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We suggest that M theory could be nonperturbatively equivalent to a local quantum field theory. More
precisely, we present a “renormalizable” gauge theory in eleven dimensions, and show that it exhibits various
properties expected of quantum M theory, most notably the holographic principle of 't Hooft and Susskind.
The theory also satisfies Mach’s principle: A macroscopically large space(intethe inertia of low-energy
excitations is generated by a large number of “partons” in the microscopic theory. We argue that at low
energies in large eleven dimensions, the theory should be effectively described by eleven-dimensional super-
gravity. This effective description breaks down at much lower energies than naively expected, precisely when
the system saturates the Bekenstein bound on energy density. We show that the number of partons scales like
the area of the surface surrounding the system, and discuss how this holographic reduction of degrees of
freedom affects the cosmological constant problem. We propose the holographic field theory as a candidate for
a covariant, nonperturbative formulation of quantum M theory.

[S0556-282199)01504-0

PACS numbsgws): 11.25~w, 04.60—m, 04.70.Dy

I. INTRODUCTION Seiberg have recently presented an elegant heuristic scaling
argument[14], which provides a rationale for the matrix
M theory has emerged from our understanding of nonpertheory proposal and clarifies it significantly.
turbative string dynamics, as a hypothetical quantum theory Matrix theory has proven to be a very impressive candi-
which has eleven-dimensional supergraVify as its low- date for the nonperturbative formulation of M theof{or
energy limit, and is related to string theory via various du-recent reviews, see Rdfl5].) Despite its outstanding suc-
alities [2—4] (for an introduction and references, see, e.g.cesses, however, it still leaves many important questions un-
Ref.[5]). While the low-energy effective description of this answered. It is background dependent and noncovariant, and
theory in terms of eleven-dimensional supergravigupled the scaling arguments of RefL4] suggest the existence of
to Eg Yang-Mills supermultiplets if the space-time manifold conceptual problems for compactifications on tori of dimen-
has boundarie§4,6]) is relatively well understood, we still sion higher than 5.
need to clarify how M theory is to be formulated as a non- In general, it has been suggested that since M theory can-
perturbative quantum theory. not be a string theory, it must be a new kind of theory, which
Our search for a nonperturbative formulation of quantumshould perhaps be formulated in terms of completely new
M theory can be guided by some general observations. Firgiegrees of freedom, and require new physical principles.
of all, M theory should represent, among other things, a conThis may even lead to a change in our way of thinking about
sistent quantum theory of gravity. Using the Bekensteinmicroscopic physics, perhaps as radical as the discovery of
bound on the maximum entropy in a given region of spaceuantum mechanic$lndeed, a certain amusing analogy be-
[7], 't Hooft and Susskind have argued very convincingly tween the development of quantum mechanics and that of
that any such theory should satisfy the holographic principlestring theory has been pointed out, see R&6), p. 1)
[8,9] (see also Refl10]). The holographic property predicts ~ We would like to point out a different analogy, which
a radical reduction of the number of degrees of freedom inelates the current situation in M theory to the situation in the
qguantum theory of gravity; unlike in any conventional local theory of strong interactions before the discovery of QCD. In
field theory, their number should scale like the area surthe mid 1960s, it was generally believed that in order to
rounding the system. understand strong interactions, local quantum field theory
Other observations come from our improved understandwould have to be abandoned altogether, and radically new
ing of nonperturbative string theory. At substringy distancesphysical principles would be needed. The efforts to go be-
a new regime of weakly coupled string theory has been disyond field theory indeed initiated the development of impor-
covered and analyzdd1]. In this regime, the short distance tant new concepts, such as the anal@imatrix, bootstrap,
physics is dominated bp0-branes, and long-distance grav- duality, Regge trajectories, etc. However, we know that at
ity is replaced by Yang-Mills gauge theory on world vol- the end, the puzzle of the theory of strong interactions turned
umes of branes. The matrix theory formulation of quantumout to have a beautiful resolution in the “conservative”
M theory, proposed by Banks, Fischler, Shenker, and Sus$ramework of local quantum field theory.
kind [12,13, takes this lesson very seriously and elevates In this paper we will adopt a similarly “conservative”
some of the crucial features @-branes to eleven dimen- approach to M theory. Instead of looking for radically new
sions, using a light-front formulation of M theory. Sen and principles and degrees of freedom, we will present evidence
suggesting that M theory may in fact be equivalent to a local
quantum field theory.
*Email address: horava@theory.caltech.edu Our starting point in Sec. Il will be a Yang-Mills gauge
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theory in eleven dimensions. The gauge group is a certaisome new light on the cosmological constant problem, and

supersymmetric extension of the eleven-dimensional anti—dee will find indications suggesting that may be naturally

Sitter group, but the theory should not be confused with desmall in holographic field theory.

Sitter supergravity. Microscopically, our theory is a gauge The purpose of this paper is to stress some of the unex-

theory, with Yang-Mills gauge symmetries. In addition to the pected features of the theory, in particular the holographic

gauge symmetries, we require invariance under space-tim@operty, and to set the ground for a more detailed investi-

diffeomorphisms, as well as parity invariance. gation. Our presenta_tion will be rather _sketchy, and we will
All terms in the Lagrangian that are allowed by the Sym_Ieave out many details and open questions for further study.

metries are of higher order in fields, and are in fact given by

Chern-Simons terms. Thus, our theory belongs to the class of ll. THE THEORY

Chern-Simons gauge theori¢&7]. Chern-Simons gravity

was first studied in 21 dimensiond 18,19, and then ex-

tended to higher odd dimensioh20—22. Our formulation

Consider a gauge field theory in eleven dimensions, de-
fined as follows. Start with an eleven-dimensional manifold
M, with coordinatesxM, M=0,...,10. Our theory will be a

W'I{/\(;L%sflg):ogg\éve??rgarijeﬁ'gi?rfgl' symmetric solutions 9249€ theory described by a Yang-Mills one-form potential
P y Sy A, in the adjoint representation of a certain gauge gréup

