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Model of fractionalization of Faraday lines in compact electrodynamics
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Motivated by ideas of fractionalization and intrinsic topological order in bosonic models with short-range
interactions, we consider similar phenomena in formal lattice gauge theory models. Specifically, we show that
a compact quantum electrodynamics (CQED) can have, besides the familiar Coulomb and confined phases,
additional unusual confined phases where excitations are quantum lines carrying fractions of the elementary
unit of electric field strength. We construct a model that has N-tupled monopole condensation and realizes 1/N
fractionalization of the quantum Faraday lines. This phase has another excitation which is a Zy quantum surface
in spatial dimensions five and higher, but can be viewed as a quantum line or a quantum particle in four or three
spatial dimensions, respectively. These excitations have statistical interactions with the fractionalized Faraday
lines; for example, in three spatial dimensions, the particle excitation picks up a Berry phase of e/>*/"¥ when
going around the fractionalized Faraday line excitation. We demonstrate the existence of this phase by Monte

Carlo simulations in (3+1) space-time dimensions.
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I. INTRODUCTION

The classification of topological phases of gauge theories
is a longstanding problem [1,2]. The study of such phases can
be made easier if they can be realized in a precisely defined
lattice model. In this paper we provide a lattice model which
realizes a topological phase of compact electrodynamics which
confines electrical charges but shows fractionalized Faraday
line excitations.

Ordinary compact quantum electrodynamics (CQED) has
two phases: a confined phase and a Coulomb phase. We can
think about these phases in terms of the behavior of the
monopoles in the system. In the confined phase monopoles
are condensed (the system contains many monopoles), while
in the Coulomb phase monopoles are gapped (the system
contains few monopoles). In our model we consider the case
where individual monopoles are gapped, but bound states
of N monopoles are condensed, which we argue leads to
fractionalized Faraday lines.

Such an approach is inspired by the search for topological
phases in condensed matter physics, where it is known that
the condensation of multiple topological defects can lead to
fractionalized phases with intrinsic topological order [3.4].
For example, in (2+1) dimensions a system of bosons can be
reformulated in terms of vortices, which are quantum particles.
The (dual) field theory for the vortices has the structure
of a Higgs theory with vortex fields minimally coupled to
a dynamical gauge field, whose flux is the coarse-grained
boson density. When the vortex fields condense we have
a Higgs phase, which in the boson language is simply a
Mott insulator. The Higgs phase contains Abrikosov-Nielsen-
Olesen (ANO) vortices, which are topological defects of the
original vortex fields (as opposed to the original vortices, which
are topological defects of the boson fields). The ANO vortices
in the dual theory are gapped excitations in this phase and
can be identified with gapped charge excitations in the Mott
insulator of the bosons. Since the ANO vortices in the Higgs
phase carry quantized flux, the boson charge is quantized in
the Mott insulator.

We can then consider condensing pairs of vortices while
leaving single vortices gapped [4]. This is still a Mott insulator
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of bosons, but an unusual one. ANO vortices of the “paired-
vortex” field have flux quantized to half integers, and so they
correspond to gapped charge excitations which carry half a
unit of the fundamental boson charge. Original single vortices
are also gapped excitations acquiring Z, character, since the
paired-vortex condensate can absorb any even number of
vortices. Furthermore, a fractionalized charge picks up a phase
of m when taken around a single vortex. Therefore the phase
where pairs of vortices are condensed is a fractionalized Mott
insulator whose excitations are particles carrying half a unit of
charge (which we will call “chargons”) and Z, fluxes carrying
no charge and exhibiting mutual statistics with the chargons. A
convenient mathematical description for this phase has bosonic
chargons coupled to a Z, gauge field in the deconfined phase,
and one of the signatures of the topological nature of the phase
is the ground state degeneracy of 2¢ when the system is placed
on a torus in d dimensions.

Turning now to CQED in (3+1)D, it can be formulated
in terms of monopoles, which are also quantum particles
that can be described by a Higgs theory [5]. ANO vortices
of the monopole fields in this case are quantum lines. The
Higgs phase in the dual theory where the monopoles condense
corresponds to the confining phase of the CQED, and the ANO
vortices in the Higgs theory are the Faraday lines in the CQED,
which are the gapped excitations of the confining phase. The
quantization of the flux carried by the ANO vortices now leads
to the quantization of electric field strength for the Faraday
lines.

