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M theory as a holographic field theory

Petr Hořava*
California Institute of Technology, Pasadena, California 91125

~Received 15 December 1997; published 26 January 1999!

We suggest that M theory could be nonperturbatively equivalent to a local quantum field theory. More
precisely, we present a ‘‘renormalizable’’ gauge theory in eleven dimensions, and show that it exhibits various
properties expected of quantum M theory, most notably the holographic principle of ’t Hooft and Susskind.
The theory also satisfies Mach’s principle: A macroscopically large space-time~and the inertia of low-energy
excitations! is generated by a large number of ‘‘partons’’ in the microscopic theory. We argue that at low
energies in large eleven dimensions, the theory should be effectively described by eleven-dimensional super-
gravity. This effective description breaks down at much lower energies than naively expected, precisely when
the system saturates the Bekenstein bound on energy density. We show that the number of partons scales like
the area of the surface surrounding the system, and discuss how this holographic reduction of degrees of
freedom affects the cosmological constant problem. We propose the holographic field theory as a candidate for
a covariant, nonperturbative formulation of quantum M theory.
@S0556-2821~99!01504-0#

PACS number~s!: 11.25.2w, 04.60.2m, 04.70.Dy
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I. INTRODUCTION

M theory has emerged from our understanding of nonp
turbative string dynamics, as a hypothetical quantum the
which has eleven-dimensional supergravity@1# as its low-
energy limit, and is related to string theory via various d
alities @2–4# ~for an introduction and references, see, e
Ref. @5#!. While the low-energy effective description of th
theory in terms of eleven-dimensional supergravity~coupled
to E8 Yang-Mills supermultiplets if the space-time manifo
has boundaries@4,6#! is relatively well understood, we stil
need to clarify how M theory is to be formulated as a no
perturbative quantum theory.

Our search for a nonperturbative formulation of quant
M theory can be guided by some general observations. F
of all, M theory should represent, among other things, a c
sistent quantum theory of gravity. Using the Bekenst
bound on the maximum entropy in a given region of spa
@7#, ’t Hooft and Susskind have argued very convincing
that any such theory should satisfy the holographic princ
@8,9# ~see also Ref.@10#!. The holographic property predict
a radical reduction of the number of degrees of freedom
quantum theory of gravity; unlike in any conventional loc
field theory, their number should scale like the area s
rounding the system.

Other observations come from our improved understa
ing of nonperturbative string theory. At substringy distanc
a new regime of weakly coupled string theory has been
covered and analyzed@11#. In this regime, the short distanc
physics is dominated byD0-branes, and long-distance gra
ity is replaced by Yang-Mills gauge theory on world vo
umes of branes. The matrix theory formulation of quant
M theory, proposed by Banks, Fischler, Shenker, and S
kind @12,13#, takes this lesson very seriously and eleva
some of the crucial features ofD-branes to eleven dimen
sions, using a light-front formulation of M theory. Sen a
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Seiberg have recently presented an elegant heuristic sc
argument@14#, which provides a rationale for the matri
theory proposal and clarifies it significantly.

Matrix theory has proven to be a very impressive can
date for the nonperturbative formulation of M theory.~For
recent reviews, see Ref.@15#.! Despite its outstanding suc
cesses, however, it still leaves many important questions
answered. It is background dependent and noncovariant,
the scaling arguments of Ref.@14# suggest the existence o
conceptual problems for compactifications on tori of dime
sion higher than 5.

In general, it has been suggested that since M theory c
not be a string theory, it must be a new kind of theory, wh
should perhaps be formulated in terms of completely n
degrees of freedom, and require new physical princip
This may even lead to a change in our way of thinking ab
microscopic physics, perhaps as radical as the discover
quantum mechanics.~Indeed, a certain amusing analogy b
tween the development of quantum mechanics and tha
string theory has been pointed out, see Ref.@16#, p. 1.!

We would like to point out a different analogy, whic
relates the current situation in M theory to the situation in
theory of strong interactions before the discovery of QCD.
the mid 1960s, it was generally believed that in order
understand strong interactions, local quantum field the
would have to be abandoned altogether, and radically n
physical principles would be needed. The efforts to go
yond field theory indeed initiated the development of imp
tant new concepts, such as the analyticS-matrix, bootstrap,
duality, Regge trajectories, etc. However, we know that
the end, the puzzle of the theory of strong interactions tur
out to have a beautiful resolution in the ‘‘conservative
framework of local quantum field theory.

In this paper we will adopt a similarly ‘‘conservative’
approach to M theory. Instead of looking for radically ne
principles and degrees of freedom, we will present evide
suggesting that M theory may in fact be equivalent to a lo
quantum field theory.

Our starting point in Sec. II will be a Yang-Mills gaug
©1999 The American Physical Society04-1



ta
–d
d
ge
he
tim

m
b
s

ns
o
n
e-
tiz
a
e
x-
m

e
t-

g
ar
pl
o
e

th

ge
t

ac
a
g
h
ga
rg
su
vit
we

g
o
ol
th
-
io
ild
a
em
.

d
m

ds

nd

ex-
hic
sti-
ill
dy.

de-
ld

tial

ge

ern-

ere

the
ant
that

r-

the
de-

er
g

PETR HOŘAVA PHYSICAL REVIEW D 59 046004
theory in eleven dimensions. The gauge group is a cer
supersymmetric extension of the eleven-dimensional anti
Sitter group, but the theory should not be confused with
Sitter supergravity. Microscopically, our theory is a gau
theory, with Yang-Mills gauge symmetries. In addition to t
gauge symmetries, we require invariance under space-
diffeomorphisms, as well as parity invariance.

All terms in the Lagrangian that are allowed by the sy
metries are of higher order in fields, and are in fact given
Chern-Simons terms. Thus, our theory belongs to the clas
Chern-Simons gauge theories@17#. Chern-Simons gravity
was first studied in 211 dimensions@18,19#, and then ex-
tended to higher odd dimensions@20–22#. Our formulation
will closely follow that of Refs.@19,20#.

