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Semiclassical  Theory of Noise in Semiconductor 
Lasers-Part li 
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Abstract-A model of semiconductor laser noise is  presented  which 
includes  the carrier density as  a  dynamical  variable  and  the  carrier  den- 
sity  dependence of the  refractive  index.  The  Van der Pol laser noise 
model  is shown to be a  special  case of this treatment.  Expressions  are 
calculated for all  laser  spectra  and  compared  with  their  Van  der Pol 
counterparts.  The  power fluctuations spectrum  and  the  frequency fluc- 
tuations  spectrum exhibit a resonance  corresponding to the  relaxation 
resonance  and  the field spectrum  contains  fine  structure,  similar to side- 
bands  which  result  from  harmonic  frequency  modulation of a carrier 
signal.  The  role  of  carrier  noise in determining  the field spectrum line- 
width is also considered. 

I. INTRODUCTION 

I N “Semiclassical Theory of Noise in  Semiconductor Lasers- 
Part I,” [ I ]  we  presented  a  Van  der  Pol  model of laser noise. 

This analysis showed that  an  intensity  dependent refractive 
index  causes  broadening  of the field spectrum  linewidth  be- 
yond  that  predicted by the  modified  Schawlow-Townes ex- 
pression.  The essential feature  of  the Van der  Pol  model is 
the  analytic  form used to relate  the  polarization to the  field. 
The  underlying  assumption  in  such a description is that  the 
field intensity is instantaneously  in  equilibrium  or  quasiequi- 
librium  with the carriers so that  the gain and refractive index 
can be treated as instantaneous  functions of  intensity (i.e., 
adiabatic  elimination of the  population variable). This es- 
sentially bypasses any role the carriers might have in  the over- 
all noise  process.  A  more  complete  description of  semicon- 
ductor laser noise  requires  inclusion  of the carrier density as 
a  dynamical variable. In this  paper, we accomplish  this by as- 
suming  the  complex  susceptibility to be an  instantaneous  func- 
tion  of carrier density  rather  than field intensity. By so doing, 
saturation  time  constants  omitted  in  the  Van  der  Pol analysis 
are included,  thus  accounting  for  the  effects of the  relaxation 
resonance  between the carriers and  the field intensity.  Further- 
more,  the granular  nature of the carriers means that  a  resultant 
carrier noise is present.  This  noise  can  now  take  its  natural 
place in the analysis. 

To clarify the  two  frequency regimes referred to  throughout 
this  paper, we define the  low-frequency regime as the  fre- 
quency  band 1 0  - w, I < ~ / T R  where TR is the  relaxation os- 
cillation damping  time and w, is the lasing frequency,  and  the 
high-frequency  regime as all frequencies  outside  this  band.  The 
Van  der Pol  model is  valid in  the  low-frequency  regime  since 
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the  characteristic  fluctuation  times in this band are longer 
than rR ,  thereby  justifying  the  equilibrium  assumption.  The 
results of  Part  I  can  be  recovered as low-frequency limits of 
the results of  this  paper  (although  in  some cases, new  terms 
appear  due to carrier noise  contributions).  For  example,  the 
1 + a2 broadening  enhancement  of  the field spectrum line- 
width will  be recovered  in  terms  of  new  quantities. 

In the  next  section, we develop  a set of  equations  governing 
fluctuations  of  the field and  the carrier density,  then use these 
equations to calculate correlations  and  spectral densities. We 
also demonstrate  the  relationship  between  the Van der  Pol 
noise equations  and  this more  general set of  noise equations. 
As in  Part I, fluctuations will  be driven by Langevin forces. 
These  forces are normalized  in  Section 111. In Section  IV, the 
three laser spectra  described in Part  I will be  calculated and 
compared qualitatively to  the corresponding results of  Part I. 
The  prediction  of  new  spectral  features  due to relaxation 
resonance  phenomena distinguishes the  results  of  the  current 
paper from  those  of  Part 1. The manifestation  of  this  resonance 
in the power  fluctuations  spectrum of semiconductor lasers 
has  been  intensely studied,  both  theoretically  and experi- 
mentally.  Only  recently,  however,  has  its  presence  been  ob- 
served in the  frequency  fluctuations  spectrum [2] and field 
spectrum [3] of  semiconductor lasers. The  present analysis is, 
to  our knowledge,  the first theoretical  treatment to consider 
the  effect  of this resonance on these  noise  spectra. In the re- 
mainder of the  paper, we will  discuss the  effect of carrier noise 
on  the field spectrum. 

