Supporting Information

Hydricity of an Fe-H Species and Catalytic CO₂ Hydrogenation Henry Fong and Jonas C. Peters*

Division of Chemistry and Chemical Engineering, and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (USA)

Contents

Methylformate Quantification	2
Catalytic Runs	
NMR Spectra	6
IR Spectra	
UV-vis Spectra	15
Hydricity Determination	
UV-vis Titration	
References	

Methylformate Quantification

Figure S1. Example FID chromatograph of methylformate quantification. 50 μ M solution of methylformate in methanol.

Catalytic Runs

Table S1. Catalytic hydrogenation results for $(SiP^{R}_{3})Fe$, $(PhBP^{iPr}_{3})Fe$, $(NP^{iPr}_{3})Fe$, $(CP^{iPr}_{3})Fe$, $(C^{Si}P^{Ph}_{3})Fe$, $PP_{3}/Fe(BF_{4})_{2}$, and $[(tetraphos)FeF](BF_{4})$

Entry	Precatalyst	(Et₃NH)(OCHO) Yield (mmol)	MeOCHO Yield (mmol)	Total Yield (mmol)	(Et₃NH)(OCHO) TONª	MeOCHO TON ^a	Total TON ^ª	Solvent	Р _{со2} /Р _{н2} (atm)	Additive ^b	Time (h)	Temp. (°C)
S1	(SiP ^{/Pr} 3)FeCl	0.00	0.00	0.00	0.00	0.00	0.00	THF	1/1		50	100
S2	(SiP ^{/Pr} ₃)FeCl	0.00	0.00	0.00	0.00	0.00	0.00	THF	1/4		21	100
S3	(SiP ^{/Pr} ₃)FeCl	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	1/4		40	60
S4	(SiP ^{/Pr} ₃)FeCl	0.00	0.00	0.00	0.00	0.00	0.00	THF	29/29		20	100
S5	(SiP ^{/Pr} 3)FeCl	0.31	0.14	0.45	39.60	18.20	57.80	MeOH	29/29		20	100
S6	(SiP ^{/Pr} 3)FeCl	0.31	0.13	0.44	37.90	15.30	53.20	MeOH	29/29		20	100
S7	(SiP ^{/Pr} 3)FeCl	0.31	0.08	0.40	37.90	10.55	48.45	MeOH	29/29		20	100
S8	(SiP ^{/Pr} ₃)FeCl	0.14	0.00	0.14	17.40	0.00	17.40	MeOH	29/29		2	100
S9	(SiP ^{/Pr} 3)FeCl	0.12	0.00	0.12	15.25	0.00	15.25	MeOH	29/29		2	100
S10	(SiP ^{/Pr} ₃)FeCl	0.26	0.10	0.35	32.54	12.20	44.74	MeOH	29/29		20	150
S11	(SiP ^{/Pr} 3)FeCl	0.18	0.11	0.29	22.63	13.98	36.61	MeOH	29/29		20	150
S12	(SiP ^{/Pr} 3)FeCl	0	0	0	0	0	0	MeOH	29/29		20	20
S13	(SiP ^{/Pr} 3)FeCl	0	0	0	0	0	0	MeOH	29/29		20	20
S14 ^c	(SiP ^{/Pr} 3)FeCl	0.15	0.12	0.27	18.73	14.98	33.71	CD_3OD	29/29		20	100
\$15 ^c	(SiP ^{/Pr} 3)FeCl	0.16	0.08	0.24	19.40	10.10	29.50	CD_3OD	29/29		20	100
S16	(SiP ^{/Pr} ₃)FeCl	0.27	0.05	0.32	34.90	6.36	41.26	MeOH	29/29	0.5 equiv (Et₃NH)Cl	20	100
S17	(SiP ^{/Pr} ₃)FeCl	0.26	0.06	0.32	33.30	7.28	40.58	MeOH	29/29	0.5 equiv (Et₃NH)Cl	20	100
S18	(SiP ^{/Pr} ₃)FeCl	0.68	0.15	0.83	86.31	18.90	105.21	MeOH	29/29	0.5 equiv NaBF₄	20	100
S19	(SiP ^{/Pr} ₃)FeCl	0.59	0.05	0.64	75.12	6.26	81.38	MeOH	29/29	0.5 equiv NaBF₄	20	100
S20	(SiP ^{/Pr} ₃)FeCl	0.31	0.28	0.59	38.1	34.6	72.7	MeOH	29/29	0.5 equiv NaBAr ^F 4	20	100
S21	(SiP ^{/Pr} ₃)FeCl	0.37	0.17	0.54	45.1	20.6	65.7	MeOH	29/29	0.5 equiv	20	100