When expanded around maximally symmetric solutio
the theory has no propagator, and the low-energy field the
is ill defined, or at least difficult to understand with conve
tional methods. In Sec. III, we adopt the following effectiv
theory approach to this issue. We will not attempt to quan
the theory microscopically. Instead, we will try to identify
low-energy regime, in which the theory does have a conv
tional low-energy effective field theory description, with e
citations propagating in a macroscopically large space-ti

In order to find such a macroscopic low-energy regim
we will have to introduce matter, in the form of firs
quantized particles~or ‘‘partons’’! represented by Wilson
lines—the only objects that couple naturally to the gau
field. A large space-time will require a large number of p
tons. We will see that the theory satisfies Mach’s princi
@23#: Macroscopically large space-times and the inertia
propagating low-energy degrees of freedom will be gen
ated by the distribution of a large number of partons in
theory.

In Sec. IV we study the theory at low-energies in lar
eleven dimensions. We will show that for the appropria
choice of the gauge group, the flat eleven-dimensional sp
time is a solution of the theory, in a mean field approxim
tion which replaces the effect of individual partons at lar
distances by a uniform density of partons. We identify t
regime which has low-energy degrees of freedom propa
ing in a large space-time, and argue that the low-ene
physics is effectively described by eleven-dimensional
pergravity. We demonstrate that this effective supergra
description naturally breaks down at energies much lo
than the naively expected Planck scale.

In Sec. V we show that the breakdown of the low-ener
effective theory is in accord with the Bekenstein bound
energy density, and that the theory in fact satisfies the h
graphic principle. More precisely, we demonstrate that
limit of validity of the low-energy effective supergravity de
scription is reached precisely when the energy in any reg
of characteristic sizeL equals the mass of the Schwarzsch
black hole with radiusL. We will see that as expected in
holographic theory, the number of partons in the syst
scales as the area of the surface surrounding the system
large distances and low energies, the theory is describe
low-energy supergravity, and space-time diffeomorphis
are a part of the dynamical gauge group. The realization
the holographic principle in local field theory also she
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some new light on the cosmological constant problem, a
we will find indications suggesting thatL may be naturally
small in holographic field theory.

The purpose of this paper is to stress some of the un
pected features of the theory, in particular the holograp
property, and to set the ground for a more detailed inve
gation. Our presentation will be rather sketchy, and we w
leave out many details and open questions for further stu

II. THE THEORY

Consider a gauge field theory in eleven dimensions,
fined as follows. Start with an eleven-dimensional manifo
M, with coordinatesxM, M50,...,10. Our theory will be a
gauge theory described by a Yang-Mills one-form poten
A, in the adjoint representation of a certain gauge groupG.
We impose gauge invariance under the Yang-Mills gau
transformations

dAM5DM«. ~2.1!

There is no preferred metric onM, and we require that the
theory be invariant under local diffeomorphisms ofM. The
only Lagrangian that respects these symmetries is the Ch
Simons Lagrangian

L52
1

g2 E
M

v11~A!, ~2.2!

wherev11(A) is a Chern-Simons eleven form, defined by

dv11~A!5Tr~F∧¯∧F !. ~2.3!

HereF is the field strength associated withA, Tr refers to a
symmetric, invariant six-tensor onG. In fact, the Lagrangian
can be a linear combination of all possible such terms if th
is more than one invariant six-tensor onG that satisfy all
other symmetry restrictions we may want to impose on
theory; each term would then have its own coupling const
g. The theory is renormalizable in the elementary sense
all couplings allowed by the symmetries are marginal.

Equation~2.3! can be solved, leading to an explicit fo
mula for the Chern-Simons formv11(A) ~see, e.g., Ref.
@24#!,

v11~A!56E
0

1

dt Tr@A∧~ tdA1t2A∧A!∧¯∧

3~ tdA1t2A∧A!#. ~2.4!

The leading term in v11(A) is proportional to
Tr(A∧dA∧¯∧dA); all other terms are of higher order inA.

The coupling constantg in Eq. ~2.2! is dimensionless. It
may be quantized, depending on the precise choice of
gauge group and Tr. The quantization condition can be
rived as follows. Consider a twelve-dimensional manifoldB
whose boundary isM, and extend the gauge connection ov
B. The Lagrangian~2.2! is then more precisely defined usin
Eq. ~2.3!, as an integral of Tr(F∧¯F) overB:

L52
1

g2 E
B

Tr~F∧¯∧F !. ~2.5!
4-2
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M THEORY AS A HOLOGRAPHIC FIELD THEORY PHYSICAL REVIEW D59 046004
The quantization condition on the coupling arises from
requirement thatL be independent ofB and the wayA has
been extended overB. Typically, this leads to

1

g2 ;k, ~2.6!

with k an integer.1

So far we have imposed local diffeomorphism invarian
as the only symmetry in addition to local gauge invarian
Our understanding of low-energy effective M theory ind
cates that any candidate for non-perturbative formulation
M theory should also be parity invariant.2 The Z2 transfor-
mationP0 that changes space-time orientation by revers
one of the space-time dimensions~sayx1) cannot be a sym-
metry of the Chern-Simons gauge theory, since each Ch
Simons form is odd underP0 . In order to become a symme
try, P0 has to be accompanied by an involutionI on the
gauge groupG. Depending on the choice ofG and I, the
microscopic theory will be constrained by the requiremen
invariance under parity, now defined as

P5P0•I, ~2.7!

leading to restrictions on admissible Tr that can appear in
~2.2!.

Gauge group and parity invariance.As our gauge group
we will choose a supersymmetric extension of the anti–
Sitter group in eleven dimensions. We need the de S
group as a part of the microscopic gauge group, because
in that case we will eventually find a low-energy regim
described by effective supergravity with the conventio
Lagrangian linear in curvature, and the flat space as a s
tion of the low-energy theory.

The anti–de Sitter group is generated byPA and JAB ,
with A,B50,...,10. There is an invariant six-tensor on t
anti–de Sitter group that will play crucial role in our theor

^PAJA1A2
¯JA9A10

&5eAA1¯A10
~2.8!

~with all other terms zero!. This six tensor defines a Chern
Simons eleven form of the anti–de Sitter group. Che
Simons gravity with this Lagrangian was first studied in va
ous dimensions by Chamseddine@20#. Our Lagrangian will
be a supersymmetric extension of this bosonic Chern-Sim
Lagrangian.