Finally, we mention  that  fluctuations  induced by  mecha- 
nisms, such as diffusion (i.e., nonuniform carrier density)  and 
temperature  fluctuations, are not  treated by  this analysis. 

11. NOISE EQUATIONS 

In the analysis of Part I, the polarization was represented as 
a  nonlinear function of the field. The  nonlinearity arises from 
gain and refractive index  saturation  terms  in  the complex sus- 
ceptibility.  Such  a  relation is an equilibrium  equation of  state 
implying that  the carriers are instantaneously  in  equilibrium 
with  the field intensity.  This is only  true  on a time scale long 
compared to the  relaxation oscillation damping  time.  The 
reciprocal of this time is a measure of  the  frequency band 
centered on the lasing frequency  for  which  the  polarization 
and  the field are in quasi-equilibrium.  Outside  this  frequency 
range,  equilibrium no longer exists and delays intrinsic to  the 
gain saturation process  become important. For  these  frequen- 
cies, it must be recognized that  the gain and refractive index 
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are  actually  functions of the  carrier  density,  thus  making the 
analytic  form  for  the  polarization  linear  in  the  field  and  non- 
linear  in the carrier  density 

Pn = ~ o r ~ ( n )  E n  (1 1 
instead  of  the form P, = E,(x(')  t x ( ~ ) I E , I ~ )  E, used in Part I. 
P, and E, are  the  projections  of the polarization and  the field 
onto  the  nth spatial mode  and r is a filling factor resulting 
from  incomplete  spatial  overlap  of  the  field  and  polarization. 
We will assume that  the carrier  density is uniform over the 
active  region and  the laser oscillates in  a single mode  through- 
out  this analysis. The essential  difference  between  this  repre- 
sentation  for  the  polarization  and  that  used  in  Part I is that 
the  complex  susceptibility is now  an  instantaneous  function  of 
carrier  density  rather than field  intensity. This fundamental 
change  allows gain saturation  dynamics to be incorporated 
into the  noise  model.  It  should be noted  that  inherent  in (1) 
is an  adiabatic  approximation. By assuming gain and  refractive 
index are specified  by  the  carrier  density, we assume,  on 
the  time scales of  interest,  the  occupation  of  states in  the  con- 
duction  and valence bands is accurately  described  by  appro- 
priate  quasi-Fermi  distribution  functions. Since intraband 
thermalization  occurs on  a picosecond  time  scale,  whereas 
noise phenomena  of  interest will occur  on  a  time scale more 
than lOOX larger than this,  the  validity  conditions  of  this ap- 
proximation will always  be  satisfied. 

Since carrier  density is a  dynamical  variable,  an  equation  for 
the carrier  density is required.  In the limit discussed above, 
the  carrier  density n is described by  the  standard semicon- 
ductor laser rate  equation 

dn n 
dt 
--= - g ( n ) p  - - t E + 6 

7, 

where n is the carrier  density, g(n) is  gain, p is photon  density, 
rs is the  spontaneous  lifetime, E is  the  pumping  rate, and 6 is a 
Langevin noise  force  associated  with the carriers.  It is straight- 
forward to show that g(n) is  related to  the susceptibility x&) 
as follows [ 4 ]  : 

(3 )  

where w, is the lasing frequency  and 1-1 is the  nonresonant  in- 
dex. Using ( 3 )  and  the following  expression for  the average 
photon  density: 

P = -  
€0 P2 
2Aw, IE, l2 

the carrier  rate equation can be reexpressed  as  follows: 

dn n 
dt 24 7, 

- 5xi(n)IEn12 - - t E + 6 .  