Fh‘? theqry has no propagator, and the Iow-energy field theor%/e impose gauge invariance under the Yang-Mills gauge
is ill defined, or at least difficult to understand with conven- :

. : .~ transformations

tional methods. In Sec. Ill, we adopt the following effective-

theory approach to this issue. We will not attempt to quantize 6Ay=Dye. (2.7

the theory microscopically. Instead, we will try to identify a ) . .

low-energy regime, in which the theory does have a convenl here is no preferred metric o, and we require that the

tional low-energy effective field theory description, with ex- tN€ory be invariant under local diffeomorphisms.of. The

citations propagating in a macroscopically large space-timeQnly Lagrangian that respects these symmetries is the Chern-

In order to find such a macroscopic low-energy regime,S/MONSs Lagrangian
we will have to introduce matter, in the form of first- 1
guantized particlegor “partons™) represented by Wilson 'C:__Zf w11(A), (2.2
lines—the only objects that couple naturally to the gauge 9 Jm
field. A large space-time will require a large number of par-wherew,,(A) is a Chern-Simons eleven form, defined by
tons. We will see that the theory satisfies Mach’s principle
[23]: Macroscopically large space-times and the inertia of dwi(A)=Tr(FO---0OF). 2.3
propagating low-energy degrees of freedom will be genery,
ated by the distribution of a large number of partons in theS
theory.

ereF is the field strength associated with Tr refers to a
ymmetric, invariant six-tensor @i In fact, the Lagrangian

L can be a linear combination of all possible such terms if there
In Sec. IV we study the theory at low-energies in large

g . . . 9%is more than one invariant six-tensor ¢hthat satisfy all
eleven dimensions. We will show that for the appropriate oh fy

: . . other symmetry restrictions we may want to impose on the
choice of the gauge group, the flat eleven-dimensional Spac('f'ﬁeory; each term would then have its own coupling constant

:!me |sh§1hsolut:on ofttrk:e trflfeo;y, f"? 3.”?36‘”' f'elc,: appr?ilma-g. The theory is renormalizable in the elementary sense that
lon which repiaces the efiect of Individual partons at large,, couplings allowed by the symmetries are marginal.

distances by a uniform density of partons. We identify the Equation(2.3 can be solved, leading to an explicit for-

regime which has low-energy degrees of freedom propaga}hula for the Chern-Simons fornm,y(A) (see, e.g., Ref.
ing in a large space-time, and argue that the Iow—energY24]) 1 ' '

physics is effectively described by eleven-dimensional su-

pergravity. We demonstrate that this effective supergravity 1 )
description naturally breaks down at energies much lower wll(A):Gfo dt T AO(tdA+t°ADA) -0
than the naively expected Planck scale.
In Sec. V we show that the breakdown of the low-energy X (tdA+t2A0A)]. (2.9

effective theory is in accord with the Bekenstein bound on . ) . .

energy density, and that the theory in fact satisfies the hololN€ leading term in w;y(A) is proportional = to
graphic principle. More precisely, we demonstrate that thel ((ALdAC!--TdA); all other terms are of higher order A&

limit of validity of the low-energy effective supergravity de- ~ 1he coupling constarg in Eq. (2.2) is dimensionless. It
scription is reached precisely when the energy in any regiof@y be quantized, depending on the precise choice of the
of characteristic size equals the mass of the Schwarzschild92uge group and Tr. The quantization condition can be de-
black hole with radiud.. We will see that as expected in a rived as follows. Qon5|der a twelve-dimensional mameId
holographic theory, the number of partons in the systenyVh0se boundary i3, and extend the gauge connection over
scales as the area of the surface surrounding the system. Bt The Lagrangiari2.2) is then more precisely defined using
large distances and low energies, the theory is described byd- (2.3, as an integral of Tig[}---F) over B:

low-energy supergravity, and space-time diffeomorphisms

are a part of the dynamicql gauge group. The realization of L=— izf TrFO---OF). (2.5

the holographic principle in local field theory also sheds 9°Js
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The quantization condition on the coupling arises from the We want to impose parity invariance as a symmetry of
requirement thal’ be independent oB and the wayA has  our theory. It turns out that the minimal supersymmetric ex-

been extended ovéds. Typically, this leads to tension OS(|32) of the anti—de Sitter group is not compat-
1 ible with parity. Indeed, we know how should act on the
—~k, (2.6)  bosonic anti—de Sitter generators: Béth andJ g flip signs
g wheneverA or B=1. On the fermionic generatorg,acts by
with k an integett 0.—(I'1Q),. 2.9

So far we have imposed local diffeomorphism invariance

as the only symmetry in addition to local gauge invarianceyt js easy to see thaf cannot be extended to an automor-
Our understanding of low-energy effective M theory indi- phism of OS1(32). The obstruction comes from the higher-
cates that any candidate for non-perturbative formulation oform sector of the algebra. It is natural to extefido the
M theory should also be parity invariahThe Z, transfor-  fiye-form charge in such a way that it changes sign whenever
mation P, that changes space-time orientation by reversingy.— 1 for anyi=1,...,5. However, this rule does not respect
one of the space-time dimensiofsay x”) cannot be a sym- the group structure of O$p32), roughly because of the
metry of the Chern-Simons gauge theory, since each Cherfiyesence of the antisymmetréctensor in some of the com-
Simons form is odd undeP,. In order to become a symme- mutation relations.
try, Py has to be accompanied by an involutignon the Thus, parity invariance will require a non-minimal exten-
gauge groupy. Depending on the choice & andZ, the  sjon of the anti-de Sitter group, into a group with 64
microscopic theory w_|II be constrglned by the requirement 0fsupercharge§.‘l’he minimal choice of the gauge group com-
invariance under parity, now defined as patible with parity invariance will contain extra, higher-form
P="Py T, 2.7 bosonic chargel{Al...Ar for some set of values of and an

. . - . extra 32-component superchar@g,. We can now extend
leading to restrictions on admissible Tr that can appear in Ea[he definition ofZ to these new charges, requiring that the