To make any contact with M theory, we need at least
supercharges. It was shown by van Holten and Van Proe
in Ref. @27# that the minimal supersymmetric extension
the eleven-dimensional anti–de Sitter group into a sup
group with a 32-component superchargeQa requires the in-
troduction of an extra bosonic five-form chargeKA1¯A5

,
which extends the group to OSp~1u32!.

1In the case of the de Sitter gauge group, directly relevant to
present paper, the issue of coupling constant quantization has
discussed in Ref.@25#.

2We know that M theory is parity invariant@4,26#. Indeed, in M
theory parity can be gauged, leading to the sector of heterotic va
of the theory.
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We want to impose parity invariance as a symmetry
our theory. It turns out that the minimal supersymmetric e
tension OSp~1u32! of the anti–de Sitter group is not compa
ible with parity. Indeed, we know howI should act on the
bosonic anti–de Sitter generators: BothPA andJAB flip signs
wheneverA or B51. On the fermionic generators,I acts by

Qa→~G1Q!a . ~2.9!

It is easy to see thatI cannot be extended to an automo
phism of OSp~1u32!. The obstruction comes from the highe
form sector of the algebra. It is natural to extendI to the
five-form charge in such a way that it changes sign whene
Ai51 for any i 51,...,5. However, this rule does not respe
the group structure of OSp~1u32!, roughly because of the
presence of the antisymmetrice tensor in some of the com
mutation relations.

Thus, parity invariance will require a non-minimal exte
sion of the anti–de Sitter group, into a group with 6
supercharges.3 The minimal choice of the gauge group com
patible with parity invariance will contain extra, higher-form
bosonic chargesKA1¯Ar

for some set of values ofr, and an

extra 32-component superchargeQa8 . We can now extend
the definition ofI to these new charges, requiring that t
bosonic charges change sign underI whenever either of their
indices equals 1, andQ8→2G1Q8. The minimal set of
charges that allow commutation relations that respect thI
will contain a six-form, a nine-form, and a ten-form charg
in addition toPA , JAB , andKA1¯A5

. ~Heuristically, we need
a dual charge for each of the original bosonic charges
order to write down commutation relations without the an
symmetrice tensor.! These charges generate a group isom
phic to OSp~1u32!3OSp~1u32!, which happens to be the non
chiral super-Lorentz group in twelve dimensions wi
signature~10,2! @27#. The bosonic charges form the Lie a
gebra of Sp~32!3Sp~32). ~For details, see Ref.@27#.!

We will parametrize the components of the gauge fieldA
in the adjoint of OSp~1u32!3OSp~1u32! as follows:

AM5VM
A PA1

1

2
vM

ABJAB1(
r

1

r !
BM

A1¯ArKA1¯Ar
1cM

a Qa

1hM
a Qa8 , ~2.10!

where we have denoted all bosonic higher-form charges
lectively by KA1¯Ar

, with r 55,6,9,10.
Our theory is formally defined by the path integral

E DAeiL. ~2.11!

e
en

ua

3First indications that the symmetry algebra underlying elev
dimensional supergravity may contain 64 supercharges appear
Ref. @28#. The importance of algebraic structure in M theory h
been stressed by Townsend@29# and Bars@30#. Indeed, 64 super-
charges appeared in this algebraic approach to M theory@30#, as a
part of the maximal supersymmetric algebra that could contain
string dualities.
4-3
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PETR HOŘAVA PHYSICAL REVIEW D 59 046004
We will mostly discuss classical aspects of the theory in t
paper, and will not analyze the precise definition of the m
sure in Eq.~2.11!. Our focus will be on an effective ap
proach, and we will try to identify a regime in this micro
scopic theory where interesting low-energy physics appe
already at tree level.

Since the Lagrangian is of higher order in fields, th
theory does not have a standard kinetic term; moreover,
topological in the sense that no metric has been used to w
down the theory. Notice that the theory still has dynami
degrees of freedom, as the equations of motion are

F∧F∧F∧F∧F50. ~2.12!

There is, however, no standard propagator for these l
degrees of freedom in theF50 vacuum, nor is there a con
ventional perturbation theory in terms of weakly coupled
calized multiparticle states.

III. LARGE UNIVERSES AND MACH’S PRINCIPLE

We live in a large universe, whose behavior at low en
gies seems well described by a local quantum field theor
particlelike excitations. We want to identify a regime in o
theory, which has such a low-energy effective description
particular, we would like our theory to have an eleve
dimensional vacuum described at low energies by elev
dimensional supergravity, with flat eleven-dimension
space-time as a solution.

A. Effective theory in a large universe

First of all, we would like to write down the flat space
time as a particular gauge field configuration. We want
identify the PA component of the gauge field with the vie
bein field, and theJAB component with the spin connection
However, the gauge fieldAM5VM

A PA1vM
ABJAB1¯ is of

dimension 1, while the natural dimension for the vielbein
zero. We introduce the dimensionless vielbeineM

A , and write

VM
A 5MeM

A . ~3.1!

We will use ēM
A to denote the flat eleven-dimensional vie

bein ēM
A 5dM

A . Hence, the gauge field configuration that re
resents the flat eleven-dimensional space-time is

ĀM5MēM
A PA . ~3.2!

We were able to write down the flat space-time geometry
a particular gauge fieldĀ, at the cost of introducing a mas
scaleM into the theory. This mass scale is not a part of
path integral definition of our theory. Rather, it appears a
property of the particular gauge configurationĀ.

The mass scaleM can be interpreted as the inverse ch
acteristic size of the universe~or, more generally, of the box
large enough to contain our system!. Indeed, the ‘‘dimen-
sionless volume’’ of a ten-dimensional spacelike hypers
faceM10,M

E
M10

V∧¯∧V ~3.3!
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is a number of order 1, which gives for the standard volu

V5E
M10

e∧¯∧e;
1

M10. ~3.4!

Of course, this argument could be easily refined to inclu
the case with a flat metric onM10 of toroidal topology; the
radii of the torus would then be measured in units ofL
[M 21.

There are two puzzles that we have have to resolve in
scenario. First, the flat eleven-dimensional space-time~3.2!
is not a solution of the classical equations of motion of o
OSp~1u32!3OSp~1u32! Chern-Simons gauge theory. Thereis
a formal solution of the equation of motion, which describ
the anti–de Sitter space. However, there is no conventio
low-energy effective theory that would result from expan
ing the microscopic gauge theory around the anti–de S
solution. In particular, the formal expansion would have
quadratic term in the Lagrangian, and no propagator for p
ticlelike degrees of freedom. According to the logic of o
approach, we are only interested in low-energy regimes
have a conventional effective field theory description.

