the controlled
CL method deals with mechanical systems with symmetry and . O .
provides symmetry-preserving kinetic shaping and feedback-con- Euler-Lagrange equations for t.he given mechanllcal SyStem_'
trolled dissipation for state-space stabilization in all but the ~ The CL has areshaped kinetic energy that retains the original
symmetry variables. Potential shaping complements the kinetic symmetry. In [13], feedback-controlled dissipation was added
shaping by breaking symmetry and stabilizing the remaining state to prove asymptotic stabilization in all state variables modulo
variables. The approach also extends the method of controlled the symmetry group variables. For the inverted pendulum on the
Lagrangians to include a class of mechanical systems without . . o
symmetry such as the inverted pendulum on a cart that travels cart, we drive the pendu_lum to,t.he upright F’OS'F"?” a“‘?‘ the ?art
along an incline. to rest but not necessarily positioned at the origin. This limita-

Index Terms—tyapunov methods, mechanical systems, non- tion will be overcome in the present work.

linear control, stabilization, tracking.
B. History and Related Literature
The CL method has its origins in [8] and [16]. Our potential

shaping approach is inspired by [12] and [28]. Other relevant
HIS paper continues the development in [13] ofitiethod  work involving energy methods in control and stabilization in-
of controlled LagrangiangCL), a constructive method for cludes [1], [3], [18], [26], [33], [34], [37], [38], and [41]. In [6],

stabilizing mechanical systems. Various supplementary and g relate the potential shaping approach here to that of [24],

ditional results have appeared in [9]-[12] and [14]. Our mai25], and [40]. It would also be of interest to extend the methods

purpose is to introduce potential shaping into the CL methogere to more complex robotic systems, as in [21].

This allows us to achieve complete state-space stabilization withThe work of [2], [22], and [23] studies the CL method from

large regions of attraction for underactuated systems such astHie point of view of matching Lagrangians defined in terms

inverted pendulum on a cart. Preliminary tracking results are off-general metric tensors. This has the advantage of generality

tained. The class of mechanical systems considered, whichdiid gives geometric insight into the problem, but it has the

cludes balance systems, tends to be difficult to control; for edisadvantage that one is left with a rather general PDE to be

|I. INTRODUCTION

ample, they are often not feedback linearizable. solved in order to make the method effective in applications.
We have focussed on techniques that give explicit and construc-
A. The CL Method tive matching conditions, control laws and stability criteria.

We consider a class of control laws for mechanical sys- Nonlinear stabilization of the inverted pendulum on a cart has
tems with symmetry, whose closed-loop dynamics is imeen studied elsewhere in the literature as it is a representative
Lagrangian form. This has the advantage that stabilizatioonlinear problem not easily treated with traditional methods.
can be understood using energy-based Lyapunov functioRsr example, in [32] and [39], methods for stabilization of non-
Correspondingly, one gets large and computable basinsliokar systems in “feedforward” form are developed and applied
stability, which become asymptotically stable when dissipatite this example.
controls are added. [13] gives sufficient conditions, called
matching conditionsinder which the CL method gives a conC. Main Results

in [13] by augmenting the construction to include symmetry-
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pendulum position. (The equations are translation invariant, @ent vectory, to ¢ at a pointg € @, we can write a unique
this symmetry does not lead to a conservation law in the uswkcomposition
sense).

Finally, we also indicate in this paper how the results can be vq = Horvy 4 Verv, Q)
used for tracking problems. This topic is treated in a preliminary
way here; much more needs to be done in this area, but sueh that the vertical part is tangent to the orbits of@haction

results indicate that the approach should be of interest in ti@igd where the horizontal part is the metric orthogonal to the

area. vertical space; that is, it is uniquely defined by requiring the
identity

D. Outline g(vg, wy) = g(Hor vy, Horw,) + g(Ver vy, Verw,)  (2)

In Section II, we outline the CL approach to stabilization

and review matching and stabilization by kinetic shaping. Wwherewv, andw, are arbitrary tangent vectors ¢ at the point

Section 1lI, we introduce potential shaping and present suffi-c @. This choice of horizontal space coincides with that given

cient conditions for matching. In Section IV we provide suffiby themechanical connectio(see [30]).

cient conditions and the construction for complete state-space

stabilization. In Section V, we prove the asymptotic stabiliZS. Kinetic Shaping

ability of the equilibria. In Section VI, we apply the construction The CL uses a modified kinetic energy, while the potential

to the inverted pendulum on a cart that travels on an inclingnergy remains unchanged for the moment.dcgtienote the

In Section VII, we examine the spherical pendulum on an ifxfinitesimal generator corresponding to a Lie algebra element

clined plane and in Section VIII, we use these methods to _sh%% g, Whereg is the Lie algebra of7 (see [30] or [31]). Thus,

that some interesting tracking problems can be handled. Finaflys eache € g, ¢ is avector field on the configuration manifold

Section IX presents some simulations of the techniques for {ieand its value at a point € Q is denoted:;(q).

inverted pendulum to show their effectiveness. Definition I1.1: Letr be a Lie algebra value! equivariant
horizontal one form or; that is, a one form with values in
the Lie algebrag of G that annihilates vertical vectors. The

[l. METHOD OF CONTROLLED LAGRANGIANS r-horizontal spacet ¢ € @ consists of tangent vectors &

We briefly review the CL approach to (partial state—spac%aj)t g of the form Hor,v, = Horv, — [r(v)lg(q), which also

stabilization by kinetic shaping as presented in [13] (see alsraﬁznf_ig(;tigl ;&:égg)n g:g?;;?:gé?ﬁgog;?}efr?f;“@
: o , (vg) =

[9]-[12]). This section is a brief summary only of the key res;, r(v,) + [r(0)]a ()

sults of part | that are essential to the development in the rest.* 2. . Q 4):

: . . ) ) efinition 11.2: Given g,,g, and 7, the controlled La-
of this paper. One begins with a mechanical system with an un- naian (CL)is defined byl r — K ~ vV where
controlled (free) Lagrangia equal to kinetic energy minus 9 219 Yoroo Mt '
potential energy. We modify the kinetic energy to produce a new 1
CL, which describes the dynamics of the controlled closed-loof~..»(v) = 5 [9»(Horrvg, Hor-v) + g,(Ver-vg, Ver-v,)] .
system. 3)

The equations corresponding tb., ,(v) will be our
closed-loop equations. The new terms appearing in those
equations corresponding to the directly controlled variables

Suppose our system has configuration sp@cand that a are interpreted as control inputs. The modifications to the
Lie groupG acts freely and properly of. The goal of kinetic Lagrangian are chosen so that no new terms appear in the
shaping is to control the variables lying in thkape, or orbit equations corresponding to the variables that are not directly
spaceS = /G using controls that act directly on the variablegontrolled. We refer to this process msitching
lying in G (see [23] for a discussion of the geometric structure Once the control law is derived using the CL, the closed-loop
of actuation).Throughout this paper, we will assume ti@tis  stability of an equilibrium can be determined by energy
an abelian group. methods, using any available freedom in the choice-,0f,,

andg,.