(2.2. - . bosonic charges change sign undevhenever either of their
Gauge group and parity invariancés our gauge group, indices equals 1, an@'— —T';Q’. The minimal set of

we will choos_e a supersymmetric extension of the am'fd%harges that allow commutation relations that respectZhis
Sitter group in eleven dimensions. We need the de Sitter ill contain a six-form, a nine-form, and a ten-form charge
group as a part of the microscopic gauge group, because onlY - qdition toP . . J ’andK ('Heuristically we need '
in that case we will eventually find a low-energy regime ArUAB Ayrhs Y 7 .
described by effective supergravity with the conventiona/® dual charge for each of the original bosonic charges, in

Lagrangian linear in curvature, and the flat space as a solrder to write down commutation relations without the anti-
tion of the low-energy theory. ’ symmetrice tensor) These charges generate a group isomor-

The anti—de Sitter group is generated By and J,g, Phicto OSy132) xOSK(1[32), which happens to be the non-
with A,B=0,...,10. There is an invariant six-tensor on theChiral super-Lorentz _group in twelve dimensions with
anti—de Sitter group that will play crucial role in our theory, Signature(10,2 [27]. The bosonic charges form the Lie al-

gebra of SB2)xSp(32). (For details, see Ref27].)
(Padaa, " Jaga,) = €an,ag, (2.9 We will parametrize the components of the gauge field

_ o , in the adjoint of OSfi|32) xOSH(1/32) as follows:
(with all other terms zeno This six tensor defines a Chern-

Simons eleven form of the anti—de Sitter group. Chern- A 1 ,s 1 a.a
Simons gravity with this Lagrangian was first studied in vari- Au=VyPat 5 oy Jnst > r—,Bml "Kaa+¥uQqa
ous dimensions by Chamseddif#0]. Our Lagrangian will t
be a supersymmetric extension of this bosonic Chern-Simons +95Q", (2.10
Lagrangian.

To make any contact with M theory, we need at least 33vhere we have denoted all bosonic higher-form charges col-
supercharges. It was shown by van Holten and Van Proeyelctively by Ka,-a, With r=>5,6,9,10.
in Ref. [27] that the minimal supersymmetric extension of oy theory is formally defined by the path integral
the eleven-dimensional anti—de Sitter group into a super-
group with a 32-component superchai@g requires the in- "
troduction of an extra bosonic five-form charg@, ...a,, f DA€™, (211

which extends the group to O832).

SFirst indications that the symmetry algebra underlying eleven-
In the case of the de Sitter gauge group, directly relevant to thelimensional supergravity may contain 64 supercharges appeared in
present paper, the issue of coupling constant quantization has be&ef. [28]. The importance of algebraic structure in M theory has
discussed in Ref25]. been stressed by TownsefB] and Bars[30]. Indeed, 64 super-
2We know that M theory is parity invariarié,26]. Indeed, in M charges appeared in this algebraic approach to M thg&flly as a
theory parity can be gauged, leading to the sector of heterotic vacuasart of the maximal supersymmetric algebra that could contain all
of the theory. string dualities.

046004-3



PETR HORAVA PHYSICAL REVIEW D 59 046004

We will mostly discuss classical aspects of the theory in thids a number of order 1, which gives for the standard volume
paper, and will not analyze the precise definition of the mea-
sure in Eqg.(2.11. _Our fOCl:IS Wi_II be on an gffeqtive_ap— V:f eD---De~i10. (3.9)
proach, and we will try to identify a regime in this micro- My M
scopic theory where interesting low-energy physics appears
already at tree level. Of course, this argument could be easily refined to include
Since the Lagrangian is of higher order in fields, thisthe case with a flat metric o, of toroidal topology; the
theory does not have a standard kinetic term; moreover, it igadii of the torus would then be measured in unitsLof
topological in the sense that no metric has been used to write M ~ ™.
down the theory. Notice that the theory still has dynamical There are two puzzles that we have have to resolve in our
degrees of freedom, as the equations of motion are scenario. First, the flat eleven-dimensional space-ii&
is not a solution of the classical equations of motion of our
FOFOFOFOF=0. 212 0OS[1/32)x0S[1/32) Chern-Simons gauge theory. Thése
There is, however, no standard propagator for these loc& forma_ll soluti_on of the equation of motion_, which descri_bes
degrees of freedom in tHe=0 vacuum, nor is there a con- the anti—de Sitter space. However, there is no conventional

ventional perturbation theory in terms of weakly coupled lo-OW-€énergy effective theory that would result from expand-
calized multiparticle states. ing the microscopic gauge theory around the anti—de Sitter

solution. In particular, the formal expansion would have no
guadratic term in the Lagrangian, and no propagator for par-
ticlelike degrees of freedom. According to the logic of our
We live in a large universe, whose behavior at low ener-approach, we are only interested in low-energy regimes that
gies seems well described by a local quantum field theory ofiave a conventional effective field theory description.
particlelike excitations. We want to identify a regime in our  Another puzzling feature of the theory is the presence of a
theory, which has such a low-energy effective description. Irdimensionless coupling in Eq. (2.2). We know that M
particular, we would like our theory to have an eleven-theory—at least at low energies, where it is well described
dimensional vacuum described at low energies by eleverby eleven-dimensional supergravity—does not contain any
dimensional supergravity, with flat eleven-dimensionalsuch free dimensionless parameters. If our theory is to be a

lll. LARGE UNIVERSES AND MACH'’S PRINCIPLE

space-time as a solution. reasonable candidate for the microscopic description of M
theory, we have to explain why does not appear as a free
A. Effective theory in a large universe dimensionless coupling in the theory at low energies.