(4) 

Aside from  the new  form  for  the active  medium  polarization 
and  the  addition of  a  rate  equation for  the carrier  density,  the 
derivation  of the noise  equations parallels the  derivation given 
in Part I. The essential  steps of the  derivation will be  repeated. 
The starting  point is the  above  carrier  rate equation  and  the 
field  equation  derived  in  Part I: 

E, t - E ,  1 .  t w ; E , = - -  1 iw, t P, t Ae 
TP €0 I-1 

where rp is the  photon  lifetime, 0, is the  resonant  frequency 
of the  nth mode (i.e., nth solution to the  homogeneous wave 
equation  without loss), w, is the  lasing  frequency, and A is 
the slowly varying complex  amplitude  of  the Langevin force 
term.  Substitution  of (1) for P, into (6)  and  subsequent  re- 
arrangement of  terms leads to 

[(I + y) En] + -- -E, t 02En = Aeiwmt. (7) 
1 d  

dt2 r p  dt 

Equations (5) and (7) are  linearized by expanding variables 
in small quantities as follows: 

E,  = [ A ,  + &(t)] e iIwmt+ d t ) l  

IEnI2 = A :  t 2 A 0 6  

n-+n,+n 

Xi(n> X Xi(no) + t in  

Xr(n) = %(no> + Ern (8) 

where ti and 4,. are the first-order  Taylor  coefficients in  ex- 
pansions  of xi(n) and x ( n )  [ x(n)  xr(n) t ixi(n)] about  the 
operating  point  carrier  density no. These forms are substi- 
tuted  into ( 5 )  and (7). Terms in 8, G, and ii are  neglected in 
(7), as their  variation is slow in comparison to  the lasing fre- 
quency.  Products  of small quantities  are  neglected  in  both ( 5 )  
and (7). The resulting  linearized  equations  are 

2iw,(& t iA,@) t 
2 io , r tAo  . w& QA, 

n--- n 
P2 P2 

where l/w, rp and x(n,) /p2 have been  assumed negligible in 
comparison to  unity,  and where t ir + i t i .  As discussed in 
Part I, the e-i'+' coefficient  of A in (9) can be neglected.  The 
perturbations to field  amplitude,  field  phase,  and  carrier  den- 
sity, as well as the Langevin forces are assumed to have zero 
mean values. Consequently,  time averaging (9) and (10) re- 
sults  in the following  set of equations  which  establish  the  op- 
erating point: 

Po = r r p  (i - %). 
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In principle,  these  equations  can be solved to determine the 
operating  point carrier density (no),  the lasing frequency 
(a,), and  the  photon  density (po) .  The  residual fluctuation 
terms  in  (9)  and (10)  make up  the  equations  which relate the 
Langevin noise  terms to  the field and carrier fluctuations. 
Extracting  these  terms  and  separating  (9)  into  its real and 
imaginary  parts  yields 

which are exactly  the noise  equations of Part I cast in  terms  of 
the  quantities  appearing in the present analysis. Comparing 
these  equations  with (20) and (21), the following  equivalences 
between  quantities in Part I and  quantities  in  Part I1 can be 
made: 

where,  for  convenience, the following  definitions have been 
made: 

where a is the  linewidth  broadening  term  discussed  in  Part  I 
and where the second equalities in (26) and (27) follow  from 
(3) and  (4).  Equation (25) for a in terms of tr and ti  can  be 
recognized  (not surprisingly) as (47)  of Part I. Notice that 
since the  ratio t,./.& is simply a (a x 1-10 [6]),  the second 
term in both  (14)  and (15)  can be neglected in comparison 
to  the  third  term of  each  equation.  Summarizing,  the  short- 
comings  of  the  Van der Pol  noise  analysis  are first,  that it treats 
the gain saturation  process as instantaneous [i.e., neglects 
phase  delays  brought about by the  term iz in (16)] , and sec- 
ond; that  it neglects  the carrier noise  force (i.e., fluctuation 
in the pumping rate) which is represented  by 9 in (1 6). A 
direct consequence of the former  assumption is the Van  der 
Pol model’s failure to  predict  the observed  spiking  resonance 
in the various  noise  spectra. 