A. Configuration Space and Symmetry Group

B. Lagrangian and the Metric Tensor

L . _ D. Structure of the CL
Assume that. : T'QQ — R is invariant under the given ac-

tion of G on Q. In many examples, the invariance amounts to AS Shownin [13], the controlled Lagrangidn ., ,(v) has the
L being cyclic in theG-variables, which gives a conservatior©!lowing useful structure.

law for the free system. The construction preserves the invari-1 eorem I1.3: Assume thay = g, on Hor andHor andVer
ance of the Lagrangian, thus providing a modifietontrolled &€ orthogonal fog,. Then

conservation law. The essence of the modificatioh ofvolves 1 1
changing the metric tensg(-, -) that defines the kinetic energy Lro,,(v) = L(v + 7(v)q) + EQU(T(U)Qa T(v)g) + Qw(v)
(1/2)(¢(q, ¢)). The tangent bundI&@ can be split into a sum

of horizontal and vertical parts defined as follows: for each tawherev € 7,Q andw(v) = (g, — g)(Ver,(v), Ver,(v)).
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The coordinate formula fok is Definex = —1/0. Under the simplified matching assump-
tions SM-1-SM-4, the control law is

. 1 . 1 .
L(z*, 2%, 6%) = Ega@a';%@ + Goad®0% + anbeaeb —V(z®)

Uq = _a (ﬁgaa-/ija) . (6)
and the coordinate formula fds- ,, , is ) o ] )
The acceleration terms can be eliminated using the equations
. 1 themselves so that the control law becomes
L;op(v)=L (a:a, #°,6% + 'rg,j:a) + §rfab'rgfgj:ajt'8
s 1
. [
+ %wab (90, + gacgaca'ca + Tgi‘a) Uq = — ’{{g,ﬁa;‘/ - géaA * |:ga,8,'y - 59@7@
3b bd .3 b8
X (9 + 97" gpad” + T ) . 4) (1 +r) gadgdag,8a7'y:| }
Here .3y sa OV
6 coordinates for the abelian symmetry graiip X &Y 4 figsa A dxe (7)
¢ coordinates on the shape spaggG; where
oab, way  COefficients for the last two terms, respectively, of
the expression fok. ., , in Theorem 11.3. Aap = Gap — (1 + ) 9ad9% ga- (8)

We letpab = Gab + Wab-
G. Stabilization

An equilibrium for the controlled system corresponds:fq
¢ = 0andJ, = pu,. Let

E. Conserved Quantities
Thecontrolled conserved quantitg given by

5 Ly

— b bd s b~ a o 1 @
0= g = Pa (9 + % Gaud™ + ToT ) (5) V(%) = V(z )+§g s )

the amended potential. The following is proved in [13].
F. Matching Theorem I1.4: Assume SM-1-SM-4 hold. Then, the given
equilibrium is stabilized in the sense of Lyapunov (modulo the
action of the groug=) by the control law (7) provided that the
second variation of

Consider thecontrolled Euler—Lagrange equatiorfer the
given Lagrangian

d 0L OL 0 d OL 5 1A aph Y 10

_— — ——— =0 —_—— = Ug- L= S ' ¢

dtoie 9z dt gée pi= g AasT T (10)
(as a function of the variables*) evaluated at the equilibrium,

where the controls are in tifedirections onlyMatchingmeans is definite.
that we seek controls and o, p such that these equations match
the Euler—Lagrange equations for the Lagrandian. ,. Suffi-
cient conditions for matching were developed in [13] (see also
[10], [11], [14]). We consider here simplified sufficient condi- N this section, we extend the method of controlled La-
tions for matching that are satisfied for a class of systems tfngians to the class of Lagrangian mechanical systems with
includes the inverted (either planar or spherical) pendulum 8gtential energy that may break symmetry, i.e., we still have a
a cart. A different perspective on matching is given in [2] angymmetry grout7 for the kinetic energy for the system but we
[23]. We give a summary of this perspective in Appendix 1 alorfePw have a potential energy of the forvh = V' (2, 67) that
with a discussion of the related paper [29]. need not b&7-invariant. Further, we consider a modification to
For this section, we shall review the situation under the ad1e potential energy that also breaks symmetry inGheari-
sumption thay, = g, thatis,z = 0. This will be generalized to ables. _Let the potential enerd¥ for the controlled Lagrangian
include nontrivialg, in the Section I1I. Thesimplified matching be defined as
conditionsare as follows:

I1l. M ATCHING WITH SYMMETRY -BREAKING POTENTIALS

, ) V(z*,0%) = V(z®,0%) + V.(z*,6%) (11)
SM-1: 5., = og,p fOr a constant (this definess,,);
SM-2: g, is independent of~; whereV, is the modification—to be determined—that depends
SM-3: 7° = —(1/0)9% gaa (this definesr?); on a new real parameter

SM-4: gaq.s = gsa.« (@ second condition on the metric).  Our next goal is to relax the assumption that= ¢. We con-

We use commas to denote partial differentiation with respesitier the case of mechanical systems for which the simplified
to z®. The conditions SM-2 and SM-4 imply that the mechamnatching assumptions SM-1-SM-4 hold. However, we retain
ical connectiony®® g, for the given system is flat, i.e., systemghe flexibility afforded byg,,.
that satisfy the simplified matching conditions lack gyroscopic We note that more general matching conditions are possible
forces. This condition also plays a role in the work of [4], [5] irand indeed necessary in certain cases; see, for example, [11]. It
the context of flat inputs for systems controlled by oscillatoris shown in that paper that one can achieve matching for systems
inputs. where SM-2 does not hold, i.e., the inertial teggz depends
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onz®. This is necessary for analyzing the pendulum on a rotorUsing (12) and (13), we compute that
arm, for example. In this situatiog, is not taken to be equal

to g. A similar situation arises in the case of a system where, (L ) =€, (L. )+ -1d (jb(gbdg g +Tb))

the configuration space is a nonabelian group crossed with an ool p dt .

abelian group, for example, the satellite with momentum wheel p—L1= 4y by .g, OVe
1 b y _ J a k

see [10] and [14]. p v (9900, + 75.0) or®

We considerg, = pga; Wherep is a scalar constant. The

_ pP—1 4 by 7
controlled Lagrangian takes the form =Ea(Lro) + P (9" 9aa +7a) o

-1 bd b -8
1 . . . b9 Gadp+Tqg) 2
L e0) = L)+ (o~ Dgus (8 + 4" 0c™ 4 7557 ( )
. 2 _p_lj(bd +b)-,@ V.
x (6" + g*gaai” + 4 ) — Vi(a®,6) (12) 097 Ipde F Tp e
1 av,
. ga:(L‘ro)"“—(g gad+7)Jb+aa
whereL, ,(v) = L (2,7, 67,6 + 78 +(1/2)o g 77} p =
i where the last equality follows by the simplified matching as-
sumptions. Using the calculation &%,(L, ,) from [13], we

A. The Conservation Law and Control Law compute

The conjugate momenta, to 8¢ is

1 Ve p-—1
gac(L‘r,cr,p, ) ]

(gadgad + TZ) ja

7 aL‘ra’ € ) - . @
Jo = TP PYab (9b —I—gbdgadxa + T§$a> . (13) ax
a6 av’
:_890’ p +—9 gad+T)
The new Euler—Lagrange equations in #fevariables are v
+ 83:;
% <LT’.‘”") + g;i + g;/; =0. oV [, 4P N V.
89 - 890 Ta g g a.’f(y
Comparing this equation to our controll@¢l equation, i.e., _ a_V/ l Ve
- g gad + —
a6 o Ox™’
d (9L oV _ (15)
dt \age ) T 990 ~ e
We define a new matching condition as follows:
the control law can be read off as SM-5. The potentiall” satisfies
d (0L 10L., p—10V 19V, *V %V
U = | oo = ——2F - ——— 050 = 70" Gaa-
g  p 89a p 00%  pdoe Jelinkdel Oz o0
d b o —10V 19V . . .
=- %(gaw %)+ —— 905 5007 (24) In Section V, it is shown that SM-5 is the necessary and suf-
p p ficient condition for the existence of the soluti®h to the fol-
lowing PDE

B. Matching ther-Euler-Lagrange Equations

. . - av. IV, 1 p—1\ . oV,

The next step is to determine conditions so that the Euler-La— + ——+—19"Gaa + 57— =0 (16)
) . . age  g6e o P oz

grange equations in the* variables match.