. , . We will see momentarily how both of these issues are
First of all, we would like to write down the flat space- req5)yed when we introduce partonic matter into the theory.

ftime as a particular gauge field configur_ation..We Want 19The discrete coupling constaktthat appears in Eq2.6)
identify the P, component of the gauge field with the viel- iy (ym out to play the role of the number of elementary

bein field, and thelag cpmponengwith thAeBspin connection. ¢onstituents(“partons”) in our system. Only for a large
However, the gauge fieldy=VyPa+ oy Jag* -+ is of  pnymper of partons, our theory will have a low-energy de-
dimension 1, while the natural dimension for the vielbein |Sscripti0n in terms of Supergravity degrees of freedom propa_
zero. We introduce the dimensionless vielbefy, and write  gating in a macroscopically large space-time. This relation
VA = Me? (3.1) between the number of partons and the size of the low-
M M - . . . . . . . .
energy world is a first indication that our theory satisfies
We will usee} to denote the flat eleven-dimensional viel- Mach’s principle.
beinE’,{‘,, = 5{\) . Hence, the gauge field configuration that rep-

resents the flat eleven-dimensional space-time is B. Matter and Mach’s principle
KM: MEQ P, 3.2 The gauge field is a one-form, and it couples naturally to

point particles. Consider the Wilson line
We were able to write down the flat space-time geometry as

a particular gauge field, at the cost of introducing a mass Wr(C)=1rgP eprCA, 3.9
scaleM into the theory. This mass scale is not a part of the

path integral definition of our theory. Rather, it appears as §nere R is a representation of the gauge group & a
property of the particular gauge configuratidn certain contour inM. The Wilson line defines an observable
The mass scal®l can be interpreted as the inverse char-in our gauge theory, and one can study physical processes
acteristic size of the univerger, more generally, of the box that involve correlation functions of a certain number of such
large enough to contain our systenindeed, the “dimen-  Wilson lines. This is in fact the most natural way of intro-
sionless volume” of a ten-dimensional spacelike hypersurducing matter in our theory. The Wilson lines correspond to
face M(C M trajectories of particles of matter; their species are in corre-
spondence with the representations of the gauge group.
f V-0V (3.3 These patrticles will play the role of “partons” in our micro-
Mg scopic theory.
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Consider now a universé with N Wilson lines (or  J—which is microscopically a sum oN delta functions
“partons”) inside. The partons couple to the gauge fields(3.6)—by a uniform density field),
through their currentZ, which is a sum of delta functions _ 10 ArsAor. ..
localized at their corresponding contous. For N Wilson J=CNMTen, p, e s, @.1)

lines the current is
We expect the mean field approximation to be valid at dis-

- o tances much larger than the characteristic distance between
J= 21 J7Tad(Ci) (3.6 partons as defined a posteriori B . This approximation is
somewhat reminiscent of the average field approximation
(here T, collectively denotes all generators of the gaugefrequently used in the theory of condensed matter systems

group and the Lagrangian in the presence of the Wilsondescribed by Chern-Simons theory; see, e.g., R8834.
lines is modified to We will adopt this mean field ansatz for the rest of the

paper, and will not attempt to derive it from the microscopic
1 theory. In particular, we will not identify precisely the spe-
£=- ? wa“(AH fMtr(ADJ)_ (3.7 cies of partons that leads to the mean field current, leaving
this very important point to future study.

Notice that since the group generatdfs in Eq. (3.6) are In order to write down .the mean field ansédz1) for 7in

matrices in the representatiofi of the gauge group, their terms of the flat space vielbegf;, we had to use the mass

presence in the Lagrangian needs further interpretation. ThefaleM that appeared already in E€B.2). This mass scale

T, in Eq. (3.6) should be properly interpreted as quantumha?' been interpreted as t_he. character]suc inverse size of the

objects that emerge from the quantization of extra degrees ¢fhiverse[see Eq(3.4)]. This interpretation oM is compat-

freedom localized at the contoufs . This is of course a ible with 'ghe mean f!eld_theory requirement that the total f_qu

procedure standard in gauge theories in general, and igf the uniform density field be equal to that of the partonic

Chern-Simons theories in particuldr7,31, and we will not ~ currentJ,

repeat the details heréSee Refs[19,32 for more details on

this construction in the case off2l Chern-Simons gravity. J J%=¢N. 4.2)

The equations of motion in the presenceNopartons no Mg
longer require the wedge product of fil€s to vanish.
Rather, the flux of the gauge field is tied to the current:  The multiplicative constant on the right hand side of Egs.
(4.1) and (4.2 is independent oN. This constant measures

FO--OF=9°7. (3-8 the contribution of an individual parton intd®, and will

, have to be determined a posteriori due to our lack of
Thus, the partons serve as sources for the field strength ﬂuiinowledge about the precise microscopic origin of &)

which is '."donzﬁro a!"d Iogalizefdhat the contoursC;, and Our theory is defined by Eqg2.2), with Tr being the
Zero outside the trajectories of the partons. parity-invariant OSfl|32)x0Sy1/|32) invariant supersym-

In the next section, we will be interested in describing etric extension of Eq(2.8). Due to the presence of the
such system at Iarge_dlstances, where the coIIe_ctlve_effect urrent on the right-hand side of the mean field equations of
a large number of Wilson lines can be summarized in terms otion

of a uniform mean field, representing macroscopic space-

time geometry. Our theory is actually an implgmeptation of FO---OF =g2), (4.3
Mach’s principle[23]: The geometry of space-time is gener-
ated as a collective effect by the distribution of matiep-
resented by the partons the microscopic theory. The flat
microscopic space-time emerges as a collective effect, in the
presence of a nontrivial matter distribution. In the absence of
matter, not even an empty, flat macroscopic space-time is _
possible. At low energies, our theory also satisfies Mach’dS indeed a solution of the theory.

principle in another of its classic formulations: The inertia of When integrated over the spacelike hypersurfade,,
propagating particlelike degrees of freedom is generated astBe time component of the equations of motion requires
collective effect determined by the distribution of matter in

N

the flat eleven-dimensional space

Ay=MenP, (4.4)

the microscopic theory. f FO---OF =g2 J, (4.5
Mao Mio
IV. LOW-ENERGY EFFECTIVE SUPERGRAVITY )
IN ELEVEN DIMENSIONS which leads to
A. Mean field theory and flat eleven-dimensional space-time cg’N=1. (4.6)