Another puzzling feature of the theory is the presence o
dimensionless couplingg in Eq. ~2.2!. We know that M
theory—at least at low energies, where it is well describ
by eleven-dimensional supergravity—does not contain
such free dimensionless parameters. If our theory is to b
reasonable candidate for the microscopic description of
theory, we have to explain whyg does not appear as a fre
dimensionless coupling in the theory at low energies.

We will see momentarily how both of these issues a
resolved when we introduce partonic matter into the theo
The discrete coupling constantk that appears in Eq.~2.6!
will turn out to play the role of the number of elementa
constituents~‘‘partons’’! in our system. Only for a large
number of partons, our theory will have a low-energy d
scription in terms of supergravity degrees of freedom pro
gating in a macroscopically large space-time. This relat
between the number of partons and the size of the lo
energy world is a first indication that our theory satisfi
Mach’s principle.

B. Matter and Mach’s principle

The gauge field is a one-form, and it couples naturally
point particles. Consider the Wilson line

WR~C!5trRP expE
C
A, ~3.5!

whereR is a representation of the gauge group andC is a
certain contour inM. The Wilson line defines an observab
in our gauge theory, and one can study physical proce
that involve correlation functions of a certain number of su
Wilson lines. This is in fact the most natural way of intro
ducing matter in our theory. The Wilson lines correspond
trajectories of particles of matter; their species are in co
spondence with the representations of the gauge gro
These particles will play the role of ‘‘partons’’ in our micro
scopic theory.
4-4
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M THEORY AS A HOLOGRAPHIC FIELD THEORY PHYSICAL REVIEW D59 046004
Consider now a universeM with N Wilson lines ~or
‘‘partons’’! inside. The partons couple to the gauge fie
through their currentI, which is a sum of delta function
localized at their corresponding contoursCi . For N Wilson
lines the current is

J5(
i 51

N

j aTad~Ci ! ~3.6!

~here Ta collectively denotes all generators of the gau
group! and the Lagrangian in the presence of the Wils
lines is modified to

L52
1

g2 E
M

v11~A!1E
M

tr~A∧J!. ~3.7!

Notice that since the group generatorsTa in Eq. ~3.6! are
matrices in the representationsRi of the gauge group, thei
presence in the Lagrangian needs further interpretation.
Ta in Eq. ~3.6! should be properly interpreted as quantu
objects that emerge from the quantization of extra degree
freedom localized at the contoursCi . This is of course a
procedure standard in gauge theories in general, an
Chern-Simons theories in particular@17,31#, and we will not
repeat the details here.~See Refs.@19,32# for more details on
this construction in the case of 211 Chern-Simons gravity.!

The equations of motion in the presence ofN partons no
longer require the wedge product of fiveF’s to vanish.
Rather, the flux of the gauge field is tied to the current:

F∧¯∧F5g2J. ~3.8!

Thus, the partons serve as sources for the field strength
which is nonzero and localized at theN contoursCi , and
zero outside the trajectories of the partons.

In the next section, we will be interested in describi
such system at large distances, where the collective effe
a large number of Wilson lines can be summarized in te
of a uniform mean field, representing macroscopic spa
time geometry. Our theory is actually an implementation
Mach’s principle@23#: The geometry of space-time is gene
ated as a collective effect by the distribution of matter~rep-
resented by the partons! in the microscopic theory. The fla
microscopic space-time emerges as a collective effect, in
presence of a nontrivial matter distribution. In the absence
matter, not even an empty, flat macroscopic space-tim
possible. At low energies, our theory also satisfies Mac
principle in another of its classic formulations: The inertia
propagating particlelike degrees of freedom is generated
collective effect determined by the distribution of matter
the microscopic theory.

IV. LOW-ENERGY EFFECTIVE SUPERGRAVITY
IN ELEVEN DIMENSIONS

A. Mean field theory and flat eleven-dimensional space-time

We are interested in the physics at distances much la
than the characteristic distance between two partons.
those distances, we can effectively approximate the so
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J—which is microscopically a sum ofN delta functions
~3.6!—by a uniform density fieldJ,

J5cNM10eA1¯A11
PA1ēA2∧¯∧ēA11. ~4.1!

We expect the mean field approximation to be valid at d
tances much larger than the characteristic distance betw
partons as defined a posteriori byēM

A . This approximation is
somewhat reminiscent of the average field approximat
frequently used in the theory of condensed matter syst
described by Chern-Simons theory; see, e.g., Refs.@33,34#.

We will adopt this mean field ansatz for the rest of t
paper, and will not attempt to derive it from the microscop
theory. In particular, we will not identify precisely the sp
cies of partons that leads to the mean field current, leav
this very important point to future study.

In order to write down the mean field ansatz~4.1! for J in
terms of the flat space vielbeinēM

A , we had to use the mas
scaleM that appeared already in Eq.~3.2!. This mass scale
has been interpreted as the characteristic inverse size o
universe@see Eq.~3.4!#. This interpretation ofM is compat-
ible with the mean field theory requirement that the total fl
of the uniform density fieldJ be equal to that of the partoni
currentJ,

E
M10

J05cN. ~4.2!

The multiplicative constantc on the right hand side of Eqs
~4.1! and ~4.2! is independent ofN. This constant measure
the contribution of an individual parton intoJ0, and will
have to be determined aa posteriori due to our lack of
knowledge about the precise microscopic origin of Eq.~4.1!.

Our theory is defined by Eq.~2.2!, with Tr being the
parity-invariant OSp~1u32!3OSp~1u32! invariant supersym-
metric extension of Eq.~2.8!. Due to the presence of th
current on the right-hand side of the mean field equations
motion

F∧¯∧F5g2J, ~4.3!

the flat eleven-dimensional space

ĀM5MēM
A PA ~4.4!

is indeed a solution of the theory.
When integrated over the spacelike hypersurfaceM10,

the time component of the equations of motion requires

E
M10

F∧¯∧F5g2E
M10

J, ~4.5!

which leads to

cg2N51. ~4.6!