. R . " 3
Given a Lagrangiad in the variablegz*, "), we let which makest,(L,.,.,..) = 0 in (15).
With respect to (16), we note that fdf. = 0 andV in-
d 0L 9L . iy - :
E.(L) = i~ B dependent o, there is no condition op. This is because in
Tz ™

the special matching situation discussed heie not needed
denote the correspondiriuler—Lagrange operatonWe now when there is no symmetry breaking. As discussed at the begin-
seek conditions under which the controlled equations for tfid of the section, however, for more general inertia matrices,

LagrangianZ imply that p 1s needed for matching even in the presence of symmetry (see
[11]). In this case, condition (16) will need to be modified. A
dOL;y,c OL.g,. more general matching condition in the presence of a potential
Ex(Lrope) = p axap - aa’j;p’ =0. was given in [2] and [23]. The above computations prove the fol-

lowing theorem, which gives sufficient conditions for matching
This is the condition we need for matching the complete setwfth symmetry-breaking potentials.
controlled Euler—Lagrange equations with the Euler—LagrangeTheorem IIl.1 (Matching With Potential Shapingynder
equations for the controlled Lagrangian. Assumptions SM-1, SM-2, SM-3, SM-4, and SM-5, the
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Euler-Lagrange equations for the controlled Lagrangiarhe Euler—Lagrange equations in terms of the CL are
L; -, coincide with the controlled Euler-Lagrange equa-

tions. d aLﬂo,ﬂ, aLﬂo,ﬂ,e 1 p—1 diss
Next, we consider stabilization and recompute the stabilizing z — 550 =~ gpa \ o + e 9 gaariy
control law given by (14) as a function of positions and veloci- ; 51 oL
T,O.P€ T,0,0.€ __ diss
ties only (i.e., we eliminate acceleration terms). d o 900 —Ya - (18)

IV. STABILIZATION WITH SYMMETRY -BREAKING POTENTIALS Note that the right-hand sides of (18) are identically zero in

In the case that the conditions for Theorem Ill.1 arthe absence of a dissipative control as it should be by matching.
satisfied, the energy functiof’, , , . for the controlled La- The parameters in the controlled Lagrangian are chosen to
grangianL, . , ., that is, the energy function associated tachieve nonlinear (but not asymptotic) stability. One computes
the closed-loop system, can be used as a Lyapunov functitirat
In particular, we use it to assign the remaining freedom in

o, p and ¢ to guarantee stability of an equilibrium of in- dE _(d (OL; s, OL: gp.c g
terest. Notice that any equilibrium necessarily has the form dt TP T\ dt 9ba a0e
(z*,6%,2%,0%) = (22,6¢,0,0). d (L pe\ OLrgpc) .
We note that in this paper, we achieve stabilization of an equi- + pr D T T e T
librium for the system, i.e., a fixed point for the flow in the full 1 _
phase space. This is in contrast to the situation in [13] where = <9“ + <—— + p—) g“dgada:a> uies
we considered stabilization of systems modulo the symmetry o P
group, i.e., stabilization of eelative equilibrium (19)
A. Conditions for Stabilization Therefore, we can choose
We computeF, ; , .-
. . 1 -1
U™ = cagnd <9” + <—— + p—) g”ﬁgaeﬁc”> . (20)
E OL; o pe .o n 8L7707,,769-a I o p
ro.p.E — < X < - Lro,p.e
2050, axa 890’ 2050,

:19 i g (ga n Tgi@) Here,(c?) is a control gain matrix, which is chosen to be positive

2 (resp. negative) definite if the equilibrium is a maximum (resp.
+ lgab (éa + T&zj;a) (éb + ngc,a> mlmmum) OfE: 5 pe; thg matrix(c¢) may depend o™, 6%).

2 / This choice of control gives
+ ZagabT”Tga:“aza

d . 1 p-1

1 . L oo — B e = d i - G o™

+ §(P — 1)gas (9“ + 9% Gact™ + 75T ) g e T Cadbd < * < o * p )g Jaed )
‘ - 1 -1
X (Gb + gbdg’gdj:'a + Téi”a) + V/(x*,6%). X <9b + <—— + Pz ; ) gbeg’gea'cﬂ) .
' g

(17)

To get asymptotic stability of the equilibrium, we will use
The Lagrange—Dirichlet Theorem then gives the following suf-aSalle’s invariance principle. From the above, we see that
ficient conditions for Lyapunov stability. d(E; o,p,c)/dt vanishes on the se¥t defined by
Theorem V.1 (Lyapunov Stability and Potential
Shaping): Assume SM-1-SM-5 hold. The equilibrium diss a1 o
defined by(z%,#%,0,0) is Lyapunov stable if it is a critical a = ca;(']d = gaa@®) = 0.
point of V/ and if the second derivative & , , . evaluated at

the equilibrium is definite. Theorem V.2 (Asymptotic Stabilizationfissume that the

hypotheses of the Stabilization Theorem IV.1 as well as the as-
sumptions SM-1-SM-5 hold. In addition, assume thatcon-
To achieve asymptotic stability, we add a dissipative contrsists only of equilibria and that the dissipative control law is

B. Conditions for Asymptotic Stabilization

term, i.e., chosen as in (20). Then, the given equilibrium is asymptotically
1 stable.
g = uo™ 4 —y i We investigate specific conditions under which the hy-
P potheses of this theorem can be verified in Section V.
where We again define; = —1 /0. The total controk,, is
cons = —% (gab'rga'ca) + %g;z ig;/a Uq = g™ + ;u;hss = ;t(ngaax ) + wg. (22)
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where Notice that this change of coordinates fixes the equilibrium
p—19V 19V, 1 s (xe,He,0,0),i.e.,(xg,eg,0,0) = (z¢,92,0,0).
Wq = T, 065 000 + ;% . In the new coordinates, the PDE (16) becomes
This control law is the sum of our original stabilizing control law gV; = g‘; gha . (26)
without symmetry breaking (6) plus the potential modification * yor
and the dissipation term. Assume that we have a solutidpto this PDE. Then, the mixed
Using the same procedure as in [13], we can eliminate accBfrtials ofV. should be equal, i.e.,
erations in the control law expression. We compute 3 <8V ah“) 3 <8V am) @)
p Therefore, (27) becomes a necessary condition for the integra-
y <_3_V’ 4 udiss) tw bility of the PDE (16).
o6b b ¢ Now assume that (27) holds. Then, by using the vector cal-
Sar 1 culus, we derive the following solution to the PDE in (26):
= ’i{g,ﬁa,"/ - géaA |:goz,8,'y - 59,@"/,@ v ahe R
Ve(@®,y) =/ Gy Hga 22T V(")
- (1 + Ii) gadgdag,ﬁa,'y} }-/ba-/t’y c Y *
whereV. is an arbitrary function. We define the curgeas fol-
+ ,igéaAéaa_V oV lows. Fix(z%) € S. Foreachz®, y*) € S x G, we choose any
dze 062 ) curveC € S x {(y*)} joining (z2, %) and (z*,»*). Then,
1 (1 + mgéaA‘s"gadgd”) v’ the integration is path-independent by (27) and Stokes’ The-
P 90 orem (we regarddV /oy®)(0h*/0x*)dz* as ay*-dependent
+ 1 (1+ ﬁgéa’Aéagadgdb) uglie, (22) one-form onS). In the old coordinates, (27) is expressed as
P 9V PV

Wgadg,@d = Wgadgad (28)
V. ASYMPTOTIC STABILIZATION WITH SYMMETRY -BREAKING

which is Assumption SM-5. Thus, Assumption SM-5 is a nec-
POTENTIALS

essary and sufficient condition for the integrability of the PDE
In Section IV, we derived a general result on stability, whic{i.6). In particular, whe is of the form
depends on the invariant s& in Theorem V.2 consisting only

of equilibria. In this section we give sufficient conditions for this Vi(@®,0%) =Vi(a%) + V2(6%)
to hold. =Vi(z®) + Va(y® — h%(z"))
A. Notation (28) is satisfied and the solutidn is given by
When we say a functioif has a maximum or a minimum at Ve(a®,y®) = =Va(y® — k(=) + Ve(u®) (29)

«, we will mean that it is a local maximum or a local minimuquheref/ is anarbitrary function
and thatr is a nondegenerate critical point Hf ‘ '
We begin by deriving an integrability condition for the PDEB. Kinetic and Potential Shaping

in (16). Let(a:_ﬁ ,6¢,0,0) € _TQ be the equ_|l|br|um Qf Interest. First, we consider kinetic shaping. By definition of the new
When there is no confusion, we sometimes omit the indices

«, f3,...0ra,b,...Iin the coordinate expression of points. B)%metnc, e can exprefss the kinetic energy as follows (see [13]
or additional details):

SM-2, SM-4, and the Poincaré Lemma, for eadhe one form
9*°gacdz® is closed and hence locally exact. (Recall that local Kr o p(vg) = lAa,gab%"’ + lpgabC“Cb, (30)
exactness of this form is equivalent to the fact that the mechan-
ical connectiory® g,., is flat.) where¢® = 4% + (1/p)g%gapi® and Ang = gag — (1 —

Therefore, there is a function: U — g for an open subset 1/5)g,49%*g,5 Where the latter is the same as in (8). Notice
U in S such that that the vertical part of the kinetic energy can be made nega-
he p—1 1\ . ) Y tive definite or positive definite in the new vertical spdéer

= <T - ;) 9*°gac with 2%(zc) =0. (23) depending on the sign gfsince(g,; ) is a positive—definite ma-
trix. To have control of the horizontal part of the kinetic energy,
we make the following assumption.
(2, y%) = (x, 6% + h*(z®)). (24) SM-6 The matrix(g..(«%)) is one-to-one.