When bound states of N monopoles condense, the flux of
ANO vortices in the “N-tupled-monopole” field is quantized in
units of 1/N, and therefore they correspond to fractionalized
Faraday (electric field) lines. The model we describe here
is inspired by this argument [2], though we will explicitly
demonstrate that our model produces fractionalized phases
in all space-time dimensions greater than or equal to four.
The model works by energetically binding together multiple
monopoles, and we also study it numerically in (3+1) dimen-
sions using Monte Carlo. We will also derive microscopically
an effective description of this phase in terms of fractionalized
Faraday lines coupled to arank-2 Z  field (“Gerbe field” [6,7])
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in the rank-2 deconfined phase, and we will show the ground
state degeneracy of N99~1/2 on a d-dimensional torus.

II. MODEL AND MONTE CARLO STUDY

Our model is described by the following action:

2 o
Z :/0 Da,(r) Z exp (—g Z [(Vpa, — Vya,)(r)

By (r)y=—00 I p<v

— 27 B, (N> + A Z cos [%:D (1)

r,o<p<v

Here a,,(r) are 27 -periodic (compact) gauge fields, which live
on the links of a (hyper) cubic lattice whose positions are
labeled by r and space-time directions by u,v, etc.; By, (r)
are integer valued variables which live on the plaquettes of the
same lattice. Lattice derivatives are represented by V,,. In the
absence of the A term, the above is the familiar Villain form
of the compact electrodynamics [5]; in particular, summation
over B,,(r) on each plaquette gives a 2m-periodic “Villain
cosine” potential on the gauge field fluxes:

o0 .
Z e*ijlF(I). (2)
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e*Vviuuin[q’;K] = § e*%(deZnB)z —
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The last equality comes from Poisson resummation and will
be used later (and we dropped unimportant constant factors).
Keeping B,,,(r) dynamical allows us to define “monopolici-
ties” [5] associated with cubes defined on directions o < u <
v:

Qn;w(r) = (Vs B;w + Vqua + VUBU[L)(r)' 3)

As an example, in (3+1)D we can alternatively view these
variables as objects residing on the dual lattice links, which
we can then interpret as monopole currents,

m 1 1
J,vg '= 6 Zepalw Qalw = E ZEK)”M"V‘T BMV' )

oY oy

This provides a useful connection to the discussion in terms
of the dual Higgs model in the Introduction, which utilized
intuition about such Higgs models. However, this is not
required for the treatment in the next section which works
in general dimensionality.

We study this model in Monte Carlo for N =2 [8] in
(3+1)D and show the numerical phase diagram in Fig. 1.
In the model, k represents the “bare stiffness” of the gauge
field, while A represents the strength of the potential which
penalizes single monopole excitations compared to pairs of
monopoles. When A is small we recover the phase diagram of
the ordinary CQED. At small ¥ we have a confined phase, in
which the monopoles are condensed. We will call this phase
the “Conventional Faraday Lines” (CFL) phase, because its
gapped excitations are conventional Faraday lines. At large
« we have the Coulomb phase where monopoles are gapped
and Faraday lines condense. This phase also has a gapless
photon. As A is increased we find a phase at large A and
small x, which we claim is a confined phase whose gapped
excitations are fractionalized Faraday lines, and so we call it
the “Fractionalized Faraday Lines” (FFL) phase.
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FIG. 1. Phase diagram for the generalized CQED model in
Eq. (1), which realizes a phase with fractionalized Faraday lines
at large A and small k. The other phases are a conventional confined
phase with gapped, conventional Faraday lines and Coulomb phase
with a gapless photon and condensed Faraday lines; these phases
are familiar from the ordinary CQED in (341) dimensions. Points
indicate where the locations of the phase transitions were determined
from peaks in the specific heat. Dashed lines indicate where more
detailed data was taken, which is presented below.

When studying the above action in Monte Carlo, we
measure specific heat, defined as

(8%) — (8)?