We choose the value ofc ~which is independent ofg andN!
such that the quantized gauge couplingk;1/g2 is precisely
4-5
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equal toN.4 In other words, the quantized gauge coupli
constantk;1/g2 is to be identified with the number of pa
tons in the system. This resolves one of the puzzles abou
low-energy interpretation of our theory—the dimensionle
gauge couplingg is determined by the presence of matter
the system.

B. Low-energy field theory

Now we wish to identify a regime with a well-define
low-energy effective description. At first, our arguments w
be independent of the precise supersymmetric extensio
the anti–de Sitter group. Therefore, we will study t
bosonic anti–de Sitter sector of the theory first, hoping t
this will make our arguments more transparent.

Our theory still contains two parameters—a mass scalM
introduced in our solution to the mean-field equations of m
tion, and the dimensionless Chern-Simons coupling that
have just identified with the number of partonsN in the
system. The requirement that the theory have a low-ene
regime described by conventional effective theory will det
mine one of these parameters in terms of the other.

First we rewrite the theory in terms of rescaled variab
suitable for the anticipated low-energy supergravity regim

AM5MeM
A PA1vM

ABJAB1¯ , ~4.7!

and consider the effective theory for fluctuations near the
space-time solution. Thus, we assume

eM
A 2ēM

A !1. ~4.8!

It will be convenient to replace the mean-field currenJ
5NM10P∧ē∧¯ē by NM10P∧e∧¯∧e. This corresponds
to an improved mean field approximation, in the followin
sense. The distribution of partons, summarized in the m
field theory byJ, determines the large-scale metric in spa
time; when we consider geometriese close to but different
from the flat geometryē, the distribution of partons can b
expected to adjust to this change of the space-time geom
leading to the modified mean field expression forJ in which
ē is replaced bye. Practically, this substitution allows us t
keep general covariance in mean field theory.

The bosonic anti–de Sitter sector of our OSp~1u32!
3OSp~1u32! Lagrangian can be written in terms of the re
caled variables as@20#

4In more generality, one might consider cases withk5mN, with
m not necessarily equal to one~but independent ofk and N!. As-
suming that the theory makes sense for any number of partonm
has to be a positive integer. In fact, this positive integerm relates
the number of partonsN to the size of the universe they genera
and it might be tempting to refer to it as the ‘‘Mach number’’ of th
universe. In this paper, we will only consider universes with Ma
number equal to 1. This is indeed the most refined case—unive
with Mach number higher than 1 will have effectively less parto
per given volume than the minimal case of Mach number 1,
presumably correspond to partons in higher representations o
gauge group.
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L52
1

g2 E
M

(
s50

5
M2s11

2s11 S 5
sD

3eA1¯A11
eA1∧¯∧eA2s11∧RA2s12A2s13∧¯∧RA10A11.

~4.9!

(RAB[dvAB1vAC∧vC
B denotes the Riemann curvature

vM
AB .)
We are looking for a regime with a well defined low

energy effective description. In this regime, the low-ener
theory should have a kinetic term containing the Einste
Hilbert term linear inR. Keeping the Einstein-Hilbert term in
Eq. ~4.9! finite, we can identify the effective Planck mass

M P;
M

g2/9. ~4.10!

In the low-energy theory, we want to keepM P fixed.
Sinceg is related to the number of partons by Eq.~4.6!, the
scaling that leads to a well-defined low-energy theory
quiresM to scale with the number of partons, such thatg
→0, M→0, andMg22/9 is fixed. Note that sinceM is the
inverse characteristic size of the universe, this scaling is c
sistent with the assumption that the universe is macrosc
cally large in Planck units. Note also that in terms of t
microscopic Chern-Simons gauge theory, this regime co
sponds to the semiclassical limitg→0.

We have identified the low-energy Planck length in ter
of the Chern-Simons coupling constantg and the mass pa
rameterM. Now we can look more closely at the low-energ
effective theory. The Lagrangian~4.9! can be written in
terms ofM P andg as follows:

L52M P
9E
M

TrS e∧¯∧e∧R1
c2

g4/9M P
2 e∧¯∧e∧R∧R

1c0g4/9M P
2e∧¯∧e1O~g28/9M P

24! D . ~4.11!

@Here, as in Eq.~4.9!, the trace is defined by the antisymme
ric e tensor;c0 andc2 are certain constants of order one a
independent ofg andM P .]

In the effective theory, we will keep only the leadin
term, proportional toM P

9 and containing the term linear in
curvature. This rule extends to the full OSp~1u32!
3OSp~1u32! supersymmetric theory, thus leading to a low
energy supergravity with the Planck mass given by E
~4.10!. We have also indicated the presence of the cosm
logical constant term in the bosonic Lagrangian~4.11!; this
term vanishes in the limit of infinitely large space-time, a
should be absent in the full supersymmetric theory. Its
pendence ong andM P is of some interest, however, and w
will return to this issue briefly in Sec. V.

The effective theory that only keeps terms proportiona
M P

9 can only be valid as long as the higher-order curvat
terms in Eq.~4.11! are much smaller than the leading curv
ture term. Thus, the low-energy supergravity is a good eff
tive theory only at sufficiently large length scales and
sufficiently small space-time curvatures.
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The higher order curvature terms in Eq.~4.11! are indeed
suppressed by inverse powers of the Planck massM P . How-
ever, powers ofg also appear, and we obtain the followin
condition on the space-time curvature in the effective theo

RAB!g4/9M P
2 . ~4.12!

This is a surprisingly strong restriction on the validity of th
low-energy effective field theory. We will see momentar
that this should not be a surprise at all, as our microsco
theory turns out to satisfy the holographic principle. In
holographic theory, the low-energy approximation by an
fective field theory in large space-time suffers from a dras
overcounting of the number of degrees of freedom, a
therefore should break down much before the naively
pected Planckian cutoff. The condition~4.12! is the manifes-
tation of precisely such breakdown of the low-energy eff
tive theory.

C. Low-energy symmetries: space-time diffeomorphisms

Microscopically, our theory is a gauge theory. We ha
seen that at low energies, the theory is effectively descri
by a Lagrangian linear in Riemann curvature. It is know
that this standard~super!gravity Lagrangian is not invarian
under the gauge symmetries associated with translation
supergravity, gauge translations are replaced by diffeom
phisms. In our case, the gauge translations are clearly s
metries of our microscopic theory, and one may wonder h
they can get replaced by diffeomorphisms in the effect
low-energy theory.