In  the  remainder of this  section, we  will  use (14), (15), and 
(16) to calculate the  autocorrelations ( p ( t  + r )  p( t ) ) ,  (p(t + r )  
cp(t)), and ( n ( f  + r )  n( t ) ) .  The  approach  used in Part I for 
similar calculations will  be followed  here.  Equations  (14)  and 
(16) are solved  first.  Laplace  transform  techniques  yield 

6 

A0 
p =-, 
- 

(19) 

The equalities in  (17)  and (18)  follow  from (3) and (4) and 
give more famillar forms of aR and rR : the  relaxation reso- 
nant  frequency  and  the  damping  time  associated  with it  [5] . 

Recall from Part I that gain saturation manifests itself near 
the lasing frequency as a “viscous drag”  force  acting  only on 
the  amplitude  fluctuation. This restraining action causes the 
amplitude  fluctuation  contribution  to field linewidth to be 
negligible in  comparison to  that  of  the phase fluctuation. The 
noise equations which  resulted from  the Van der  Pol treatment 
in Part I are 

The viscous  drag force is the  term  proportional to p in (20). 
It  can be seen that  (21) has no drag force  terms (i.e., no  terms 
which are proportional to cp). The counterpart of (20) in this 
analysis, (14),  appears to contain no viscous drag  terms. Closer 
inspection of both (14) and  (16),  however, reveals that  the 
instantaneous  negative  feedback,  provided  in (20) by the  term 
involving p ,  is replaced  by negative feedback  which  propagates 
first through  the carrier rate  equation  before  providing restrain- 
ing action  in (14). There is thus  a phase delay  in the  satura- 
tion process  due to  the  term iz in (16). For  low-frequency 
fluctuations,  the iz term  can be neglected and  (16) reduces to 
an  equilibrium  relation  between the carrier density fluctuation 
and  the  amplitude  fluctuation  causing  it: 

F r  1 

/ 1 \ 1 / 2  where 9 has  been omitted. Using (22) to substitute  for n and 
i z  in (1 4)  and (1 5) yields 
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where p ( 0 )  = 0 and n(0) = 0 have  been  assumed. Equation 
(29) is substituted  into (1 5) and  a single time  integration is per- 
formed to find q(t). The products p ( t 2 )   p ( t l ) ,  q( t2)  cp(tl), 
and n ( t 2 )  n( t l )  are formed using these  solutions.  These  prod- 
ucts are then ensemble averaged and  the  integral  expressions 
for  them  are simplified using the following Langevin force  cor- 
relation  forms: 

<Ai(t + T )  Ai(t)> = (A,(t + T )  A,(t)) = WD(T) (31) 

<A,(t + T )  A,(t)) = 0 (32) 

(Ai(t + 7 )  S(t)> = WID(T) (33) 

(A,(f t r )  S( t ) )  = 0 (3 4) 

(S ( t  -t 7) S(t))  = W2D(T) (35) 
where D(r) is the  delta  function. In the  next  section,  the  nor- 
malization  coefficients W ,   W l ,  and W 2  will be  calculated  and 
the  zero  correlation  assumptions  in (32)  and (34) will be 
justified. 

The simplified  expressions for ( p ( t 2 )  p ( t l ) ) ,   ( p ( t2 )  cp(tl)), 
a and (n( t2)  n ( t l ) >  contain  exponentially  decaying  terms  in 
t2, tl , and t2 + t l  with  decay  time 27,. These nonstationary 
terms result from  our specification of  initial  conditions  for  the 
system.  For large t2 and t l  , the system's  history is forgotten 
and  these  terms  become negligible. The  resulting  expressions 
are 

where r t2 - t l  in (38). As demonstrated  in  Part I, (q ( t2 )  

q ( t l )>  can be used to calculate the  instantaneous  frequency 
deviation  autocorrelation  function <Aw(t2)   Aa(t l )> f <$(t2) 
+(tl )). As  was found  in  Part I, this  function is stationary.  For 
later  reference, its  spectral  density  and  the  spectral  density  of 
the  other  stationary  functions (Le., p and n)  are calculated us- 
ing the Wiener-Khintchine  relation: 

(39) 