We are interested in the physics at distances much larger
than the characteristic distance between two partons. AtVe choose the value af(which is independent of andN)
those distances, we can effectively approximate the sourcguch that the quantized gauge couplig 1/g? is precisely
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equal toN.* In other words, the quantized gauge coupling 1 M25+1 (5

constantk~ 1/g? is to be identified with the number of par- £=— —2f E ( )

tons in the system. This resolves one of the puzzles about the 9" Jmé=0 2s+1 1S

low-energy interpretation of our theory—the dimensionless X en.. p €Mk Oehest1RAzs+ 2825430 - - [JRA0AL
gauge coupling is determined by the presence of matter in o

the system. 4.9

_ (R*B=dw"B+ 00w’ denotes the Riemann curvature of
B. Low-energy field theory wﬁ,,B )

Now we wish to identify a regime with a well-defined = We are looking for a regime with a well defined low-
low-energy effective description. At first, our arguments will energy effective description. In this regime, the low-energy
be independent of the precise supersymmetric extension dfieory should have a kinetic term containing the Einstein-
the anti—de Sitter group. Therefore, we will study theHilbert term linear inR. Keeping the Einstein-Hilbert term in
bosonic anti—de Sitter sector of the theory first, hoping thaEq. (4.9) finite, we can identify the effective Planck mass
this will make our arguments more transparent. M

Our theory still contains two parameters—a mass sihle M p~ —o75. (4.10
introduced in our solution to the mean-field equations of mo- g
tion, and the dimensionless Chern-Simons coupling that we
have just identified with the number of partohsin the
system. The requirement that the theory have a low-energ

regime described by conventional effective theory will deter->>¢ )
quiresM to scale with the number of partons, such that

mine one of these parameters in terms of the other. 09 , X
First we rewrite the theory in terms of rescaled variables~0: M—0, andMg~“"is fixed. Note that sincé/ is the

suitable for the anticipated low-energy supergravity regime NVerse characteristic size of the universe, this scaling is con-
sistent with the assumption that the universe is macroscopi-

An=MepPa+ wyPagt: -, (4.7 cally large in Planck units. Note also that in terms of the
microscopic Chern-Simons gauge theory, this regime corre-
and consider the effective theory for fluctuations near the flasponds to the semiclassical lingjt— 0.

In the low-energy theory, we want to keépp fixed.
inceg is related to the number of partons by E4.6), the
caling that leads to a well-defined low-energy theory re-

space-time solution. Thus, we assume We have identified the low-energy Planck length in terms
A —a of the Chern-Simons coupling constaptand the mass pa-
ey—ey<l. (4.8 rameteM. Now we can look more closely at the low-energy

effective theory. The Lagrangiat¥.9) can be written in

It will be convenient to replace the mean-field currdnt terms ofMp andg as follows:
=NMPPel}-‘e by NM%Pel--Oe. This corresponds c
to an improved mean field approximation, in the following ~ ,— _MgJ Tr( el --0e0R+ TZeD---DeDRDR
sense. The distribution of partons, summarized in the mean M g""Mp
field theory byJ, determines the large-scale metric in space-
time; when we consider geometriesclose to but different 4912 A, . . —8/9\ g —4
from the flat geometrg, the distribution of partons can be *CogMpelh et Olg T Me ) |. “.13
expected to adjust to this change of the space-time geometrE/, i i i )
leading to the modified mean field expressionJan which ~ [Here, as in Eq(4.9), the trace is defined by the antisymmet-

€ is replaced bye. Practically, this substitution allows us to M€ € tensor,co andc, are certain constants of order one and

keep general covariance in mean field theory. independent of andMp ] _ _
The bosonic anti—de Sitter sector of our QEB2) In the effective theé)ry, we will keep only the leading

X0S[(1/32) Lagrangian can be written in terms of the res-term, proportional toVip and containing the term linear in

caled variables af20] curvature. This rule extends to the full Q332

X0S[1|32) supersymmetric theory, thus leading to a low-
energy supergravity with the Planck mass given by Eq.
(4.10. We have also indicated the presence of the cosmo-
logical constant term in the bosonic Lagrangidnll); this
term vanishes in the limit of infinitely large space-time, and
should be absent in the full supersymmetric theory. Its de-
pendence ol andM is of some interest, however, and we

4In more generality, one might consider cases witamN, with
m not necessarily equal to orfbut independent ok and N). As-
suming that the theory makes sense for any number of pantons,
has to be a positive integer. In fact, this positive integerelates
the number of partonhl to the size of the universe they generate, . . .
and it might be tempting to refer to it as the “Mach number” of the will return to _thIS issue briefly in Sec. V. .
universe. In this paper, we will only consider universes with Mach gThe effective thec_)ry that only keeps .terms proportional to
number equal to 1. This is indeed the most refined case—universéd p can only be valid as long as the higher-order curvature
with Mach number higher than 1 will have effectively less partonsterms in Eq.(4.11) are much smaller than the leading curva-
per given volume than the minimal case of Mach number 1, andure term. Thus, the low-energy supergravity is a good effec-
presumably correspond to partons in higher representations of tH#ve theory only at sufficiently large length scales and for
gauge group. sufficiently small space-time curvatures.
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The higher order curvature terms in Eg.11) are indeed of a term which is of higher order in curvature, and gauge
suppressed by inverse powers of the Planck vgss How-  translations are a gauge symmetry. Indeed, in the micro-
ever, powers ofy also appear, and we obtain the following scopic theory we have

condition on the space-time curvature in the effective theory: 5

M
RAB<g¥9M2, (4.1 5iRAP~ g AT, (4.16

This is a surprisingly strong restriction on the validity of the

low-energy effective field theory. We will see momentarily

that this should not be a surprise at all, as our microscopié4'13' In .the Iow—en(_ergy effective theory, however, the
theory turns out to satisfy the holographic principle. In atgrms of higher order ik are absent, and the gauge transla-
holographic theory, the low-energy approximation by an efilons aré not a symmetry. Rather, the effective symmetry
fective field theory in large space-time suffers from a drastict9€Pra of the low-energy theory is related to the contraction
overcounting of the number of degrees of freedom, an®f the microscopic algebra, obtained by settivg /N™" to
therefore should break down much before the naively ex#ero |n.the commutat_lon relations. ]n particular, the gauge
pected Planckian cutoff. The conditié.12) is the manifes- translations are effectively replaced in the low-energy theory

tation of precisely such breakdown of the low-energy effec.PY local diffeomorphisms. . .
tive theory. We have argued that the low-energy supergravity descrip-

tion breaks down as we reach curvatures of ofd&/N?°,

As we approach the limit set by Ed4.12, the theory
crosses over to an intermediate regime where the mean field