) ) ) i ~ SM-6 requires that the mechanical connection as a map be in-

This coordinate change induces the following new local Coorqé'ctive. Itis equivalent to thelcally ) strong inertial coupling

x>
We introduce a new coordinate chart fgras follows:

nates forr'e: propertyin [36] and theinternal/external convertible systeim
a a o a a a a ¢ o pa aha -3 [20]
(@%,y", 2%, 9%) = <ﬂj 07 + A7), 2,67 + EYCR Note that SM-6 requires thatim G > dim S. That is, the

(25) number of actuated directions is larger than or equal to the
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number of unactuated directions. By positive—definiteness sécond derivative oF, ,, , . negative definite at=%, y2, 0, 0).
the matrix(gq;,) and SM-6, the matrngadgd“g,ga) is positive This second derivative is

definite atz. Using the standard simultaneous diagonalization,,

technique in linear algebra, one sees that the matig D Er o pe(e; ye, 0,0)

becomes negative—definite & if %(-/Ee) 0 0
_ 527
1 ab _ - 0 ayaa;b (ye,) 0
1—; > max {)\ |det (ga,g — AJaad gb,g) |30:30e = 0} . (31) 0 0 D2K (%, v, 0,0)

Then, by continuity the matrixi, s is negative definite in @ where DK denotes the second derivative of the kinetic
neighborhood of:¢. Also, it can be made positive—definite ifenergy part of the controlled energy in (36) with respect to

o satisfies (&*,%*). The first two diagonal blocks are already negative
1 ) definite and by kinetic shaping we can make the last block
1 A ldet Aoag®™ =0 ; = :
T, Swn |det (gas = Adaag gbr8)|ac=ace I D?K(z%,4%,0,0) negative definite by choosing < 0 and

Thus, we have complete control over the shape of the kinegcasatlswmg (31). Therefore, ., has a maximum at
energy under condition SM-6. e, e, 0,0). Using (35) and (36),

In this section we are interested in the system whose potential d E _ dissa
energy is of the following form. qt TP T Ha Y-

SM-5’ The potential’ (z¢, %) is of the form Define x4 as follows:

Vi(z®,0%) = Vi(z®) + V2(6%) (32) liss ngbdyb (37)

whereV, has a maximum atc*) = (). _ where(c?) is a positive definite matrix in thgy,, ) metric. (This
As shown above, this form of potentieilsatisfies SM-5with gefinition is identical to (20)). Therfz?, 42, 0,0) is an equilib-
Ve given by (29). The potential” for the controlled Lagrangian rjym of the closed-loop system and the time derivative of the

is given in the new coordinates by controlled energy is given by
v’ oz’ 2y = Vi (%) + f/( a 33 d o
(-/L’ y ) 1($ ) (y ) ( ) %E—no—’p’g — ngbdyayb Z 0' (38)

whereV. is an arbitrary function o6y. When the given poten- o
tial is of the form SM-5', then potential shaping alone canndinus:(z¢, ¢, 0, 0) becomes a Lyapunov stable equilibrium of
handle this problem (see [24], [25], and [40] for an account §f€ closed-loop system.

the potential shaping approach).

The controlled Lagrangiah- . , . has the following form in C. Asymptotic Stabilization

the new coordinates: Now we show that the equilibriurgx., v., 0, 0) is asymptoti-
1 ool 1 cally stable. Sinc&- , , . has a maximum dt:., y., 0,0) and it
e = 5 <ga’8 - <— - ;> g“bgaag@b> 0 is nondecreasing along the solution curve by (38), theresif
. P such that the set
s a - rasb ay _ Y7 (,,a
+tGaal Yy + 2pgaby Y Vl(x ) Ve(y ) (34) Q. = {Z _ (a:a,y“,a':a,y“) €TQ | ET707P7€(Z) > c}
while the Euler—Lagrange (18) take the form is a nonempty, compact and positively invariant set. By com-
dOLrgpe Olrg,e pactness and positive invariance, integral curves startiigg). in
7y e defined and stay i, for all ¢ >
At Oie 9z are defined and stay if1.. for all ¢ > 0.
dOL;spe OLry,. . Define
il - Pi€ 2TaP, :u;llss. (35)
dt - dge Iy o a co o d
E=4z= (.’L’ YT, Y ) S Qc _E‘r,cr,p,e(z) =0
This shows that the coordinate change makes the controlled La- dt
grangian problem with the dissipative input look exactly like the ~ ={z = (*,%*,2%,9%) € Q. | §* = 0}

original Lagrangian problem with a general input. That is, the A1 =the largest invariant subset &f
two Lagrangian system&., v) and (L, , ., ud*) are feed-

back equivalent. As in Section V, there is a functioh: U C S — g for an open
The controlled energy- , . ., may be written as subsetl/ of 5 satisfyingdl®/dz* = g*°ga.. Endow the Lie

. algebrag of the groupG with the metric(g,s). By shrinking

Erpe=Kro,+Vi(z®)+V(y?). (36) €., we may assume théf containsK, := 7, o T'n(2,.) where

Wi 5 L f . B 7 @ — S = Q/G is theG-principal bundle projection and
e want to use ma,pe 85 @ Lyapunov unct!on. €CaUSE. . 75 _, Sisthe tangent bundle projection. Note thét is
Vi(z®) has a maximum at® = z2, it is appropriate to make

E h : P AR also compact ir' since it is a continuous image of the compact
7., NAVE @ maximum e, y*, i, 9) = (22,42,0,0).  se10  Sincel is a continuous function ankl, is compact, there
Choose any,(y*) with a maximum at* = 2. Usually a

; € : : : is anM > 0 such that
negative definite quadratic function will do. Thér, 42, 0,0)
becomes a critical point &, , .. Next, we seek to make the iz < M (39)
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for all (z*) € K.. Supposex(t) = (x®(t), y*(t), 2%(t), 4°(¢))
is contained inM for all ¢ > 0. Then we have

y ' (t) =y*(0), ¥ () =0 (40)
forall ¢ > 0 and
z¥(t) = 75 0 Tw(2(t)) € K. (41)

for all ¢ > 0. Using (34), (35), and (37), we get the following Note thatz(t) = (x

Euler—Lagrange equation for thé variables:

‘/5 d - b
=C .
aya aJudlY

d o
%(gaax )
By (40), this becomes

d 8V
5 e (1) = ().

Integrating this twice with respect tawith use of the definition
of [*, we get

—(grad V.)*(3/"

— (g% Gact®) = —g*°

1@ (1) = 5 (erad VOGP +pt 07 (42)
for some constantg® andv~®. Thus
[HERONE {n(gradvx “(0))¢*
— ((grad V) (y*(0)), i)
+ (111l = ((erad Vo) (y*(0)),1) ) #2
+ 2{u, )t + ||1/||2
wherex = (u%), andy = (1%). If ||(grad Vo)(y*(0)]| # 0

or |[u]] # 0, then ||i(z*(¢))|| will eventually get un-

bounded, which contradicts (39) and (41). Thus, it follows that 3) * :

I(grad Ve)(y*(0))|| = 0 and||u|| = 0. Sincey® = y¢ is an
isolated critical point ofi’,, it follows *(0) = y2. Using the
above arguments, (42) beconiégz(t)) = v* = constant.
Differentiate with respect té, getting

(43)

forallt > 0. So far we have shown that the trajectefy) € M
for all ¢ > 0 is of the form,z(¢) = (z*(¢), y2, &*(¢), 0) for all

gacgac-jj(y =0

t > 0. Using (34) and (35) we get the following Euler—Lagrange)

equation for thec* variables:

-1 1 . .a
- <pT - _> g gaaQ@b) x'ﬁ +g(m,y :|

dt
1 p—1 1\ ,
T3 <g"/,8,a - <T - ;) g ’ (g"/a,ag,ﬁb +g'yag,8b,a)>
x 7P 4+ M _ (44)
Iz
Substituting (40) and (43) into (44), we see that
z2(t) = (z™(t),y2,4™(t),0) € M obeys the following
equation:
d, g 1 Vi _
dt(gaaai ) — 397, W2 4+ —— poys =0. (45)

Notice that(z%,0) € TS is an equilibrium of (45), that
(gap(z2)) is positive definite and thab?V,/9z?(z ‘j) is
negat|ve—def|n|te sinc®; has a maximum at® = z¢

. The
linearization of (45) af{z®, &%) = (z2,0) shows that(a:e, 0)
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is a saddle equilibrium of (45) witdim S real positive and
dim S real negative eigenvalues. Sinf® is an invariant set,
Tr(z(t)) = (z*(t), £*(¢)) remains inl'w(L2.).