(Y~uO;: w + a&r2g w2 

(a2 - ajg t - 4 

4P4 
a2 

wAw = 
W + 4aLA; 

a2 . (41) 

111. LANGEVIN  FORCE  NORMALIZATION 
In  the Van  der Pol analysis, a  fluctuation  term was inserted 

into  the field equation  and  treated as a  random  component  of 
polarization  causing  spontaneous  emission into  the lasing 
mode. The Langevin force  associated  with  this fluctuation was 
normalized  by  equating the  known  spontaneous energy  in the 
mode  with  that  calculated  in  terms of the Langevin force  auto- 
correlation.  This  treatment  emphasized  the  continuous or 
wave-like aspects  of the Langevin force.  In  the  present  anal- 
ysis, there are three Langevin force  terms  (counting A f A, + 
1Ai as two  terms),  and we  will deal  with them  in  a  manner  that 
emphasizes  their  granular  or  shot-like  nature. Most  of the  re- 
sults we obtain have been  derived  elsewhere using similar ap- 
proaches [7]. To our  knowledge,  however, the  zero  correla- 
tion result of (34) has not been treated,  thus necessitating 
some  explanation. 

Consider  a  bath of  electrons  interacting  with  other particle 
baths so as to establish an  equilibrium  or  mean  number  of elec- 
trons no in  the  bath. If the  interaction is assumed to be  in- 
stantaneous (i.e., short  compared to times of interest),  then 
the  time derivative of  the  total particle count is a  sequence of 
delta functions  of  unit  strength (i.e., the Langevin force). If 
the  random variables p ,  cp, and n are treated as continuous, 
then we argue that  interactions  can be taken  into  account  by 
driving the time derivatives of  these  quantities  with  delta 
impulses. 

To first order  the  photon  number  fluctuation  in  terms of 
p is 

=zGp 
EVA 

where V is the  mode volume [ l ]  . Using this  expression,  the 
Langevin forces Ai and 6 appearing  in (14)  and (1 6) are 

(43) 
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9(t)  = - b,6(t - t,) 
1 

Vc n 
(44) 

where Acp(t,) is the phase change caused by  the  nth  event. 
Using the  model discussed by Henry [6] in which the field 
phasor is buffeted  about  by small unit vectors representing 
spontaneous  events,  the mean  square Acp after  time Tis where a, (b,) is f 1 or - 1, depending on  the event being an 

emission or absorption  (absorption or emission) and where V, 
is the volume occupied by  the carriers. Considering events oc- 
curring during the time interval [O,  T ]  , it is clear from  the 
randomness of the t ,  that 

(53) 

This expression, (52), and (4) yield lT 8(t + 7) 9(t) d t  = - 6(7) R2T 
V,” 

where R 2  is the average rate of events during time T. Time 
averaging yields 

Finally, consider the  correlations (Aj(t  + 7) A,(t)) and (A,(t f 
7) 19(t)). Only spontaneous events alter phase, therefore a, = 
t 1 and b, = - 1 in (43)  and (44). Ap(t,) in (52) is equally 
likely to be positive or negative, however. Therefore,  the 
events are correlated in time,  but have totally uncorrelated 
amplitudes.  The net effect must be zero  correlation, as indi- 
cated in (32) and  (34). 

Similarly, 

(47) 
IV. DISCUSSION 

In this section, we  will first compare the laser spectra calcu- 
lated  in  Part  I with the laser spectra  of  the  present analysis. 
We will then consider the role of carrier fluctuations  in  deter- 
mining the field spectrum. This has relevance to  the  recent 
measurements by Welford and Mooradian of  a power-inde- 
pendent  component of linewidth  in  the field spectrum of  semi- 
conductor lasers [SI. For  convenience, the laser spectra 
[power fluctuations spectrum-WAp(Q), frequency  fluctua- 
tions  spectrum-WAw(Q), and field spectrum-W,(Q)]  derived 
using the Van  der Pol analysis appear  below: 

where R is the average rate of events which change photon 
number and R is the average rate  of events which change pho- 
ton  number  and carrier number  simultaneously. Using event 
rates given in [7] , we find 

(49) W =  4.f?iw;E, 
€V 

&wmE,vg In (1/R)  
WAw = 4po (1 t a’) where E,po and E,,p0 are  the stimulated emission and  stimu- 

lated  absorption  rates per unit  volume. Rate terms  due to 
spontaneous emission into  the lasing mode have been omitted 
from  (49)  and (50) as their relative contribution is  small for 
operating points reasonably well above  threshold.  It  should be 
noted  that W found by this  method is identical to  the W 
derived in  Part I. 