Microscopically, our theory is a gauge theory. We haveapproximation should still hold, since the characteristic dis-

seen that at low energies, the theory is effectively describeghnce between partons is much smaller tNAfiM ;1, In that

by a Lagrangian linear in Riemann curvature. It is knownregime, the higher curvature terms become important, and
that this standardsupejgravity Lagrangian is not invariant space-time diffeomorphisms are replaced by the microscopic
under the gauge symmetries associated with translations; gauge symmetry. In this intermediate regime, the theory be-

supergravity, gauge translations are replaced by diffeomorcomes a true gauge theory, stil in a mean field
phisms. In our case, the gauge translations are clearly sympproximatior?

metries of our microscopic theory, and one may wonder how
they can get replaced by diffeomorphisms in the effective
low-energy theory.

To see how this happens, consider the following. At low Having understood how space-time diffeomorphisms ap-
enough energies, the higher-curvature terms in the Lagrangpear as a part of the low-energy symmetry, we now return to
ian are small, and our theory is described to a good approxithe full supersymmetric theory. Our discussion will be brief
mation by the low-energy term linear R The microscopic and sketchy. We will not try to demonstrate in detail whether
gauge symmetry algebra can be rewritten in terms of resthe full low-energy theory really reproduces minimal eleven-
caled charges with appropriate dimensions for the low-dimensional supergravity of Refl]. We will find indica-

and the variation oR in the ROR term cancels that of Eq.

C. Low-energy symmetries: space-time diffeomorphisms

D. Low-energy supersymmetry

energy theory, tions suggesting that this should be the case, but a more
= _y detailed analysis would certainly be desirable.
PA=M"P,, Q,=M"YXQ,. (4.13 The full supersymmetry algebra OQ{82)xOSH1/32)

. . .__can be written in terms of the rescaled charges
Schematically, the relevant part of the commutation relation

s Kagoa =M Kpa, Q=M. (417

~ ~ ~ M

{Q,Q}=T"P,+ WP@FABJAB+ PATASK p oo, This rescaling is the only one compatible with that of Eq.

(4.13 and with the structure of the theory at low energies.

o The effective symmetry of the low-energy theory is related

[PA,Pg]= WJAB+--- . (4149 to the M—0 contraction of this microscopic
OSp(1/32)x0Spu1|32) algebra, for reasons discussed briefly

(The “ellipses™ refer to the higher-form charggst is easy " t‘lr'ferr)ée\g?; SSZL\J/ZfaeICt;niJments indicating that the low-
to see that even though this is the symmetry algebra of the h b 9 q 9 d | i
microscopic theory, it is not a symmetry of the Iow-energye.nergy. theory can be expected to reproduce eleven
Lagrangian. Indeed, under gauge translatisis we have dimensional supergravity.

from the variation ofe',?,I in the effective Lagrangian.

5 . . 10, .
~ Notice that the improved curreM~"ell- --Ce0P is only con-
SLes~—MD | Tr(zel:--OeOTOR). 4.1
Lo PJ (ee © ) (4.19 served if torsion is zero. The improved mean field theory in the

A A 5. ) ) intermediate regime wherfe may no longer be zero would require
(Here TA=de’*+ w”z0eB is the torsion ofe.) In the micro-  modifications of the improved mean field current that take torsion
scopic theory, this noninvariance is canceled by the variatiofnto account.
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(1) The low-energy symmetry algebra obtained from theciple. In this section we present evidence that our local field
contraction of the microscopic gauge symmetry is the algetheory is indeed holographic.
bra with 64 supercharges that was identified by D’Auria and We have shown above that the Chern-Simons coupling
Frein Ref.[28] as the hidden algebra of eleven-dimensionalconstantg is identified via Eq.(4.6) with the number of
supergravity(The extra two-form charge that appears in Ref.partons in the system, while the mass paramigtshould be
[28] is to be identified with OUféABclmchclmcg, while  interpreted as the inverse characteristic ;iz_e o_f the universe
Ka . a andK, . . decouple in the low-energy algebra. (or, more generally, the inverse characteristic size pf the box

1 6 1 10 . . that is large enough to enclose the system of our interest

(2) In the previous subsection we have seen that in the 5+ system is made out dff partons. Its characteristic
low-energy theoryP, acts by diffeomorphisms. Thus, the sjzeL is given byM ~*, which can be expressed in Planck
full low-energy symmetry group is a supersymmetric exten-ynits in terms of the number of partohkas (in the order of

sion of the diffeomorphism group am. magnitude
(3) Supersymmetry of eleven-dimensional supergravity of
. . R 1 1 N1/9
course requires the presence of the abelian three-foim L= — _ (5.1)
the low-energy spectrum. In the present cont©appears at M g2;9M p Mp’ '

low energies as a composite field, or more precisely, as a
three-form built out of the gauge fiell This observation is In terms of the number of partorls and the Planck scale
not new, and was actually one of the main points of RefMp, the characteristic volum¥ of our system is given by

[28]. More details and references on this approach to super- 10/9
gravity can be found in Ref$35,36. N Y~Lo=" (5.2
C is known to be odd under parity, and the explicit for- Mp

mula presented in Ref28] that identifiesC as a particular

composite field certainly satisfies this requirement. Micro-Similarly, the characteristic ared of the nine-dimensional
scopically, there is an obvious candidate f6rin the surface surrounding our system Bf partons can be ex-
OSp(1|32)xOSH1/32) gauge theory: The Chern-Simons Pressed in terms dfl andMp as follows:

three-formw3(A) that is odd under the internal parify The

microscopic Lagrangian can contain, in addition to the irre- A~L%=—5. (5.3
ducible termwq,(A), also Chern-Simons terms that are prod- Mp
ucts of lower-dimensional fornfssuch as .
For the number of parton¥ in the system we have
f w30dwz0dws. (4.18 N= %>9~AM9 (5.4)
M M p- .