Therefore, after shrinking2. if necessary(z*(t), z*(t))
must converge to the equilibriurz®,0) of the dynamics
in (45). Otherwise, it will leaveT'7(2.), contradicting the
invariance of(2...1
*(t),y2,2%(t),0) is aniso-energytra-
jectory sincez(t) € M C &£ and SOE;, ,.(z(t)) is con-
stant. Sincgz2,y2,0,0) is an isolated maximum of. , , .,
no iso-energy flows except the equilibrium(at’, 42, 0,0) can
converge tqz%, ¢, 0,0). However, the fact thdt:*(¢), 2% (¢))
converges tqz¢,0) implies that the iso-energy flow(t)
(z*(¢t),y2,2*(t),0) will converge to(z2,y%,0,0). Therefore,
the only possibility is that(t) = (z&,y%,0,0) forall ¢t > 0.
Hence, M consists only of the equilibriur?, y%,0,0). Thus,
by LaSalle’s invariance principléz<, 4%, 0,0) is an asymptot-
ically stable equilibrium of the closed-loop system, didis
a region of attraction. Recall thét2, y2,0,0) in the new co-
ordinates corresponds ta¢,#%,0,0) in the old coordinates.
Therefore, we have proven.

Theorem V.1 (Asymptotic Stabilization-Specific
Case): Assume that conditions SM-1-SM-4, SM-5’, and
SM-6 hold. Let (%) be the maximum point ofV; of
interest. Then, there is an explicit feedback control such that
(z%,6%,0,0) becomes an asymptotically stable equilibrium.
The control is given in (22) and (20) with parameters chosen to
satisfy the following three conditions:

1) V.(y4*) should be chosen to have a maximunyat= 62;
2) p<0;
= —1/0 > max {)\| det (ga,ﬁ — )\gaag”’bgb’g) |m=%
D. Remarks

1) Note thatQ2. here is not the best estimate of a region of
attraction. We used. as an invariant set above to obtain
a rigorous proof. In some instances there may be a larger
invariant set and hence larger region of attraction.

The results here, as described earlier, are applied to a
restricted class of systems satisfying our so-called special
matching conditions. We intend to consider other systems
in forthcoming work.

The fact that the energg. , .. of the controlled La-
grangian may have a maximum at the equilibrium rather
than a minimum does not necessarily imply that the con-
trolled Lagrangian system is fictitious or unphysical. Notice
that in (34), (35) and (36), we can u¢e-1)L,, ,. and
(—1)u'®s as a new controlled Lagrangian and new input to
the controlled Lagrangian so that the resultant controlled
energy (—1)E-, , has a minimum at the equilibrium.
This operation does not affect the matching conditions.
Furthermore, investigation has been made of the effect
of friction on the stabilization of an equilibrium that is a

3)

1This may be proved by appealing to the Hartman—Grobman theorem or to
the fact that any trajectory that remains in a neighborhood of an equilibrium
indefinitely must lie on the center-stable manifold and in this case the center-
stable manifold equals the stable manifold.
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Notice that the potential energy breaks symmetry in the cart

" translations. For notational convenience we rewrite the La-
g I = pendulum length grangian as
m = pendulum 1
bob Lo ; . )
M o L($,5,.5) = 5(ad® + 28 cos(¢ — )5 + 75%)
g = acceleration +Dcos¢ + ygssin, (46)

due to gravity

wherea = ml?, 8 =ml,v =M +mandD = —mgl.

B. The Controlled Cart

§ The equations of motion for the cart-pendulum system with
a control forceu acting on the cart (and no direct forces acting
on the pendulum) are

maximum for the controlled system (see [42] and [43]). In ia_L _ oL —0: 4oL oL —u

this work, it is shown (analytically and experimentally) that dtoggp ¢ 7 dtdi s

friction contributes to stabilization in the unactuated direc- By inspection we see that SM-2 and SM-4 hold. To
tions and can be compensated for in the actuated directioggnsfy SM-1 and SM-3, we take,, = og, = ov and
This was verified on an experimental inverted pendulum, _ (1/0)g% g = (ﬁ’/,y)ﬁcos((;_ ) threa is a scalar
with fulcrum attached to a rotating link. More recent Worlﬁ((x)nstant andk :“jl/g_ It is easy to seé that the potential in

has shown evidence of robustness to unmodeled dynamigs, _+i<fies SM-5' withV: () = myl cos ¢ having a maximum
namely the presence of an unmodeled extra link attachedatto¢ — 0 and thatg ((;)) — micos(¢ — 9) # 0 is clearly

Fig. 1. The cart-pendulum on an inclined plane.

the end of an inverted pendulum. one-to-one for-7/2 + ¢ < ¢ < /2 + 1, satisfying SM-6
unless the incline is vertical. From (11) and (33), the potential
VI. INVERTED PENDULUM ON AN INCLINED PLANE energy for the controlled system is

We apply the above result to stabilize the inverted planar pen- 1 _ ¥ _ ¥
dulum on a cart that travels on an incline of anglelLet s de- Vi95) = Vil@) - Vely) = mylcosd + Vely)
note the position of the cart along the incline anddetenote where from (23) and (24)
the angle of the pendulum with the upright vertical as shown 3
in Fig. 1. This example generalizes the pendulumon a cart ex- 4= s+ <H + Ll) /—(Sin(d) —2p) + sine).
ample considered in [13] to the case of stabilization in the full P v
phase space as well as putting the pendulum on an incline. Following Theorem V.1, we choosd, to be V. =

eD~*y?/(283%) with ¢ > 0 so thatV, has a maximum at

A. Configuration Space and Lagrangian y = 0. Note that the modification to the original potential

The configuration space for this system@s= S x G = energyV. is therefore given by, = V' —V = V. + vgssin 1.
St x R, with the first factor being the pendulum anglend the Thus, by Theorem V.1, ib < 0 and« satisfies
second factor being the cart positionThe velocity phase space . 9
TQ has coordinate%s = (¢, s,F:/}, 5). We seek to gsi)/mptoticr:)ally K> mi*(M +m) = el v+ M
stabilize the origin, i.e.; = 0. m22cos?y meos?)

The velocity of the cart relative to the lab framejsvhile the  then the vertical position with the cart at the origin is asymptot-
velocity of the pendulum relative to the lab frame is the vectoically stabilizable.