The Langevin force A, drives the phase fluctuation  and  must 
be modeled  somewhat  differently than Ai. Since cp’s ampli- 

Aw f 
4iwrnE,vg In (1/R) 

4P0 L 
(1 + a”. 

Using (39) and  the results of Section 111, the power fluctua- 
tions  spectrum is given by 

where (3) and (4) have  been  used to express A;  and  in 
(52) terms of p o  and g’, and where y is the  facet loss rate. This re- 

sult can also be derived using the simple rate  equations  for  pho- 
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IOMhz IOOMhz 1 Ghz 10 Ghz IOOGhz 
s1 

Fig. 1. Frequency  fluctuations spectrum W A ~ ( C ~ )  at two photon 
densities. 

ton  density  and carrier density 191. Comparing  this  expres- 
sion  with that derived in Part I (55), both  the  low-frequency 
and  the  high-frequency  behavior is different.  Carrier  fluctua- 
tion causes the dc value of WQ to be  larger in  the  present 
case, although using equivalence  relation (26), it can be shown 
that  the  dc  spontaneous noise term  in (59) is identical to  the 
dc value of (55). The other obvious  difference is the  resonance 
behavior of (59) versus the simple  pole  behavior  of ( 5 5 ) .  
This is,  as discussed  in  Section 11, a  consequence  of the  dy- 
namic interaction  between  the carriers and  the field. 

Consider next  the  frequency  fluctuations  spectrum WA, (a). 
Equation  (41)  and  the results of  Section 111 yield 

a2 w i  Ecu 

Again, the high-frequency  behavior,  exhibiting the distinguish- 
ing resonance, differs from  the Van  der  Pol  result (56). Sur- 
prisingly, however, the  low-frequency value of (60) is identical 
to  that of (56), which  means that  in  the present  model, carrier 
noise  due to pump  fluctuations 6 makes  no contribution to 
the dc  frequency  fluctuation (i.e., frequencies at  or near the 
lasing frequency).  This  can be understood to result from 
nearly  perfect carrier density  clamping (i.e.,  gain clamping) 
at  low  frequencies. WA,(a) is shown at  two  photon densi- 
ties in  Fig. 1.  The  following laser parameters have been as- 
sumed: a2 = 30, g' = cm3 - s-', rs = 1 ns, V, = V = 3 X 
lo-'' cm3, g = 0.5 X 1 O I 2  s-', no = 10" cm-j, a, = 2.2 X 

rad . s-', I?= 0.8, and E, + E ,  = 2rg'(l - 3r). 5 is 
defined as Ecu/(Em - Euc) and is typically  2.6 [6]. The value 
for E,  was chosen to given a  linewidth  of 100 MHz at 1 mW 
output power  per  facet using (67)  (or  (41) in Part I). The 
resonance  peaks  in Fig. 1 are,  perhaps,  somewhat  exaggerated 
since the  present  model  does  not  account  for  relaxation reso- 
nance  damping  mechanisms  such as diffusion. We emphasize 
that  the resonance  does not cause the field spectrum line- 

width  broadening  1 + a2 discussed in Part I. This  broadening 
arises from  W~,(i2)  contributions  near dc  where WAw(i2)  is 
essentially "white" in comparison to the lasing linewidth. In- 
stead,  the resonance  causes  fine structure to appear  in  the  field 
spectrum, as discussed  below. 