Entry	Precatalyst	(Et₃NH)(OCHO) Yield (mmol)	MeOCHO Yield (mmol)	Total Yield (mmol)	(Et₃NH)(OCHO) TONª	MeOCHO TON ^ª	Total TON ^a	Solvent	Р _{со2} /Р _{н2} (atm)	Additive^b	Time (h)	Temp. (°C)
										NaBAr ^F 4		
S22	(SiP ^{/Pr} ₃)FeCl	0.31	0.03	0.34	39.0	4.3	44.3	MeOH	29/29	0.5 equiv NaF	20	100
S23	(SiP ^{/Pr} ₃)FeCl	0.31	0.05	0.35	39.0	6.4	45.4	MeOH	29/29	0.5 equiv NaF	20	100
S24	(SiP ^{/Pr} ₃)FeCl	0.16	0.02	0.18	20.4	2.9	23.3	MeOH	29/29	0.5 equiv CsF	20	100
S25	(SiP ^{/Pr} ₃)FeCl	0.19	0.02	0.21	25.0	2.9	27.9	MeOH	29/29	0.5 equiv CsF	20	100
S26 ^d	(SiP ^{/Pr} ₃)FeCl	0.22	0.01	0.23	28.5	1.4	29.9	MeOH	29/29	0.5 equiv TBAF	20	100
S27 ^d	(SiP ^{/Pr} ₃)FeCl	0.24	0.03	0.27	31.1	3.9	35.0	MeOH	29/29	0.5 equiv TBAF	20	100
S28	(SiP ^{/Pr} ₃)FeCl	0.39	0.03	0.42	50.2	4.4	54.6	MeOH	29/29	0.5 equiv K ₂ CO ₃	20	100
S29	(SiP ^{/Pr} ₃)FeCl	0.45	0.01	0.46	58.3	1.7	60.0	MeOH	29/29	0.5 equiv K ₂ CO ₃	20	100
S30	(SiP ^{/Pr} ₃)FeCl	0.00	0.00	0.007	0.00	0.0	0.00	MeOH	29/0		20	100
S31	(SiP ^{/Pr} ₃)Fe(N ₂)(H)	0.32	0.08	0.40	41.53	9.74	51.27	MeOH	29/29		20	100
S32	(SiP ^{/Pr} ₃)Fe(N ₂)(H)	0.25	0.09	0.34	31.79	11.83	43.62	MeOH	29/29		20	100
S 33	(SiP ^{/Pr} ₃)Fe(OCHO)	0.39	0.02	0.41	51.66	2.43	54.09	MeOH	29/29		20	100
S34	(SiP ^{/Pr} ₃)Fe(OCHO)	0.36	0.03	0.39	46.98	3.22	50.20	MeOH	29/29		20	100
S35	(SiP ^{Ph} ₃)FeCl	0.94	0.56	1.51	121.55	72.71	194.26	MeOH	29/29		20	100
S36	(SiP ^{Ph} ₃)FeCl	1.08	0.52	1.59	139.36	66.44	205.44	MeOH	29/29		20	100
S37	[(SiP ^{/Pr} ₃)Fe] (BAr ^F ₄)	0.10	0.03	0.13	12.72	3.82	16.54	MeOH	29/29		20	100
S38	[(SiP ^{/Pr} 3)Fe] (BAr ^F 4)	0.13	0.00	0.15	16.30	2.80	19.10	MeOH	29/29		20	100
S39	(SiP ^{/Pr} 3)FeCl	0.39	0.03	0.42	48.69	3.75	52.44	MeOH	29/29	Hg	20	100
S40	(SiP ^{/Pr} 3)FeCl	0.33	0.00	0.38	41.00	6.24	47.24	MeOH	29/29	Hg	20	100
S41	HSiP ^{/Pr} 3/FeCl2 (1:1)	0.08	0.03	0.11	9.68	3.10	12.78	MeOH	29/29		20	100
S42	HSiP ^{/Pr} ₃ /FeCl ₂ (1:1)	0.10	0.02	0.12	11.98	1.82	13.80	MeOH	29/29		20	100
S43	(PhBP ^{'Pr} ₃)FeCl	0.24	0.02	0.26	29.00	3.10	32.10	MeOH	29/29		20	100