The controlled energ¥:; ., ,, . is given by

vpend:(écosz/)—l—lcosd)d),—ésinz/)—lsind)d)). 1 . NS
B =50 + Boost = ) (34 Zpoos(s )9 &

The system kinetic energy is the sum of the kinetic energies of

o~ . 2
the cart and the pendulum: + %,y <S + %/3 cos( — 1/))(/))
K(¢,s,,3) ] — 1E[32 cos? (¢ — ) ¢?
o A A R 4R . :
2777 [ milcos(¢ — ) M+m s +%(p—1)fy <é+(ﬁ+1){y—3cos(d)—z/))<})> + V.
The potential energy is given B§( ¢, s) = Vi(¢)+Va(s) where (47)
Vi(¢) = mglcos¢ and Va(s) = —(m + M)gssiny. The

Lagrangian is the kinetic minus potential energy, so we get 1he dissipation term following (37) is

iss - - . P — 1 /3 ]
L(¢,5,6,8) = K(¢5,6,5) — V(g 9). ul = evg = ey < + < + 7) - coste = W))
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with ¢ > 0. The complete control law (22) becomes
_ 1

o — %Z(Iw + 1) cos?(¢p — )

x {,«;/3 (a sin($ — )¢? + cos(¢ — ) Dsin ¢)

av’
ds

-B

+ Bu‘hss} — ~ygsiny (48)

\

whereB = (a— 32/~ cos*(¢—1)))/p. This control law is finite
if the denominator is strictly negative, i.e., if

2 _
SinQ(d) —) < % (49) Fig.2. Spherical pendulum moving on an incline.
This range ofp tends to the rangen/2 4+ < ¢ < 7/2 4+  Since the system is planar, it can be checked that any trajectory
for largex. (¢, ¢) starting inW x R will escape fromiV x R except when
the trajectory is the equilibriurto, 0). It follows that shrinking
C. Region of Attraction . is unnecessary. As discussed in the first remark following

Consider the case that the inclination anglds zero for Tfheorem V.1fk: Is not necessarllg/the biSt est||mate ofaregllon
simplicity. The functions : U — R defined in Section V of attraction. In Section IX, we show with simulation examples

o _ X that we can get a large region of attraction.
by (23) is given by’ =1 -1 3 and
yi ()_W/g 7/2). )Ilﬁléﬁc):e wé c;—nhusﬁ/j)ﬂé/?)cgsﬁs(ba do- Suppose that the initial position of the pendulum is close to

main of a local chart orp. We use the following as a local Chartthe horizontal position. Then, regardless of the control methods
onTo: we use, since actuation is available only through the transla-

tional motion of the cart, it is physically obvious that we need
a large initial force to prevent the pendulum from falling past
90 degrees. Hence, it is difficult to achieve a large region of at-
traction with a control force of limited magnitude irrespective of
control methods. We mention, however, that in the “swing-up”
problem where we swing up the pendulum from the downward
pointing state, large forces are not needed to initialize the pen-
dulum motion. We intend to consider the swing-up problem in
Erpe($:5,6,0) =Vi(9) + Ve () + K. p(v) a future publication.

=ay cos ¢ + a2y + as(P)P? + as?

(¢,v) = (6,5, ¢, 3) — (b, 1,6,() € (U x R) x R?

wherey = s+ h(¢) and¢ = s+ ¢ (1 + &) (8/~) cos ¢. Notice
that¢ and¢ are coordinates fdfor, andVer.-, respectively.
In this chart, the controlled energy. , , . is given by

whereK . p is defined in (30) and VII. SPHERICAL PENDULUM ON AN INCLINED PLANE

12 We apply the above results to the spherical pendulum on a cart
a1 =—D>0; ay= —rD? <0 that travels on an incline of angie This generalizes the spher-
g £ ical pendulum on a plane considered by [10], [13]. This example
as(®) 1 <a _ /_(h +1)cos (/)) 4y = lp’v <0. ?s important for illustrating the results of the present papersince
v 2 it hastwo unactuated degrees of freedom. The system is shown
(50) in Fig. 2.
The configuration space for this systemi)s= S x G =
Let W be the subset o/ satisfyingas(¢) < 0. Then we S? x R?. We denote by(z, ) the Cartesian coordinates of the
can check that the controlled energly , , . has a maximum cart on the incline and assume that we have independent controls
at(0,0,0,0) in (W x R) x R?. As can be seen from (49)y  that can move the cart in theandy directions. LetP be the
converges td’ asx goes to infinity. plane whose origin is attached to the cart and which is parallel
There are several points in Section V to be checked. Firs, the incline. We will use the projection onto the plaRdor
take(2. in (W x R) x R? as large as possible. Then, it followsa local chart forS?. Let (X, Y) be the Cartesian coordinates of
that K. C W. In Section V we said that we could shrifk to the bob in the plan® under the local chart. Let= (X, Y, z,y)
study the dynamics in (45) since we had to rely on the linearizeé the local coordiantes fa@p.
dynamics to deal with a general case. But here we directly studyl_et A/ andm be the masses of the cart and the bob, respec-
the nonlinear dynamics. In this specific case of the inverted peaively andr be the length of the pendulum. The positi&nof
dulum on a cart, (45) is given by the bob in the inertial frame is given by

. g .
(/)—78111(/)20. R:(x_i_X’y_‘_Y’,/TQ_XQ_YQ).
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The total kinetic energy is given bi(q,d) = 1/2¢(q)(¢,q) By SM-4 and the Poincaré Lemma, there exists a funation

where the metrig(q) is given by U Cc S — R*¥ such thavl,/9x* = g... Hence, (51) can be
0 oo written as
r° =Y XY
m(,,,Z_XZ_YZ) m(,,,z_Xz_YZ) m 0 L ( @ a o a t) 1 a8 cqca
XY r2_Xx2 m (T U, T, Y1) =50a8T T + Gaal Y
m(,z_Xz Yz) m(,z_Xz YZ) 0 m B 2 )
” 0 mA M0 + 5 9ad "5 — la(z*)i%(2)
0 m 0 m+M 2 p
- i i — vy (1) + — (la (@) (1))
The total potential energy is given by (X,Y,z,y) = ab 7z Ve
Vi(X,Y) + Vo(x,y), where d o 1 .
e + gy () + 07 (O ()
VA(X,Y) =mg (cosv/r? = X2 = ¥2 — sinyY) —Vi(a®) = Valy® + (). (52)

Va(z,y) = = (m + M)gysiny. Since exact time derivatives do not affect the variational prin-
The Lagrangian for this systemigq, ) = K(q,4) — V(g).  CiPle, we can ignore the following three terms:

Itis easy to check that SM-1-SM-4 are satisfied. In this case, ¢ o d web T i
we have — La(®)i (1) = (g™ (t))  59ar™* ()77 (2).
dt dt 2
Oap =0Gap = o(m + M), Hence, the Lagrangiah,, in (52) can be replaced by the fol-
e m - v _o lowing Lagrangian:
T =7 = —; T =T =
X =Ty o(m+ M) Y X Lo (% 6 1) 1 s ,a,a+1 o b
. . m\& Y T Y, :_ga, T Gaal Y =gabY Y
whered,;, is the Kroneckeb. The form of the potential” sat- 274 , 27
isfies SM-5". Physically, it is obvious thaf, (X, Y') has a max- — (™) = gay®c” — Vi(z®)
imum at(X,Y) = (0, —rsin) which is, as it should be, the — Vo(y® +7%(t))
position of the pendulum vertical to the ground, not to the in- B
cline. The matrix where#(t) = constant was used. The Euler-Lagrange equa-
tions in the moving frame are given by
(9aa(0, =7siny)) = mlzx2 iaLm B AL, o iaLm B AL, B
is clearly one-to-one, so SM-6 holds. By Theorem V.1, the ver- dt 9> Pz 7 dt 9y Gy °

tical position (elative to the grounyof the pendulum and any where the input in the moving frame has the following rela-
fixed position for the cart on the incline is asymptotically stabtionship with the input in the fixed frame:
lizable.

(@™, Y%, B, ) = u(z®, g+ ro(8),8%, 5 + (D). (53)

General discussions about the relationship between the La-
Here we consider one of the simplest nontrivial tracking prograngian system with forces in the fixed frame and that in the

lems, namely we make th# variables track a constant accelmoving frame are given in Appendix 1.

eration curve i = R¥, while regulating the:* variables ata  Here, we perform potential shaping first by choosing the input

VIII. T RACKING

fixed pointz& in S. of the following form:
We assume that the given Lagrangiarnsatisfies SM-1 to , 9 .
SM-4, SM-5’, and SM-6. Let(t) € G be the reference signal Va = gabC + ayaVQ(y +7%(8) + wa- (54)

satisfying#(t) = ¢ = constant. Consider a moving frame ~

which moves alongo, *(¢)). Let (z*,%%) be the coordinates Define L., : TQ — R by

in the moving frame satisfying . 1
Lnl(xa’ya’:ta’ya) _ —g(y’@.’i}'a.’i}ﬁ _i_g(ya:tozya

ya, — g — 7’”’(t). 1 2 ) i

LetL,, : TQ x R — R be the Lagrangian in the moving frame +2g“by v = Vi) (°5)

defined by whereV; (z%) = Vi(z*)+1a(z*)c® Then, the Euler-Lagrange

Lon(2%, 4% %, 4% 1) = L (2%, 4 4+ 2(t), &%, % + #°(¢)) . equations from the Lagrapgia[mm .with th_e inputw are equal
( ) ( ® ®) to those from the Lagrangiah,, with the inputw.