The field spectrum is calculated as in  Part I. We first  use 
(p(t2) p(tl')) to calculate the field autocorrelation  and  then 
apply the Wiener-Khintchine  relation as the final step.  The 
field autocorrelation is given by 

CE(t + r )  E*(t))  =A: (exp i [q( t  i- r )  - cp(t)] ) 
- A ;  - e - (1 /2 ) ( [A~12)  

i- exp - - (K cos Or + X sin p1r I) - K 
171 

2TR I 
where 

Equation  (61)  neglects  amplitude  fluctuations  of  the  field. In 
Part I, this  approximation was justified since concern was fo- 
cused on frequencies  near the lasing frequency  where gain 
saturation is active. The  proceedmg  calculation,  however, will 
encompass  frequencies  at  which  this approximation is no longer 
valid. We will  discuss inaccuracies that arise at  these  frequen- 
cies due to  the  approximation. The basic qualitative  features 
of the field spectrum are not  affected by it, however.  The 
field spectrum is the  Fourier  transform  of (61). Unfortunately, 
(61) is not easily transformed  analytically.  To  demonstrate 
basic features  of  the field spectrum, we  will proceed on the 
assumption  2rR > 8wfAi/W(1 + a 2 )  and 27R >> 1/p.  This 
amounts  to assuming  a  weakly  damped  relaxation  resonance. 
In this  regime, X can be neglected in comparison to K and  the 
decaying  exponential  can be approximated as unity so that 
(61)  reduces to 

(E(t  + r )  E*( t ) )  = A :  exp - - 
8w&A: [ "  

I 
(1 + a 2 )  171 

t K C O S O R 7 - K  . 

Using the  modified Bessel function generating function,  (64) 
can be expressed as 

where I,(K) is the  modified Bessel function of  order n. Fourier 
transform  of  (65)  yields the field spectrum 
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W 
AcJ=- (1 + 2 )  = 

+?w,E,v, In (1/R) 
(1 + CY') 

4 0 h  A ;  4P0 L 

(67) 

where w =arn t a, ug is the group  velocity, R is the  facet 
reflectivity, L is the cavity length,  and Po is the  output power 
per facet. Within the weakly damped  resonance regime, the 
field spectrum consists of a series of  Lorentzians.  The line- 
width  of  each  Lorentzian is precisely the field spectrum line- 
width  calculated  in  the Van der Pol analysis. The form of 
W,(w) is  similar to  the  spectrum produced  when a carrier fre- 
quency is harmonically  frequency modulated. Such modu- 
lation  scatters energy into an  infinite series  of sidebands 
spaced at intervals of the  modulation  frequency  and  with  the 
nth sideband amplitude determined by  the regular  Bessel func- 
tion J , .  The  relaxation  resonance  has  an analagous effect. 
The ensuing phase modulation  scatters energy at  the lasing 
frequency  into sidebands with relative amplitudes given by 
the modified Bessel functions 1, and spaced at intervals  of 
approximately oR. 

Fig. 2 contains field spectra  calculated numerically using 
the  exact expression (61) for  the field autocorrelation. Laser 
parameters used in  Fig. 1 were  also used here.  In Fig. 2(aj, 
(bj,  and (c), photon densities are p o  = 0.5, 1.0, 2.0 X 1014 
cm-3 which  corresponds to  approximately 0.5, 1.0, and 2.0 
mW output power per facet.  The  form given in (17)  has  been 
used for TR. Field spectrum  fine  structure has  been observed 
by Vahala, Harder, and Yariv [3]. In  addition to the  charac- 
teristics discussed above, the fine structure  exhibited assym- 
metrical  amplitudes. This asymmetry is shown  to  result  from 
amplitude phase coupling at  the relaxation  resonance, and as 
such would not appear in  the preceding analysis due to  the 
form of (61 j. There  are two ways to include  this  effect  within 
the  present  formalism:  one  method, as shown  in [ 3 ] ,  involves 
a small  angle approximation of eLq and is only valid in the 
high-frequency regime and  for  strongly  damped  relaxation os- 
cillations; a second method would be to calculate (E(t  + 7) 
E*(t))  using the  distribution  functionf[&(t), 6 ( t  + T), A ~ ( T ) ] .  
f could be taken as Gaussian, allowing it  to  be  completely 
specified by ( 6 ( t  + 7) S ( t ) ) ,  ( 6 ( t  t 7 )  AV(T)), and ((Ap(7))'). 
The calculation  would be rather  tedious, however. 