In the effective theory, this term can be expected to give risd NUS: the number of partorié in the system scales like the

to the supergravity Chern-Simons tef€0GOG, with G areaA of the nine-dimensional surface surrounding the sys-
~dC the field strength of. ’ tem, measured in Planck units. In precisely this sense, our

It is natural to conjecture that in the low-energy super-theory satisfies the holographic principle.

gravity regime of our theory, the composite fiellis the Note that in order to derive the holographic scalibg)),
AB and g, we have only used the quantization condition on the micro-
M -

only field that does not decouple froef,, why, : . )
Given this assumption, the only effective theory of the sur->¢opIC Chern-S|mon_s coupling congtgnhat rglatgg to _the
number of partons in the theory, in combination with our

viving low-energy degrees of freedom that respects all sym-""" . y
metries is eleven-dimensional supergrayay]. requirement that the theory have a conventional low-energy

limit described by low-energy field theory with a standard
kinetic term.
V. HOLOGRAPHY Having seen first indications that our theory is holo-
] ] ] _ graphic, we can now return to the conditigh12) that limits
If our theory is to be a candidate for the microscopicihe domain of validity of the low-energy effective theory,
description of M theory, it should be a consistent quantumyng gemonstrate that this condition is in precise accord with
theory containing gravity. On very general grounds, as arhe holographic property of the theory. In a holographic
gued by 't Hooft and SusskinfB—10], quantum theory of {heory, the maximum amount of information and energy in a
gravity should be expected to satisfy the holographic prinyox of characteristic size should be limited by the entropy
and mass of the black hole with Schwarzschild radius
[7-10.
8Up to this point, we have ignored all such factorizable Chern- Consider a configuration in our theory that saturates the
Simons terms. Such terms can be parity invariant and therefore cafequality in Eq.(4.12). This configuration carries the maxi-
indeed appear in the microscopic Lagrangian. However, for oumum amount of energy allowed for a configuration in a box
choice of the gauge group, all such parity-invariant terms vanistof sizeL by the condition(4.12 that expresses the bound on
identically if we set aIB/:/ll"'Ar and ), to zero, and therefore do not the validity of the low-energy effective field theory. In the
affect the main line of arguments of this paper. low-energy effective theory, the energy density is given by
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T~ M?,eD' --DelR, (5.5 field approximation, which is valid in large space-time in the
supergravity regime, the extra degrees of freedbrtil) do
and the total energy in ten-dimensional volumé,g is not play any role—the only low-energy degrees of freedom

observable by a low-energy observer are those of the effec-
tive supergravity. The theory is holographic, as an effective
low-energy theory.

(2) In order to describe local experiments that can be con-
For the configuration that saturates the inequality in Eqfined inside a box of sizke, we can stretch the validity of the
(4.12, we get effective field theory be choosingl as large as possible to
still give enough degrees of freedom to describe the experi-

o VP ment, i.e.M should be of ordet ~* (and not the inverse size
Emax—Mpzm fMloeD---De. (57 of the whole universe In this way, the holographic property
of the theory can be reconciled with the local validity of the
The volume of the universér more generally, of the box low-energy field theory.

E~M,%fM el --OelR. (5.6)
10

2

M, that contains our systenis V=M %, which gives for (3) As we approach the regime of energies close to the
the maximum energ¥,,ax bound (4.12 (which coincides, as we have seen, with the
Bekenstein boungl the theory should cross over from the

M%,l 1 8o low-energy regime described by eleven-dimensional super-

Emac ze =N~ Me. (5.8 gravity to an intermediate regime described by Yang-Mills

gauge theory, still in a mean field approximation. According

Enax has a simple form when expressed in terms of the numto Eg.(5.9), as we approach the limit of validity of the low-

ber of partons\ and the characteristic inverse size of the box€nergy supergravity description, each parton carries energy
M, of orderM. In the intermediate regime where the theory be-

comes a gauge theory in the mean field approximation, the
Emax~NM. (5.9  excess energy will have to be carried by excited states of the
individual partons, or by excitations of the gauge field.

(4) The expression foE, can be also rewritten as
Emax=Mp(Mp/M)8. This formula suggests that Planckian en-
ergy density is actually carried by cells of Planckian size on

Mp)® an eight-dimensional surface. This is reminiscent of the in-
Emax—M (V) : (510 witive picture in Ref[9], with the system being described by
some incompressible fluid on the holographic screen. In this
This is precisely the energy of the Schwarzschild black holgicture, the Planckian energy density would be carried by
with radiusRs=M 1. cells of Planckian size in the boundary of such incompress-

Thus, the low-energy effective description of the systemiple fluid.
in terms of conventional supergravity, as derived in the pre- The cosmological constant and naturalneSince our
vious section, breaks down when the energy of the system igeld theory is a realization of the holographic principle, it
equal to the mass of the black hole with the SChWElI’ZSCh"dnight shed new light on the cosmological constant pro[ﬂem.
radius equal to the siz& ! of the box surrounding the Looking back at the effective theorfyt.11) and ignoring
system-precisely as expected in a holographic theory. supersymmetry, we do indeed see that the cosmological con-

Several remarks seem in order. stant term would be naturally suppressed by a negative

(1) In addition to the partons represented by the Wi|SOI’lpower of the number of partons in the system
lines, the microscopic theory contains extra degrees of free-