C
Vol

; &)

where Vol = L* is the volume of the system with linear
dimension L. Peaks in the specific heat can be used to detect
phase transitions even without knowing the nature of the

phases.
We also measure “photon stiffness,”
Puv(k) = 1 = 1 {Jon (R)1?), (6)
where
w,u(r) = (Vya, — Viya,)(r) — 2m By, (r). @)

To obtain the above expression for the stiffness we couple the
CQED system to an external, probing rank-2 field hlef(r) by
making the following substitution in Eq. (1) [5]:

wuv(r) - a)/w(r) - hixvl(r)' (8)

Just as superfluid stiffness in a system of bosons can be
represented as a second derivative of a free energy (i.e.,
—log Z) with respect to a probing field coupled to bosons,
the photon stiffness Eq. (6) can be derived by taking the
second derivative of the free energy for our model Eq. (1)
with respect to h,‘;"v‘ We measure the photon stiffness at the
smallest nonzero wave-vector kK = kp,;,, Which points in either
the ;o or v directions and has magnitude 2w /L. Note that
strictly speaking when we use the substitution in Eq. (8), we
should also make the substitution

Vo hh + V h + Ve
2

(€]

Qauv - Q(r;w +
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FIG. 2. (Color online) Specific heat (top panel) and photon stiff-
ness (bottom panel) along the line marked A in Fig. 1. The rapidly
growing peak in the specific heat shows that we have a first-order
transition, as expected. The photon stiffness shows that the phase at
large « is the Coulomb phase, while the phase at small « is confined.

in the A term of Eq. (1), but the contribution to the stiffness
from this term already contains derivatives and is proportional
to k2. When k = kpjp, this contribution vanishes at large L, and
so we neglect it from now on. The photon stiffness should be
nonzero only in the Coulomb phase, because it is the only phase
with a gapless photon. Measuring vanishing photon stiffness
then tells us that a phase is confined.

The square symbols in Fig. 1 mark points where we
observed peaks in the specific heat, indicating a phase
transition. We also obtained more detailed data on the dashed
lines marked A, B, and C, and we present this data in Figs. 2, 3,
and 4, respectively.

Figure 2 shows a transition between the Conventional
Faraday Lines (CFL) and Coulomb phases. In the top panel we
see that the peak in the specific heat grows rapidly as a function
of system size, indicating a first-order phase transition. In the
bottom panel we show the photon stiffness, which as expected
is nonzero only in the Coulomb phase. The Coulomb to CFL
transition can be thought of as a condensation of monopoles.
The monopole fields can be described by a Higgs theory
in (34+1)D, and such a theory is indeed expected to have a
first-order transition [9].

Figure 3 shows a transition between the Fractionalized
Faraday Lines (FFL) and Coulomb phases. As in the case
above, our data shows that the transition is first-order and that
the phase at large « is the Coulomb phase while the phase
at small « is confined. The Coulomb-FFL transition can be
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FIG. 3. (Color online) Same as Fig. 2, but for the line marked B
in Fig. 1. The phase transition along this line, from the Coulomb to
FFL phases, involves condensation of pairs of monopoles and is also
described by a Higgs-like theory. Therefore it has similar first-order
behavior as the transition in Fig. 2 which corresponds to condensation
of single monopoles.

thought of as a condensation of pairs of monopoles, and can
be described by a Higgs theory of “paired-monopole” fields.
It is therefore not surprising that the transition also has the
properties of a Higgs theory, and also that it takes place at a
value of k approximately one quarter that of the Coulomb-CFL
transition at A = 0.

Finally, Fig. 4 shows a transition between the CFL and
FFL phases. We can see from the specific heat data that there
is indeed a phase transition here; however, from the photon
stiffness we can see that both phases are confined. The specific
heat peaks grow very slowly with the system size, indicating
a second-order transition. In the next section we will argue
that the transition is Ising-like, with mean-field critical indices
consistent with our measurements.