Entry	Precatalyst	(Et ₃ NH)(OCHO) Yield (mmol)	MeOCHO Yield (mmol)	Total Yield (mmol)	(Et₃NH)(OCHO) TONª	MeOCHO TON ^a	Total TON ^a	Solvent	Р _{со2} /Р _{н2} (atm)	Additive ^b	Time (h)	Temp. (°C)
S44	(PhBP ^{/Pr} ₃)FeCl	0.15	0.02	0.17	19.00	2.40	21.40	MeOH	29/29		20	100
S45	[(NP ^{/Pr} 3)FeCl](PF6)	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	29/29		20	100
S46	(TPB)FeCl	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	29/29		20	100
S47	[(TPB)Fe] (BAr ^F 4)	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	29/29		20	100
S48	(TPB)µ-H)Fe(N₂)(H)	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	29/29		20	100
S49	PP ₃ /Fe(BF ₄) ₂	3.30	0.91	4.21	395.70	108.50	504.20	MeOH	29/29		20	100
S50	PP ₃ /Fe(BF ₄) ₂	2.69	0.98	3.67	342.24	124.68	466.92	MeOH	29/29		20	100
S51	[(tetraphos)-Fe(F)](BF ₄)	6.06	7.68	13.74	771.30	976.50	1747.80	MeOH	29/29		20	100
S52	[(tetraphos)-Fe(F)](BF ₄)	5.15	7.23	12.38	655.22	919.85	1575.07	MeOH	29/29		20	100
S53	FeCl ₂	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	29/29		20	100
S54	FeCl ₂ /4 PPh ₃	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	29/29		20	100
S55	no iron	0.00	0.00	0.00	0.00	0.00	0.00	MeOH	29/29		20	100
S56	(SiP ^{/Pr} 3)Fe(N2)(H)	0.00	0.00	0.00	0.00	0.00	0.00	THF	1/1		20	60
S57	(SiP ^{/Pr} ₃)Fe(N ₂)(H)	0.00	0.00	0.00	0.00	0.00	0.00	THF	1/4		20	60
S58	(SiP ^{/Pr} ₃)Fe(N ₂)(H)	0.00	0.00	0.00	0.00	0.00	0.00	C_6D_6	1/4		20	90
S59	(SiP ^{/Pr} 3)Fe(N2)(H)	0.00	0.00	0.00	0.00	0.00	0.00	THF	29/29		20	100
S60	(SiP ^{Ph} ₃)Fe(N ₂)(H)	0.00	0.00	0.00	0.00	0.00	0.00	THF	29/29		20	100
S61	(PhBP ^{/Pr} 3)FeCl	0.00	0.00	0.00	0.00	0.00	0.00	THF	29/29		20	100
S62	[(NP ^{iPr} ₃)Fe(N ₂)(H)](PF ₆)	0.00	0.00	0.00	0.00	0.00	0.00	THF	29/29		20	100
S63	(TPB)(μ-H)Fe(N₂)(H)	0.00	0.00	0.00	0.00	0.00	0.00	THF	29/29		20	100
S64	(TPB)(μ-H)Fe(N₂)(H)	0.00	0.00	0.00	0.00	0.00	0.00	C_6D_6	1/4		20	100
S65	(CP ^{/Pr} ₃)FeCl	0.20	0.03	0.23	24.71	3.43	28.13	MeOH	29/29		20	100
S66	(CP ^{/Pr} ₃)FeCl	0.18	0.03	0.21	23.15	2.95	26.11	MeOH	29/29		20	100
S67	(C ^{Si} P ^{Ph} ₃)FeCl	0	0	0	0	0	0	MeOH	29/29		20	100

Unless otherwise noted, reactions were performed under the standard conditions of 0.7 mM precatalyst, 651 mM of triethylamine, methanol (10 mL), 20 h, 100 °C, 29 atm of CO₂, and 29 atm of H₂. ^a Turnover number (TON) is the yield of product divided by the amount of added precatalyst. ^c(Et₃NH)(OCHO) was detected by ¹H NMR spectroscopy, but (Et₃ND)(OCDO), (Et₃NH)(OCDO), and (Et₃ND)(OCHO) were not detected by ²H NMR spectroscopy. ^b BAr^F₄ = [(3,5-(CF₃-C₆H₃)₄)B]⁻; TBAF = tetrabutylammonium fluoride.

NMR Spectra

Figure S3. ¹H and ³¹P (inset) NMR spectra of (SiP^{Ph}₃)Fe(N₂)(H) in a 3:2 mixture of C₆D₆:THF d_8 .⁺ Si grease, * HMDSO.

Figure S6. ¹H NMR spectrum of (PhBP^{iPr}₃)Fe(OCHO) in C₆D₆.

mixture C_6D_6 :THF- d_8 .

Figure S8. ¹H NMR spectrum of (TPB)FeCl in C_6D_6 .