This can be further rewritten using the relati@4) between
the number of partonBl, the Planck masMp, and the in-
verse size of the boM

dom, in the pure Chern-Simons sector of the theory. Micro- Mé,l

scopically, there will be fluctuations satisfying the vacuum ANW/@- (5.12

equations of motion in the space between the Wilson line

sources, Of course, in the full supersymmetric theory the value\of
FO---OF=0. (5.1  Would be zero by supersymmettgnd uniqueness of mini-

mal eleven-dimensional supergravj§7]). We have not re-
Could these extra, Yang-Mills degrees of freedom spoil or

modify the holographic property of the theory? The answer———
is no, in the following sense. The holographic property is a

property of the low-energy supergravity regime. In the mean_\otice that the theory is holographic precisely to the same extent
that it satisfies Mach’s principle; macroscopic space-time geometry

is determined by the distribution of partons alone, as long as the
role of the field-theory degrees of freedom satisfyifig=0 is neg-
"This is to be contrasted with the maximum energy expected byigible.
the naive Planckian cutoff; indeed, configurations with curvature °The possibility that the cosmological constant problem could be
R%M% would have energy of ordeM (M /M) i.e., Planckian  solved in a holographic theory has been stressed repeatedly to the
energy per Planckian unit of volume. author by Tom Banks. See also RE38].
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lied on supersymmetry in our arguments leading to holograsymmetry algebra. In this respect, the eleven-dimensional
phy, however, and we expect the arguments to hold in vacusuperconformal group O$H64) would be a particularly
with no supersymmetry, or in general, in compactificationsnatural choice. Whether such an extension will be useful or
to lower dimensions with\ # 0. necessary is unclear.

There are indeed two possible points of view in our Perhaps the most surprising result of this paper is the fact
theory. On one hand, the low-energy field-theory observethat the holographic principle is compatible with microscopic
underestimates the importance of terms of higher order ifocality. By microscopic locality we mean the fact that the
curvature and expects them to be suppressed by negatitieeory is formulated in terms of fieldand possibly a system
powers ofMp, and therefore expects the effective super-of partong with a Lagrangian which is a local function on
gravity description to be valid for energies up to the Planckthe underlying eleven-dimensional manifold. Effectively,
scale. The same observer has a naturalness problem with tti@s microscopic locality can still lead to apparent macro-
value of the cosmological constafB.12), which based on scopic nonlocality, which can manifest itself in the effective
low-energy field theory alone, should be of or(mé,l_ low-energy theory in effects such as the holographic prop-

On the other hand, the “microscopic” observer who erty.
knows about the underlying Chern-Simons gauge theory has One is naturally curious about possible relations of the
no problem with the small value of the cosmological con-holographic field theory to matrix theory. We do not have
stant, which is naturally suppressed by an inverse power ghuch to say about this issue, except for noticing that it is
the number of partons. This microscopic observer also pretempting to compare the partons of the holographic field
dicts that the low-energy supergravity description breakgheory with the DO-brane degrees of freedom of matrix
down much faster than expected by the low-energy observetheory. One can formulate the holographic field theory in
because the higher curvature terasd perhaps more im- light-cone gauge, and try to integrate out the gauge field
portantly, the underlying gauge invariandeecome impor- degrees of freedom at low energies. This would leave us with
tant well before the Planck scale. In holographic field theoryan effective theory oN partons, which could then be com-

a small cosmological constant seems natural. pared to matrix theory.

This argument will extend to compactifications of the We have studied the theory on manifolds without bound-
theory to lower dimensions. Consider for example compacaries. It might be interesting to point out that the anomaly
tifications to four-dimensions on a seven-manifold of volumecancellation mechanisii#,6] that predicts the existence of
L7. Using Eq.(5.12 and the relatiorm3=MpL’ between Eg super Yang-Mills “edge states” in M theory on mani-
the four-dimensional Planck mass, and the eleven- folds with boundaries bears a remarkable resemblance to the
dimensional Planck mas#1p, we obtain, for the four- anomaly cancellation mechanism that predicts the existence

dimensional energy-density~m2M2—an order of magni- of similar edge states in Chern-Simons gauge theory

tude estimate that nicely agrees with the experimentaﬁ31’33’34!404]]— i ) i
bounds om [39]. The construction presented in this paper can also be re-

peated in lower space-time dimensidds- 4p— 1, thus sug-
gesting a possible hierarchy of M theories in three and seven
VI. COMMENTS dimensions. The (21)-dimensional case is somewhat
In this paper, we have studied a local field theory intrivial, but the (6+1)-dimensional case might be of more
eleven dimensions, which contains low-energy supergravitynterest. Indeed, here we have an interesting option that does
and exhibits the holographic property of 't Hooft and Suss-Not exist in eleven dimensions: The gauge group can be ex-
kind. We have presented this holographic field theory as &nded to contain an extra compact grgspy SUf)], and
possible candidate for a covariant, “wave mechanics” for-We can try to identify regimes in which supergravity de-
mulation of nonperturbative quantum M theory. couples in a flat space-time, possibly leaving only SJ(
In this approach to M theory, we do not suggest newdegrees of freedom.
“fundamental principles” for the microscopic physics at the ~ The local quantum field theory presented in this paper is
Planck scale. Instead, our results seem to support the conjedescribed at low energies by supergravity, and satisfies the
ture that M theory might be well described by an effectiveholographic principle of 't Hooft and Susskind. Regardless
field theory, all the way tqand perhaps even beyonthe of whether or not it will play any role in our future under-
Planck scale. Such effective field theory may in principle besStanding of M theory, holographic field theory might be an
well-defined to all energy scalegust as QCD is well de- interesting testing ground for questions that originally moti-
fined)_ The expected “|0W_energy” phenomer(&uch as vated the formulation of the hOlOgraphiC princip[6,9],
eleven-dimensional supergravity and the holographic prinfost notably the black hole information paradd<].
ciple) would emerge hierarchically at lower energies in this
effective framework. _ N ACKNOWLEDGMENTS
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