To see how this happens, consider the following. At lo
enough energies, the higher-curvature terms in the Lagra
ian are small, and our theory is described to a good appr
mation by the low-energy term linear inR. The microscopic
gauge symmetry algebra can be rewritten in terms of
caled charges with appropriate dimensions for the lo
energy theory,

PA5M 21P̃A , Qa5M 21/2Q̃a . ~4.13!

Schematically, the relevant part of the commutation relat
is

$Q̃,Q̃%5GAP̃A1
M P

N1/9GABJAB1GA1¯A5KA1¯A5
1¯ ,

@ P̃A ,P̃B#5
M P

2

N2/9JAB1¯ . ~4.14!

~The ‘‘ellipses’’ refer to the higher-form charges.! It is easy
to see that even though this is the symmetry algebra of
microscopic theory, it is not a symmetry of the low-ener
Lagrangian. Indeed, under gauge translations«̃ A, we have
from the variation ofeM

B in the effective Lagrangian.

dLeff;2M P
9E Tr~ «̃e∧¯∧e∧T∧R!. ~4.15!

~HereTA5deA1vA
B∧eB is the torsion ofe.! In the micro-

scopic theory, this noninvariance is canceled by the varia
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of a term which is of higher order in curvature, and gau
translations are a gauge symmetry. Indeed, in the mic
scopic theory we have

d«̃RAB;
M P

2

N2/9 «̃ [ATB] , ~4.16!

and the variation ofR in the R∧R term cancels that of Eq
~4.15!. In the low-energy effective theory, however, th
terms of higher order inR are absent, and the gauge trans
tions are not a symmetry. Rather, the effective symme
algebra of the low-energy theory is related to the contract
of the microscopic algebra, obtained by settingM P /N1/9 to
zero in the commutation relations. In particular, the gau
translations are effectively replaced in the low-energy the
by local diffeomorphisms.

We have argued that the low-energy supergravity desc
tion breaks down as we reach curvatures of orderM P

2 /N2/9.
As we approach the limit set by Eq.~4.12!, the theory
crosses over to an intermediate regime where the mean
approximation should still hold, since the characteristic d
tance between partons is much smaller thanN1/9M P

21. In that
regime, the higher curvature terms become important,
space-time diffeomorphisms are replaced by the microsco
gauge symmetry. In this intermediate regime, the theory
comes a true gauge theory, still in a mean fie
approximation.5

D. Low-energy supersymmetry

Having understood how space-time diffeomorphisms
pear as a part of the low-energy symmetry, we now return
the full supersymmetric theory. Our discussion will be br
and sketchy. We will not try to demonstrate in detail wheth
the full low-energy theory really reproduces minimal eleve
dimensional supergravity of Ref.@1#. We will find indica-
tions suggesting that this should be the case, but a m
detailed analysis would certainly be desirable.

The full supersymmetry algebra OSp~1u32!3OSp~1u32!
can be written in terms of the rescaled charges

KA1¯Ar
5M 21K̃A1¯Ar

, Qa85M 23/2Q̃a8 . ~4.17!

This rescaling is the only one compatible with that of E
~4.13! and with the structure of the theory at low energie
The effective symmetry of the low-energy theory is relat
to the M→0 contraction of this microscopic
OSp~1u32!3OSp~1u32! algebra, for reasons discussed brie
in the previous subsection.

There are several arguments indicating that the lo
energy theory can be expected to reproduce elev
dimensional supergravity.

5Notice that the improved currentNM10e∧¯∧e∧P is only con-
served if torsion is zero. The improved mean field theory in
intermediate regime whereT may no longer be zero would requir
modifications of the improved mean field current that take tors
into account.
4-7
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PETR HOŘAVA PHYSICAL REVIEW D 59 046004
~1! The low-energy symmetry algebra obtained from t
contraction of the microscopic gauge symmetry is the al
bra with 64 supercharges that was identified by D’Auria a
Fré in Ref. @28# as the hidden algebra of eleven-dimensio
supergravity.~The extra two-form charge that appears in R
@28# is to be identified with oureABC1¯C9

K̃C1¯C9, while

KA1¯A6
andKA1¯A10

decouple in the low-energy algebra.!

~2! In the previous subsection we have seen that in
low-energy theory,P̃A acts by diffeomorphisms. Thus, th
full low-energy symmetry group is a supersymmetric exte
sion of the diffeomorphism group onM.

~3! Supersymmetry of eleven-dimensional supergravity
course requires the presence of the abelian three-formC in
the low-energy spectrum. In the present context,C appears at
low energies as a composite field, or more precisely, a
three-form built out of the gauge fieldA. This observation is
not new, and was actually one of the main points of R
@28#. More details and references on this approach to su
gravity can be found in Refs.@35,36#.

C is known to be odd under parity, and the explicit fo
mula presented in Ref.@28# that identifiesC as a particular
composite field certainly satisfies this requirement. Mic
scopically, there is an obvious candidate forC in the
OSp~1u32!3OSp~1u32! gauge theory: The Chern-Simon
three-formv3(A) that is odd under the internal parityI. The
microscopic Lagrangian can contain, in addition to the ir
ducible termv11(A), also Chern-Simons terms that are pro
ucts of lower-dimensional forms,6 such as

E
M

v3∧dv3∧dv3 . ~4.18!

In the effective theory, this term can be expected to give
to the supergravity Chern-Simons term*C∧G∧G, with G
;dC the field strength ofC.

It is natural to conjecture that in the low-energy sup
gravity regime of our theory, the composite fieldC is the
only field that does not decouple fromeM

A , vM
AB , andcM

a .
Given this assumption, the only effective theory of the s
viving low-energy degrees of freedom that respects all sy
metries is eleven-dimensional supergravity@37#.

V. HOLOGRAPHY

If our theory is to be a candidate for the microscop
description of M theory, it should be a consistent quant
theory containing gravity. On very general grounds, as
gued by ’t Hooft and Susskind@8–10#, quantum theory of
gravity should be expected to satisfy the holographic p

6Up to this point, we have ignored all such factorizable Che
Simons terms. Such terms can be parity invariant and therefore
indeed appear in the microscopic Lagrangian. However, for
choice of the gauge group, all such parity-invariant terms van
identically if we set allBM

A1¯Ar andhM to zero, and therefore do no
affect the main line of arguments of this paper.
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ciple. In this section we present evidence that our local fi
theory is indeed holographic.