In coordinates Notice thatL,,, is time-independent and its kinetic energy is
o o e ea 1 .. o of the same form as that df. We can check that,, satis-
Lin(2®, 4%, 8%, 9%, 1) =590p1%3" + gaal™y fies SM-1 to SM-4, SM-5', and SM-6. Let. be a maximum

of V1. By Theorem V.1, we can design a controlterso that
(z.,0,0,0) becomes an asymptotically stable equilibriumin the
b 1 . ) moving frame. Fromw we can derive the input by (53) and
+ 9oy 77 (t) + 5 gar7 ()77 (F) - I ) .
2 (54). The asymptotic stabilization in the moving frame is equal
—Vi(z®) — Va(y® +r%(t)). (B1) to the tracking in the fixed frame. Thus,becomes a tracking

1 - L
+ §gabyayb + gaaxaTa(t)
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. 1 6

controller such thatx(t), ¢(t), ©(t), $(¢)) asymptotically con-
verges to(z., 7(t),0,7(t)). T o.sv .
* ol

A. Example 05 i
o 10 20 30 40 Q 10 20 30 40
Consider again the inverted pendulum on a cart. In this case, e e

Vi is given by g0 @
. g,

Vi(¢) = mglcos ¢ + mlcsin ¢

B4 02 0 02 04 08

wherec is the constant acceleration of the reference curye. $lrad)

E)

2 .
has a maximum ap, = arctan(c/g). This means that the cart Y AU IO

2

4V\

-6

will move at the accelerationwith the pendulum slanted by the  Z.
angle¢, which agrees with physical intuition.

0 1‘0 20 30 40
B. Remark 1l el

We note that in tracking problems on general manifolds, wég. 3. Simulation of the controlled pendulum on an inclined plane.
should be cautious in comparing two points or two vectors at
different base points since a naive subtraction does not maé<e
sense on manifolds in general. An error function and a transport
map are employed in [17] to deal with this. The problem of We consider the same system with the inclination angle zero
tracking a general reference signal is an important problem thgng the notation of Section VI. Our goal is to get the control

remains to be tackled by the methods of this paper. parameters to handle alarge initial angle of the pendulum. To get
a largeW, choose: = 300. Then,W = (—1.4532,1.4532) =

(—83.26°,83.26°). Choosep = —0.02, ¢ = 0.00001, andc =
0.015. Since itis hard to visualize the level sets of the controlled
In this section, we give some simulations using the invertehergy®. , , ., we consider the level sets with velocity zero. Let
pendulum on a cart. First, we look at the case when the cart= 0.05andx, = {(¢,s) € UxR| E, , , (¢,5,0,0) > a}.
is on an inclined plane to show that our controller works wellhe level sets o , , (¢, s,0,0) are shown in Fig. 4 ant,
when there is no symmetry. Second, by using the analysisisnthe shaded region. From the figure one can seeXpatC
Section VI, we show that we can achieve a large region of & xR. LetQ, = {(}, s, ¢, 5) € So xR? | E; 5, (¢, 5, ¢,$) >
traction in the sense that our method can handle the case whgn Sinceas(¢) anda4 in (50) are negative fop € W, one
the initial position of the pendulum is close to the horizontal p&an show thatl, is positively invariant and thus a region of

Large Region of Attraction

IX. SIMULATIONS

sition. Third, we do simulations of a tracking problem. attraction. Note that, x (0,0) is contained irf2,.
Hence, we can see that the trajectories originating, for
A. Inverted Pendulum on an Inclined Plane example, from(¢(0),s(0),¢(0),5(0)) = (0.8,0,0,0) or

0), s(0), ¢(0),$(0)) = (1.2,-20,0,0) will converge
the origin. But we know that this estimation of the re-
8}/5n of attraction from the level set ok-, ,. with zero
velocity could be conservative. To show this we present
. _ three different simulations. The first one originates from
20°. Our goal is to regulate th(_a cartat 0 and the pendulum at (d)(O),s(O),(})(O),é(O)) — (0.9,0,0,0) which is taken from the

¢ = 0. We choose corntrql gains to be= 20, p = —0.02, ¢ = region of attraction given by.,. The second one originates
0.00001 and¢ = 0.015. Fig. 3 shows plots of pendulum anglegom (d)(O),S(O),(f)(O),é(O)) — (/3,8,0,0), and the third

We designed an asymptotically stabilizing control law in th%)(
case of an inverted pendulum on an inclined cart. Here, we sh
a MATLAB simulation using the control law in (48). Here =
0.14 kg, M = 0.44kg,! = 0.215 m, andy) = n /9 radians =

and velocity and cart position and velocity for the system su he originates fronf(0), s(0), $(0), 3(0)) = (47/9, 5,0, 0).

ject to our asymptotically stabilizing controller. The pendulu he latter two initial conditions do not lie in the estimated

fr:arts fiom((b(o)j[5(0)’3)(?1}]5(0))_ - (W't/h67tf17 0, 0).dN(|)te that_ etgion of attraction shown in Fig. 4. Fig. 5 shows the responses
€ cart comes 1o rest at the ongmn wi € penauium Upnatl’ the three different initial condition. Each row of plots

and vertical to the ground. . o

. . corresponds to a different case. They all converge to the origin

At the bottom of Fig. 3 we ha\_/e m_cluded a plot of the Cor‘demonstrating a large region of attraction for the initial angle
trol law « and the Lyapunov function, i.e., the controlled ener

. N9t the pendulum. Although we did not plot the force here, we
ETI‘;PE T_O keer()jtr:je Eenduluhm from falling pas:Qﬁ_large mdl- note that we needed a large initial force in the third case, which
tial force Is needed. But as the FéSponse reaches Its stea ysltgtgs discussed in Section VI. This also explains that the large
the control law converges to(M + m)gsiny = —1.9440 N

o | initial translational motion is unavoidable.
which is the force needed to keep the system statically from

going down the incline. The controlled enerd , , . con-
verges to the value ofigl = 0.2950 N-m which is a maximum
of £+ » , . IN (47) and corresponds to the valuetf, , . at the Next, we present tracking simulations. For simplicity, we
equilibrium. consider the case where the inclination anglés zero. Our

C. Tracking
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() 10 20 30 ) 10 20 30
tis) tis]l
4
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o 20 40 60 80 e 20 40
t[s] tfs]

Fig. 4. The level sets oF. . ,..(¢,s,0,0). The shaded region is the set

whereE; o ,.(¢,5,0,0) > 0.05. i ) - _— . . )
Fig. 6. Tracking responses with different initial conditions and different gains
(refer to the relevant part for more explanation): {&)) = (0,—2,0.0), (b)
2(0) = (7/3,2,0,0), and (c)z(0) = (47/9,0,0,0).

X. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have described the method of controlled La-
grangians for a class of mechanical systems. We have shown
how the combination of kinetic shaping and symmetry-breaking
potential shaping leads to controllers which give asymptotic sta-
bility in the full state space and can handle certain types of
tracking problems. The systems considered have symmetry in

2 : 20 : : the kinetic energy but not necessarily in the potential energy.

[ 50 100 150 [} 50 100 150 . . .

, ) o 1 In a forthcoming paper we shall describe the extensions of

i L : N our results to a larger class of systems satisfying generalized
©F OW\/\ANW E matching conditions. A system satisfying the general matching

4 ‘ : ° 1 ' condition is the pendulum on a rotor arm described in [11]. In

2 = o T 20 = s o recent papers we have addressed systems of the Euler—Poincaré

1 e type such as the rigid body with rotors, the heavy top with rotors

and underwater vehicles (see [7], [14], [19], [42], [44], and the
Fig. 5. Responses to various initial conditions: {&)) = (0.9.0.0.0), (b)  references therein). Systems of Euler—Poincaré type were de-
z(0) = («/3,8,0,0), and (c)z(0) = (47/9,5.,0,0). scribed briefly in [10].