III. EXPLICIT DEMONSTRATION OF
FRACTIONALIZATION OF FARADAY LINES
AND PROPERTIES OF THE PHASE

We now use an exact change of variables to rewrite the
partition sum in Eq. (1) in terms of gapped excitations of the
FFL phase, which will make the properties of the phase clear.
This procedure is valid for all space-time dimensions. We start
by writing:

B;w(r) = Nm/w(r) + E/w(r), (10)
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FIG. 4. (Color online) Same as Fig. 2, but for the line marked
C in Fig. 1. The peak in the specific heat tells us that we have a
phase transition, but the photon stiffness is zero everywhere (the
exhibited data reflects statistical noise in the measurement), and so
both phases are confined. As we argue in the text, at large A we have
the fractionalized Faraday lines phase, while the FFL-CFL transition
is Ising-like.

where m,,, (r) runs over arbitrary integer values while £,,,(r)
runs over integers 0,1, ..., N — 1. The A term does not depend
onm,,(r), and we can perform summation over these variables

and obtain:
2 N-1 2
27 Qo pv
7 = / Da,(r) Z exp (k Z cos [%}
0 £,,(r)=0 ro<p<v
a a 218, (r)
- r;uVVillain [(VM Nv -V, ﬁ“) (r)— %; kN 2]) .

Here Qw,}(r) is given by Eq. (3) with B,,(r) replaced by
£,,,(r), and all arithmetic with the latter is understood to be
modulo N (also everywhere below).

We now wish to replace the a,,(r) variables with variables
called d, (r), which satisfy the following condition:

(eiflu(r))N — em“(r). (12)

Recalling that ¢/ is the creation operator for a segment
of a Faraday line, we see that ¢/ () creates a segment of
a fractionalized Faraday line carrying electric field strength
of 1/N of the microscopic unit. The replacement a,(r) =
a,(r)/N satisfies Eq. (12) but leaves us with an G, (r) that has
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adifferent integration range than a,,(r). Resolving this problem
in a naive way by simply extending the range of integration
leads to gaugelike redundancies which obscure some of the
physics we are interested in.

To find variables a,(r) which satisfy Eq. (12) and avoid
such redundancy problems, we take the following approach.
Working on alattice with periodic boundary conditions, we can
divide all configurations of £,,(r) into classes characterized
by the fluxes Qwv(r) out of all elementary cubes, as well as
fluxes through some fixed two-dimensional surfaces wrapping
around the system with the periodic connectedness. For
example, we can take such surfaces which pass through the
origin (0,0, . ..,0) and define for each pair of directions i and
D spanned by coordinates 0 < x,, < L, —1 and 0 < x, <
L,—1:

L,—1L,—1

W= "> £,00.....0.x,.0,....0,x,.0,....0). (13)
x,=0 x,=0
We can check that

’
ko= > Y (14)
L) Qv (). Wy V(1)
[euv(r) = E}i)g(r) + (Vuvv - Vvvp_)(r)]a (15)

where £()(r) is a fixed member of the class described

by O, w(r) and W,,. All summations are over integers
0,1,...,N — 1 and all equations are modulo N (i.e., the fields
are elements of the additive group Zy). To be precise, we
can argue that from all links of the hypercubic lattice, we
can select a subset of links such that we can take v, (r) as
independent variables on these links, while v, (r) = 0 on all
the other links. We can also argue that the original CQED
theory can be equivalently formulated using compact gauge
fields a,,(r) that are nonzero only on exactly the same links
as the independent v, (r). We will assume this implicitly in all
manipulations below.

The primed sum over Qg,w(r) and W, in Eq. (15) is over all
such modulo-N integers that can be derived from some £,,,(r)
via Egs. (3) and (13). We can also argue that such allowed
Q(,W(r) and W, are equivalently described as independent
Qwu(r) and W, but with constraints on Qg,w(r):

Vp Qauv - va Q,uvp + VM vaa - Vu Qpau = 07

Lo—1L,—1L,—1

Z Z Z Qauv(...,xa,...,xu,...,x‘,,...)=0,

Xo=0 x,=0 x,=0

(16)

where in the last line all coordipates other than x,, x,, and x,
are fixed. Note that while such Q;,,(r) and W, can be viewed
as independent, the £9)(r) in Eq. (15) will depend on both; for
each allowed Q,,,,(r) and Wy, we choose some £.)(r) and

treat it as a fixed function of Qg,w(r) and W,,.