We have shown above that the Chern-Simons coup
constantg is identified via Eq.~4.6! with the number of
partons in the system, while the mass parameterM should be
interpreted as the inverse characteristic size of the univ
~or, more generally, the inverse characteristic size of the
that is large enough to enclose the system of our interes!.

Our system is made out ofN partons. Its characteristic
size L is given byM 21, which can be expressed in Planc
units in terms of the number of partonsN as~in the order of
magnitude!

L5
1

M
5

1

g2/9M P
5

N1/9

M P
. ~5.1!

In terms of the number of partonsN and the Planck scale
M P , the characteristic volumeV of our system is given by

V;L105
N10/9

M P
10 . ~5.2!

Similarly, the characteristic areaA of the nine-dimensiona
surface surrounding our system ofN partons can be ex
pressed in terms ofN andM P as follows:

A;L95
N

M P
9 . ~5.3!

For the number of partonsN in the system we have

N5S M P

M D 9

;AM P
9 . ~5.4!

Thus, the number of partonsN in the system scales like th
areaA of the nine-dimensional surface surrounding the s
tem, measured in Planck units. In precisely this sense,
theory satisfies the holographic principle.

Note that in order to derive the holographic scaling~5.4!,
we have only used the quantization condition on the mic
scopic Chern-Simons coupling constantg that relatesg to the
number of partons in the theory, in combination with o
requirement that the theory have a conventional low-ene
limit described by low-energy field theory with a standa
kinetic term.

Having seen first indications that our theory is hol
graphic, we can now return to the condition~4.12! that limits
the domain of validity of the low-energy effective theor
and demonstrate that this condition is in precise accord w
the holographic property of the theory. In a holograph
theory, the maximum amount of information and energy in
box of characteristic sizeL should be limited by the entropy
and mass of the black hole with Schwarzschild radiusL
@7–10#.

Consider a configuration in our theory that saturates
inequality in Eq.~4.12!. This configuration carries the max
mum amount of energy allowed for a configuration in a b
of sizeL by the condition~4.12! that expresses the bound o
the validity of the low-energy effective field theory. In th
low-energy effective theory, the energy density is given b

-
an
r
h

4-8



q

m
ox

ol

em
re
m
hi

o
re
ro
m

lin

o
e

a

he

om
fec-
ive

on-

o
eri-

y
e

the
he
e
er-

ills
ng
-
rgy
e-
the
the

s
n-
on
in-
y
this
by
ss-

it
m.

con-
tive

-

b
ur

tent
etry
the

be
o the

M THEORY AS A HOLOGRAPHIC FIELD THEORY PHYSICAL REVIEW D59 046004
T;M P
9e∧¯∧e∧R, ~5.5!

and the total energy in ten-dimensional volumeM10 is

E;M P
9E
M10

e∧¯∧e∧R. ~5.6!

For the configuration that saturates the inequality in E
~4.12!, we get

Emax;M P
9

M P
2

N2/9E
M10

e∧¯∧e. ~5.7!

The volume of the universe~or more generally, of the box
M10 that contains our system! is V5M 210, which gives for
the maximum energyEmax

Emax;
M P

11

N2/9

1

M105N8/9M P . ~5.8!

Emax has a simple form when expressed in terms of the nu
ber of partonsN and the characteristic inverse size of the b
M,

Emax;NM. ~5.9!

This can be further rewritten using the relation~5.4! between
the number of partonsN, the Planck massM P , and the in-
verse size of the boxM

Emax5M S M P

M D 9

. ~5.10!

This is precisely the energy of the Schwarzschild black h
with radiusRS5M 21.7

Thus, the low-energy effective description of the syst
in terms of conventional supergravity, as derived in the p
vious section, breaks down when the energy of the syste
equal to the mass of the black hole with the Schwarzsc
radius equal to the sizeM 21 of the box surrounding the
system-precisely as expected in a holographic theory.

Several remarks seem in order.
~1! In addition to the partons represented by the Wils

lines, the microscopic theory contains extra degrees of f
dom, in the pure Chern-Simons sector of the theory. Mic
scopically, there will be fluctuations satisfying the vacuu
equations of motion in the space between the Wilson
sources,

F∧¯∧F50. ~5.11!

Could these extra, Yang-Mills degrees of freedom spoil
modify the holographic property of the theory? The answ
is no, in the following sense. The holographic property is
property of the low-energy supergravity regime. In the me

7This is to be contrasted with the maximum energy expected
the naive Planckian cutoff; indeed, configurations with curvat
R'M P

2 would have energy of orderM P(M P /M )10, i.e., Planckian
energy per Planckian unit of volume.
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field approximation, which is valid in large space-time in t
supergravity regime, the extra degrees of freedom~5.11! do
not play any role—the only low-energy degrees of freed
observable by a low-energy observer are those of the ef
tive supergravity. The theory is holographic, as an effect
low-energy theory.8

~2! In order to describe local experiments that can be c
fined inside a box of sizeL, we can stretch the validity of the
effective field theory be choosingM as large as possible t
still give enough degrees of freedom to describe the exp
ment, i.e.,M should be of orderL21 ~and not the inverse size
of the whole universe!. In this way, the holographic propert
of the theory can be reconciled with the local validity of th
low-energy field theory.

~3! As we approach the regime of energies close to
bound ~4.12! ~which coincides, as we have seen, with t
Bekenstein bound!, the theory should cross over from th
low-energy regime described by eleven-dimensional sup
gravity to an intermediate regime described by Yang-M
gauge theory, still in a mean field approximation. Accordi
to Eq. ~5.9!, as we approach the limit of validity of the low
energy supergravity description, each parton carries ene
of orderM. In the intermediate regime where the theory b
comes a gauge theory in the mean field approximation,
excess energy will have to be carried by excited states of
individual partons, or by excitations of the gauge field.