We intend to make a number of other extensions of our work.
goal is to make the cart track a given curve of constant accEbrexample, we intend to consider the swing-up problem for the
erationa with the pendulum slanted by, := arctan(a/g). pendulum and related problems which involve transfers between
We can construct a controller combining the results fromquilibria and/or periodic orbits. Use can be made in this setting
Section V, Sections VI, and VIII. Let(t) = 1/2at?> with of heteroclinic connections. This is related to the work of [15]
a = 7/6g = 5.13 m/s’ be the reference signal for the cartand [27].

Then¢, = w/6(rad) = 30°. First, we choose the following We plan to carry out the analysis of more general tracking
control gainsx = 30, p = —0.02, ¢ = 0.0001 andc = 0.015. problems perhaps using the techniques described in [17]. In ad-
Let ¢ be the difference between the position of the gaaind dition we will carry out an analysis of various robustness issues
the reference signal. The first row and the second row ofin our nonlinear context. We have already made progress in un-
plots in Fig. 6 are the responses with this controller with thderstanding the robustness of our method to existing (physical)
initial conditions (¢(0), s(0), $(0), 5(0)) = (0,—2,0,0) and dissipation (see [42], [43] and [44]). In this work it is shown
(¢(0), s(0), ¢(0), $(0)) = (w/3,2,0,0), respectively. We can that friction contributes to stabilization in the unactuated direc-
see that the angle of the pendulum converges,tand the cart tions and can be compensated for in the actuated directions. This
tracks the reference signal. However, tkiss not enough to was verified on an experimental inverted pendulum on a rotating
handle a large initial angle difference roughly because it givegid link. Some analysis of robustness to model parameter un-
too small aiW. So, we try another controller with = 300, certainty in the energy shaping context has been carried out by
p = —0.02, ¢ = 0.0001, andc = 0.015 which was found earlier [28], [35] and [47]. One situation that we have begun to investi-
to get a large region of attraction in the regulation problengate is stability in the presence of extra stable but unactuated de-
The third row in Fig. 6 is the response with this controller witlgrees of freedom. Early work shows evidence that our approach
the initial condition(¢(0), s(0), ¢(0), 5(0)) = (47/9,0,0,0). provides some robustness in this regard. Finally, we intend to
This controller achieves our objective. apply some of these ideas to the stabilization of nonholonomic
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systems using the energy-momentum results of [46]; see [4b] € C™(Sym,(7*Q) ® W) and define a torsion-free

and the references therein for a start on this program. affine connectior’v := V + S on 7'Q. The new connectioN
is the Levi—Civita connection of some Riemannian mejramn
APPENDIX | Q if and only if there is a positive definite symmetric 2-form
GENERAL DISCUSSION ONCONTROLLED LAGRANGIANS g on @ such that
We give a brief summary of a different perspective of the Vi=0

method of controlled Lagrangians taken by [2] and [23], with

a flavor of [29]. This will help us to understand the under-actiassume that we found a Riemannian metficsuch that its
ation structure and controlled Lagrangians. This appendix indinique Levi—Civita connection becomeg. The Poincaré
cates how more general matching can be done. The advantage®ima implies that the existence of the functiBrsatisfying
our structured method in this paper is that it leads to explicit agg2) is equivalent to the existence of a 1-fom € W,
relatively simple control laws that can be easily implemented guch that the 1-formy”¢*(o + dV) is closed. Then the new
practice. Lagrangian systenh, = 1/2§ — V with the control cobundle

For simplicity, we only consider Lagrangians of the kineti¢y, .= §°¢*W. is equivalent to the original systefi, W..).
minus potential energy form as follows:

A P APPENDIX I
Ll @) = 59(¢.9) — V(a) (56) MOVING SYSTEMS

for (q,4¢) € TQ with () the configuration space of dimensian
The controks isabundle map, : 7Q — W, C T*Q whereW,
is a subbundle df™* Q. The subbundléV. has the information
on actuation structure. We cdall, the actuation cobundle and
W .= gW, the actuation bundle. Hence, every underactuatgd
mechanical system is denoted by a gdir¥,.).

Suppose that we are given a systemW..). Its Euler-La-
grange equations with contralare given by

This appendix summarizes the relationship between the La-
grangian system with forces in the fixed frame and that in the
moving frame that was used in Section VIII on tracking.
Consider a Riemannian manifoll, a submanifold?, and
spaceM of embeddings of? into S. Letm;, € M be a
given curve. If a particle i is following a curveq(t), and
if @ moves by superposing the motiet, then the path of the
particle inS is given bym,(g(¢)). Thus, its velocity inS is

gy = 20 oL _, (57) Gven byT,ym: - d(t) + Zi(malg(t))), where Z,(mi(q)) =
dt 9¢  dq (d/dt)m,(q). The LagrangianL on T'S is the kinetic minus
The equations in (57) can be written on the tangent sfi&e potential energyZ(g,v) = 1/2||9||*> — U(g). Consider a La-
as follows grangianL,,, in 7°’Q) of the usual form of kinetic minus poten-
. tial:
Vii+gdV =v (58) @

1
Lo, (q,v) ==||T,my - §(t) + 2, I_U
wherev = ¢g*u : TQ — W C T'Q andV is the Levi—Civita (20) 2” ame - 4(8) + Zi(mi(0))| (mi(0))
connection of the metrig. The musical mapg” : 7*Q — 1Q =L(mu(q), Tymi - v + Z1(mu(q)). (63)
andg’ : TQ — T"Q come from the isomorphism betwe®®  Assume thatj(f) = m.(q(t)) € S satisfies the following

and7™ @ induced by a given Riemannian metjicSuppose We g jer—| agrange equations with an exterior force:
have another Lagrangian syst¢m W..) with Lagrangian. = 16L oL

1/2§—V and actuation cobundi¢’. C 7 Q). We want the two ——=-—=F (64)
systemg L, W.) and(L, W..) to be equivalent in the sense that dt 9g  9q

for any choice of contrak : 7Q — W, forthe systen{L, W.), whereF : T'S — T*S is a given exterior force. By the La-
there is a controti : 1T'QQ — W. such that both closed-loop grange—d’Alembert principle (see [31]), the following holds:
systems produce the same ordinary differential equations auty family of curves;j.(¢) € S with

vice versa. First, we transform the Euler-Lagrange equations

for (L, W.) to the form (58) as follows: ?0((? :g(t)(:( Z;t(q“))’
Vid+§dV =& 59 del@) =Malq\)),
i ) .(0) s (1) (65

with o : TQ — W := W, andV the Levi—Civita connection
of the metricg. Comparison of (58) and (59) implies that thdor all smalle, satisfies
two systems are equivalent if and only if the following holds: 4 b .

[ paw

W =W (60) E o
V =V € C™(Symy(T*Q) @ W) (61) b d ) B
dV e ¢ g* (W, +dV) (62) + / Flq(t),q(0) - . Ge(t)dt =0.  (66)

where Sym,(7*Q) is the (0,2) symmetric tensor field. The Now pick an arbitrary family of curveg.(¢t) € @ such that

conditions (60)—(62) are the compact form of the matching con-

i P 9 o) =at), al@) =a@), @) =ab) (67)
We now give a procedure for finding systems equivfor all smalle. Defineg.(¢) = m(¢.(¢)). Then we can readily

alent to a given system(L,W.). Choose a section checkthat.(¢) satisfies (65)and thus (66). The following equa-
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tions immediately follow from the definitions and the arguments[20]

in the above:
d b ) [21]
el e aea
b . d [22]
= [ Batatn.am) 5| oo
whereF,,, : TQ — T+Q is defined by - (23]
Frnt (q, U) = T:;lt(q)mt . F(mt(q), Tqmt U+ Zt(mt(q))) 24]

By the Lagrange-d’Alembert principle, the above variational

equations imply thag(t) € @ satisfies the following Euler—La-
grange equations with forces:

dOLy, OLpn,
% a—q aq — Frnt . (68)
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