Inserting Eq. (15) into the partition sum Eq. (12), we note
thata, (r) and v, (r) appear in a combination a,,(r) — 27w v, (r);
hence we define

a,(r)  2mv,(r)

au(r) = N T, a7
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which satisfies Eq. (12). Furthermore, integrating a, (r) over
[0,2r) and summing v, (r) over 0,1, ... ,N — 1 is equivalent
to integrating d, (r) over [0,27). The partition sum becomes

Z = /277 Da,(r) Z /Zexp (')»Z cos [w]
0

Do) Wi O <PV

27 0)(r)
- ZVVillain |:(V/Lav - valu)(r) - +v; KN2:| s

rpU<v
(18)

where the primed sum over Q,,, signifies the above-
mentioned constraints on these variables.

At this point, the theory has a compact gauge field G, (r) €
[0,27) coupled to a Zy rank-2 field £,,(r). In the absence
of the d,(r) field, such a rank-2 theory undergoes a “rank-
2 confinement/deconfinement” transition at some coupling
strength A, (assuming space-time dimensionality greater or
equal to four). In the (3+1)D case, this transition has Ising-like
critical exponents, which implies that the heat capacity peak
should increase very slowly with the system size [10,11], and
our results in Fig. 4 are in agreement with this. In general di-
mension, adding a gapped rank-1 field d,,(r )—i.e., introducing
only a small “line dynamics” parameter k—will not affect the
rank-2 confinement/deconfinement transition [6,7]; however,
it will destroy the higher-rank generalization of the Wilson
loop diagnostics [6], similarly to what happens when adding
a dynamical matter field to a lattice gauge theory [12]. In the
rank-2 deconfined phase at large A and small «, the @, (r) fields
represent true gapped line excitations—fractionalized Faraday
lines carrying 1/N of the elementary electric field strength.

To bring out the fractionalized Faraday lines explicitly,
we can Poisson-resum the Villain potential as in Eq. (2),
introducing integer-valued plaquette variables F, w(r) for each
plaquette. We can then perform integration over the a,(r)
variables to get:

z=Y'Y /Zexp<x Zcos[%}

Fu(r) Qopn(r) Wi rno<p<v

Eor)? 2 3
> 2M,c1(\2 ‘iﬁn > Fuu(r)ﬂﬁi’J(r)), (19)

r,U<v r,u<v

where the primed sum over F (1) denotes constraints

> ViF,, =0. (20)

We can view this final form as a representation in terms of
gapped excitations of the phase with fractionalized Faraday
lines realized at small « and large X, assuming that the total
space-time dimension is greater than or equal to four so
that this phase exists. The integer-valued Fﬂv(r) variables
satisfying Eq. (20) represent worldsheets (i.e., space-time
“history”) of the fractionalized quantum Faraday lines. On the
other hand, the Zy-valued rank-3 objects O, wv(r) satisfying
Eq. (16) in general dimensionality represent the space-time
history of quantum surfaces, while in (3+1) dimensions they
are equivalent to conserved Zy-valued currents representing
worldlines of quantum particles, see Eq. (4), and in (4+1)
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dimensions they are equivalent to Zy-valued quantum lines.
There is a large penalty for having either of these objects, so
they are gapped in this phase.

The last term in the action encodes statistical interaction
between the fractionalized quantum Faraday lines and the Zy
quantum surfaces. As an example, in (3+1)D where the Zy
objects can be equivalently viewed as representing quantum
particles, when an elementary Zy particle goes around an
elementary fractionalized Faraday line, there is a Berry phase
of 2 /N. The Zy particle can be viewed as a single monopole
in the presence of the N-tupled monopole condensate, and the
statistical interaction with fractionalized Faraday lines can be
readily anticipated from our discussion in the Introduction.

Besides the gapped excitations, we also see the appearance
of topological sectors described by W,,, =0,1,...,N — 1 for
each pair of periodic directions & and . We remark that in
the present approach we did not add any redundant degrees
of freedom and all “counting” is precise, so the sectors are
real. We will now argue that in the regime of small « and
large X, these sectors correspond to a topological ground state
degeneracy in such a phase with fractionalized Faraday lines.