~4! The expression forEmax can be also rewritten a
Emax5MP(MP /M)8. This formula suggests that Planckian e
ergy density is actually carried by cells of Planckian size
an eight-dimensional surface. This is reminiscent of the
tuitive picture in Ref.@9#, with the system being described b
some incompressible fluid on the holographic screen. In
picture, the Planckian energy density would be carried
cells of Planckian size in the boundary of such incompre
ible fluid.

The cosmological constant and naturalness.Since our
field theory is a realization of the holographic principle,
might shed new light on the cosmological constant proble9

Looking back at the effective theory~4.11! and ignoring
supersymmetry, we do indeed see that the cosmological
stant term would be naturally suppressed by a nega
power of the number of partons in the system

L;
M P

11

N2/9. ~5.12!

Of course, in the full supersymmetric theory the value ofL
would be zero by supersymmetry~and uniqueness of mini
mal eleven-dimensional supergravity@37#!. We have not re-

y
e

8Notice that the theory is holographic precisely to the same ex
that it satisfies Mach’s principle; macroscopic space-time geom
is determined by the distribution of partons alone, as long as
role of the field-theory degrees of freedom satisfyingF550 is neg-
ligible.

9The possibility that the cosmological constant problem could
solved in a holographic theory has been stressed repeatedly t
author by Tom Banks. See also Ref.@38#.
4-9
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PETR HOŘAVA PHYSICAL REVIEW D 59 046004
lied on supersymmetry in our arguments leading to holog
phy, however, and we expect the arguments to hold in va
with no supersymmetry, or in general, in compactificatio
to lower dimensions withLÞ0.

There are indeed two possible points of view in o
theory. On one hand, the low-energy field-theory obser
underestimates the importance of terms of higher orde
curvature and expects them to be suppressed by neg
powers ofM P , and therefore expects the effective sup
gravity description to be valid for energies up to the Plan
scale. The same observer has a naturalness problem wit
value of the cosmological constant~5.12!, which based on
low-energy field theory alone, should be of orderM P

11.
On the other hand, the ‘‘microscopic’’ observer wh

knows about the underlying Chern-Simons gauge theory
no problem with the small value of the cosmological co
stant, which is naturally suppressed by an inverse powe
the number of partons. This microscopic observer also p
dicts that the low-energy supergravity description bre
down much faster than expected by the low-energy obser
because the higher curvature terms~and perhaps more im
portantly, the underlying gauge invariance! become impor-
tant well before the Planck scale. In holographic field theo
a small cosmological constant seems natural.

This argument will extend to compactifications of th
theory to lower dimensions. Consider for example comp
tifications to four-dimensions on a seven-manifold of volum
L7. Using Eq.~5.12! and the relationmP

2 5M P
9L7 between

the four-dimensional Planck massmP and the eleven-
dimensional Planck massM P we obtain, for the four-
dimensional energy-densityl;mP

2 M2—an order of magni-
tude estimate that nicely agrees with the experime
bounds onl @39#.

VI. COMMENTS

In this paper, we have studied a local field theory
eleven dimensions, which contains low-energy supergra
and exhibits the holographic property of ’t Hooft and Su
kind. We have presented this holographic field theory a
possible candidate for a covariant, ‘‘wave mechanics’’ fo
mulation of nonperturbative quantum M theory.

In this approach to M theory, we do not suggest n
‘‘fundamental principles’’ for the microscopic physics at th
Planck scale. Instead, our results seem to support the co
ture that M theory might be well described by an effecti
field theory, all the way to~and perhaps even beyond! the
Planck scale. Such effective field theory may in principle
well-defined to all energy scales~just as QCD is well de-
fined!. The expected ‘‘low-energy’’ phenomena~such as
eleven-dimensional supergravity and the holographic p
ciple! would emerge hierarchically at lower energies in th
effective framework.

We have focused our attention on the minimal theo
compatible with the requirements of supersymmetry and p
ity invariance, which leads to gauge grou
OSp~1u32!3OSp~1u32! with 64 supercharges. In the frame
work of effective theory, this minimal theory can in princip
be embedded into an even larger theory, with bigger su
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symmetry algebra. In this respect, the eleven-dimensio
superconformal group OSp~1u64! would be a particularly
natural choice. Whether such an extension will be usefu
necessary is unclear.

Perhaps the most surprising result of this paper is the
that the holographic principle is compatible with microscop
locality. By microscopic locality we mean the fact that th
theory is formulated in terms of fields~and possibly a system
of partons! with a Lagrangian which is a local function o
the underlying eleven-dimensional manifold. Effective
this microscopic locality can still lead to apparent mac
scopic nonlocality, which can manifest itself in the effecti
low-energy theory in effects such as the holographic pr
erty.

One is naturally curious about possible relations of
holographic field theory to matrix theory. We do not ha
much to say about this issue, except for noticing that it
tempting to compare the partons of the holographic fi
theory with the D0-brane degrees of freedom of matr
theory. One can formulate the holographic field theory
light-cone gauge, and try to integrate out the gauge fi
degrees of freedom at low energies. This would leave us w
an effective theory ofN partons, which could then be com
pared to matrix theory.

We have studied the theory on manifolds without boun
aries. It might be interesting to point out that the anom
cancellation mechanism@4,6# that predicts the existence o
E8 super Yang-Mills ‘‘edge states’’ in M theory on man
folds with boundaries bears a remarkable resemblance to
anomaly cancellation mechanism that predicts the existe
of similar edge states in Chern-Simons gauge the
@31,33,34,40,41#.

The construction presented in this paper can also be
peated in lower space-time dimensionsD54p21, thus sug-
gesting a possible hierarchy of M theories in three and se
dimensions. The (211)-dimensional case is somewh
trivial, but the (611)-dimensional case might be of mor
interest. Indeed, here we have an interesting option that d
not exist in eleven dimensions: The gauge group can be
tended to contain an extra compact group@say SU(n)#, and
we can try to identify regimes in which supergravity d
couples in a flat space-time, possibly leaving only SU(n)
degrees of freedom.

The local quantum field theory presented in this pape
described at low energies by supergravity, and satisfies
holographic principle of ’t Hooft and Susskind. Regardle
of whether or not it will play any role in our future unde
standing of M theory, holographic field theory might be
interesting testing ground for questions that originally mo
vated the formulation of the holographic principle@8,9#,
most notably the black hole information paradox@10#.
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