Figure S9. ¹H NMR spectrum of (TPB)Fe(OCHO) in C_6D_6 .

Figure S10. In situ ¹H NMR spectra in a mixture of 10:1 mixture of C_6D_6 :THF- d_8 for the deprotonation of $[(SiP^{iPr}_3)(H_2)](BAr^F_4)$ by triethylamine under an H₂ atm to form $(SiP^{iPr}_3)Fe(H_2)(H)$.

Figure S11. Crude catalytic reaction mixture. ¹H and ³¹P (inset) NMR spectra in C_6D_6 of the crude catalytic reaction mixture after a high pressure catalysis experiment under standard conditions with precatalyst (SiP^{*i*Pr}₃)FeCl under the standard conditions.

Figure S12. ¹H NMR spectrum in C_6D_6 of the crude, post reaction mixture after a high pressure catalysis experiment at 20 °C (bottom). The ¹H NMR spectrum in C_6D_6 of an authentic sample of (SiP^{iPr}_3) FeCl is shown for reference (top).

Figure S13. ¹H NMR spectra of $(SiP^{iP_{T}})$ FeCl and excess Et₃N in a 10:1 mixture of CD₃OD:THF-*d*₈ under a mixture of H₂ and D₂ (1 atm:1 atm). (Bottom) At the start of the reaction (0 h) at RT, HD is not observed. (Middle) After 24 h at room temperature, a new resonance with a $J_{HD} = 43$ Hz is observed and corresponds to HD. (Top) After heating this reaction for 14 h at 50 °C, the signal corresponding to HD have increased relative to the middle spectrum. One peak expected at 4.68 ppm that arises from the expected 1:1:1 triplet resonance for HD is obscured by the broad H₂O signal.

IR Spectra

Figure S14. Thin-film ATR-IR spectra of $(SiP^{iPr}_{3})Fe(OCHO)$ and $(SiP^{iPr}_{3})Fe(O^{13}CHO)$.

Figure S15. Thin-film ATR-IR spectrum of $(SiP^{Ph}_{3})Fe(N_{2})(H)$ from $C_{6}H_{6}$ and the ATR-IR spectrum of $C_{6}H_{6}$ for reference.

Figure S16. Thin-film ATR-IR spectra of (SiP^{Ph}₃)Fe(OCHO) and (SiP^{Ph}₃)Fe(O¹³CHO).

Figure S17. Thin-film ATR-IR spectra of $(PhBP^{iPr}_{3})Fe(OCHO)$ and $(PhBP^{iPr}_{3})Fe(O^{13}CHO)$.

Figure S18. Thin-film ATR-IR spectra of $[(NP^{iPr}_3)Fe(OCHO)](PF_6)$ and $[(NP^{iPr}_3)Fe(O^{13}CHO)]$.

Figure S19. Thin-film ATR-IR spectra of (TPB)Fe(OCHO) and (TPB)Fe(O¹³CHO).

UV-vis Spectra

Figure S20. UV-Vis spectra of (SiP^{iPr}₃)Fe(OCHO) in THF.

Figure S21. UV-Vis spectra of $(SiP^{Ph}_{3})Fe(N_{2})(H)$ in THF.

Figure S22. UV-Vis spectra of (SiP^{Ph}₃)Fe(OCHO) in THF.

Figure S23. UV-Vis spectrum of $[(NP^{iPr}_{3})Fe(OCHO)](PF_{6})$ in THF.

Figure S24. UV-Vis spectrum of (PhBP^{iPr}₃)Fe(OCHO) in THF.

Figure S25. UV-Vis spectra of (TPB)FeCl in THF.

Figure S26. UV-Vis spectra of (TPB)Fe(OCHO) in THF.

Hydricity Determination

Reactions relevant to determination of hydricity for $(SiP^{iP_{T}})Fe(H_{2})(H)$ (**Fe(H_2)(H)**)with a base (B), equation S1-S3. The sum of equations S1-S3 (ΣG) represents the reverse reaction, where hydride is added to **Fe(H_2)^+**. Therefore, reversing the reaction and taking negative ΣG (- ΣG , equation S4) represents the hydricity (ΔG_{H} -) of Fe(H₂)(H).

$$H_{2} + B + P_{I} +$$

Experimentally, the deprotonation reaction of equation S1 was run in THF- d_8 . However, THF is known to coordinate competitively to the cationic Fe^{II} complex to give **Fe**(**THF**)⁺.¹ This must be taken into account. The equilibrium constant for the competitive coordination of H₂ and THF (equation S5) has been previously reported (K₁ = 1900 M⁻¹, equation S5).