An interesting  feature of semiconductor laser noise,  recently 
measured by Welford and Mooradian [ 8 ] ,  is the power-inde- 
pendent  component of field spectrum  linewidth. Welford 
and Mooradian attribute  this residual linewidth to carrier in- 
duced  fluctuations of the refractive index. By assuming the 
mean  square electron  number  fluctuation is equal  to  the  total 
number of electrons  present in the active region, they have 
calculated  an  rms  frequency deviation in agreement with  their 
linewidth data.  The expression they have used for  electron 
number  fluctuation describes fluctuations of a nondegenerate 
system  of  electrons which is in thermodynamic equilibrium 
with a bath of  electrons  of prescribed chemical potential [ 101 . 
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(C) 
Fig. 2. Normalized  field  spectrum W,(w) at  output powers of (a) 0.5 

mW, (b) 1.0 mW, and  (c) 2.0 mW per facet. 

As discussed  in Section 111, whenever a system  of particles 
interacts  with  other systems via particle fluxes into  and  out of 
the  system,  there  are particle number  fluctuations associated 
with the  interaction.  The system  of  electrons in  the active re- 
gion  of a semiconductor laser interacts  with holes and  photons 
through emission and absorption and with  electrons  outside 
the active region through  thermal particle fluxes.  The  latter 
interaction causes the number fluctuation discussed by Wel- 
ford  and Mooradian. The  combined  interactions, however, 
determine the  total  number  fluctuation. Corresponding par- 
ticle rates  determine R 2  in (45) and in turn  the Langevin force 
normalization Wz in (51) [although we  have explicitly in- 
cluded only  the emission/absorption  rates in (51)]. We note, 
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however, that W 2  does not  enter  into  the field spectrum line- 
width given by (67) or  by more  exact  calculations  we have 
made  using (61). Gain  clamping  channels the carrier density 
(or carrier number)  fluctuations associated  with W z  into  fine 
structure frequencies.  Consequently,  the  observed  power- 
independent  linewidth  must result from  mechanisms other 
than carrier number  fluctuation. 

V. CONCLUSION 
We have presented  a semiclassical analysis of  semiconductor 

laser  noise w l c h  includes the carrier density as a  dynamical 
variable and  the carrier density  dependence  of  the refractive 
index.  The  Van der  Pol treatment given in  Part I is a special 
case of  this analysis, and we have demonstrated  that  for fluc- 
tuations which  occur  near the lasing frequency,  the noise  equa- 
tions  of  the  present analysis  reduce to  the Van  der Pol  noise 
equations.  The  transformation is accomplished at  the expense 
of carrier noise, however, resulting in certain  inaccuracies  in 
the Van  der  Pol results. Low-frequency  intensity noise, for 
instance, is somewhat larger  in the present case due to carrier 
noise contributions. 

All laser spectra  calculated  exhibit  resonance  behavior at 
frequencies  where  time  delays in the gain saturation process 
are important. The  Van  der  Pol  model fails to predict  this  be- 
havior  since it assumes that  saturation occurs  instantaneously. 
This  resonance  has  been  studied both  theoretically  and  experi- 
mentally  in  the  power  fluctuations  spectrum,  but  only  re- 
cently  has  it  been  observed  in  the  frequency  fluctuations  spec- 
trum [2] and  the field spectrum [3]. This analysis is the first 
to consider the resonance  in  these  spectra. 

Finally, we have considered the role of carrier number fluc- 
tuations  in  the field spectrum.  These  fluctuations result from 
interactions  of  the carriers in the active region  with other sys- 
tems  of particles. This  analysis  does not predict field spectrum 
linewidth  broadening  due to carrier number  fluctuation  in  the 
active region.  The  dynamics of the gain saturation process 

cause  these fluctuations to contribute  only to  fine structure 
components of the field spectrum. We believe two  other pos- 
sible, and as yet  unexplored,  explanations of the observed 
broadening are temperature  fluctuations of the active region 
and  fluctuations of  electronic  state  occupancy  due to intra- 
band scattering. We will investigate these  mechanisms  in  a 
future  publication. 
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