$$H_{2} + P_{P} \stackrel{\text{THF}}{\underset{\text{Fe}(\text{THF})^{+}}{\overset{\text{Fe}}{\underset{\text{Fe}(\text{THF})^{+}}{\overset{\text{Fe}(\text{THF})^{+}}}}}}}}} = 1900 \text{ M}^{-1}$$

Therefore, the overall reaction of equations S1 and S5 is:

$$Fe(THF)^{+} + 2H_2 + B \xrightarrow{K_1} Fe(H_2)^{+} + H_2 + B + THF \xrightarrow{K_2} Fe(H_2)(H) + THF + BH^{+}$$
 (S6)

where
$$K_2 = \frac{[Fe(H_2)(H)][BH^+]}{[Fe(H_2)^+][B][H_2]}$$

And the total concentration of iron species in solution is: $[Fe]_{total} = [Fe(H_2)(H)] + [Fe(H_2)^+] + [Fe(THF)^+]$ (S7)

Experimentally, the equilibrium between the iron-species and base in THF- d_8 was monitored by ¹H NMR spectroscopy with 1,3,5-trimethoxybenzene as an integration standard. The proton resonances from the **Fe(H₂)(H)**, base, and conjugate acid of the base were well-resolved and reliably integrated in the ¹H NMR spectra, but the paramagnetic **Fe(H₂)**⁺ and **Fe(THF)**⁺ could not be reliably integrated. Therefore, equation S7 and K₁ were used to determine the respective concentrations of **Fe(H₂)**⁺ and **Fe(THF)**⁺ in order to determine the equilibrium value K₂. The activity of hydrogen at 1.0 atm was taken as unity in K₂, as this is the reference state of hydrogen for the normal hydrogen electrode.²

Table S2. Experimentally determined ΔG_{H} - for $(SiP^{iPr}_{3})Fe(H_{2})(H)$ and pK_{a} values for $[(SiP^{iPr}_{3})Fe(H_{2})](BAr^{F}_{4})$ using three different bases.

			(SiP ^{iPr} ₃)Fe			H_2)](BAr ^F ₄)
Entry	Acid	Base	$K_2 (M^{-1})$	ΔG_{H} - (kcal/mol)	pK_a^{THF}	pK _a ^{MeCN}
1	$[(\mathrm{SiP}^{i\mathrm{Pr}}_{3})\mathrm{Fe}(\mathrm{H}_{2})](\mathrm{BAr}^{\mathrm{F}}_{4})$	Proton Sponge $(pK_a^{THF} = 11.1)^a$	4.31 ^b	54.8	10.5	15.5
2	$[(\mathrm{SiP}^{i\mathrm{Pr}}_{3})\mathrm{Fe}(\mathrm{H}_{2})](\mathrm{BAr}^{\mathrm{F}}_{4})$	2,6-Lutidine $(pK_a^{THF} = 7.2)^a$	3.3 x 10 ^{-5 c}	52.9	11.7	16.9
3	$[(\mathrm{SiP}^{i\mathrm{Pr}}_{3})\mathrm{Fe}(\mathrm{H}_{2})](\mathrm{BAr}^{\mathrm{F}}_{4})$	2,4,6-Trimethyl- pyridine $(pK_a^{THF} = 8.1)^a$	5.1 x 10 ^{-3 d}	54.9	10.4	15.4
4	[Proton Sponge-H](BAr ^F ₄)	$(SiP^{iPr}_{3})Fe(H_2)(H)$	2.6	54.5	10.7	15.8

^aRef 3. ^b1 equiv of proton sponge used. ^c292 equiv of 2,6-lutidine used. ^d20 equiv of 2,4,6-trimethyl-pyridine used.

UV-vis Titration

Figure S27. UV-Vis spectra of the titration of $[(SiP^{iPr}_{3})Fe(N_{2})](BAr^{F_{4}})$ with Li(OCHO) in THF.

Figure S28. Absorbance at 752 nm as a function of the equivalents of Li(OCHO) added (blue diamond). The best fit of the data using $K_{eq} = 3.5 \times 10^6 \text{ M}^{-1}$ is in red.

References

- 1. Y. Lee, R. A. Kinney, B. M. Hoffman and J. C. Peters, J. Am. Chem. Soc., 2011, 133, 16366-16369.
- 2. R. Ciancanelli, B. C. Noll, D. L. DuBois and M. R. DuBois, *J. Am. Chem. Soc.*, 2002, **124**, 2984-2992.
- 3. I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito and I. A. Koppel, J. Org. Chem., 2005, **70**, 1019-1028.