First let us focus on the Zy rank-2 system ignoring the
fractionalized Faraday lines. Note that the A term in the action
does not depend on W,,,. While we can change the value of
W, by changing a single £,,(r) on the defining surface in
Eq. (13), this also changes the nearby va(r). To change
the value of W,, without changing any Q,,(r), we need to
change by the same amount all £,,,(r) at some fixed x,, and x,,,
ie.,weneed[], 2uv Lo suchlocal plaquette variable changes.
Our interpretation of this is that on a d-dimensional spatial
torus of volume L and in the absence of the fractionalized
Faraday lines, the tunneling (mixing) between the above
sectors will be exponentially small in L¢2,

Let us now include the fractionalized Faraday lines. They
see the different sectors only through the global “fluxes” of
£9)(r), i.e., only when the fractionalized Faraday lines sweep
in their motion the entire L, x L, wrapping surface. Hence
when the fractionalized Faraday lines are gapped, the splitting
(diagonal energy difference) between the different W, sectors
will be exponentially small in L, x L,. Considering all
effects together, on the d-dimensional spatial torus we expect
N%@=D/2 nearly degenerate ground states with splittings which
are exponentially small in the square of the linear size of the
system.

We found these results by considering a classical action in
(d + 1) space-time dimensions. The same topological degener-
acy was found in Ref. [13] for a quantum lattice Hamiltonian
in d spatial dimensions which is an extension of the toric
code where, as in our model, the degrees of freedom live
on the plaquettes of a (hyper)cubic lattice. This Hamiltonian
has “star” terms associated with links and “plaquette” terms
associated with three-dimensional cubes, as in our model, and
is labeled “(d,2)” in Ref. [13], Appendix B.2. The Euclidean
path integral for this Hamiltonian in the sector with fixed
star terms gives the same space-time action as our Zy rank-2
system, just like the familiar Kitaev’s toric code in the sector
with fixed star terms associated with sites gives the classical
Ising gauge theory. Since it is the deconfined rank-2 system that
is responsible for the topological degeneracy, the connection
with the Hamiltonian in Ref. [13] confirms our analysis of
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the topological degeneracy, even though the broader setting
here realizing fractionalized Faraday lines in a generalized
CQED model is different from the setting in Ref. [13], which
is considering topological phases of short-range interacting
spins.

IV. DISCUSSION

Topological field theories have been an active area of
research for a long time, and recently progress has been made
by generalizing ideas from topological phases of bosons to
propose topological phases of gauge theories [1,2,14]. In this
paper we present a lattice CQED model realizing condensation
of bound states of multiple monopoles and producing a phase
with emergent intrinsic topological order, analogous to the
way condensing multiple vortices in a boson system can give
a fractionalized Mott insulator. The phase we find contains
gapped excitations which are fractionalized Faraday lines and
additional excitations which are quantum surfaces in spatial
dimensions above four, but can be viewed as quantum lines
or quantum particles in four or three spatial dimensions,
respectively. These excitations have statistical interactions
with the fractionalized Faraday lines encoded by the last
term in the final representation Eq. (19), or equivalently by
the minimal coupling of the 1-form a,(r) to the 2-form
£,,(r) in the representation Eq. (18). Thus, our model is
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also an example of a lattice Gerbe theory [6,7] emerging
as an effective field theory description of the CQED phase
with fractionalized Faraday lines, similar to how lattice gauge
theories can emerge as descriptions of fractionalized phases of
bosons with short-ranged interactions.

Another set of examples of phases of lattice gauge systems
that are higher-rank analogs of symmetry-protected topo-
logical (nonfractionalized) phases of bosons and symmetry-
enriched topological (fractionalized) phases of bosons can
be found in the Appendix of Ref. [15], where we construct
models with CQED xboson symmetries realizing condensates
of bound states of monopoles and bosons. More broadly, we
think that the idea of condensing bound states of topological
defects and symmetry-charged objects [16] can yield precise
models of emergent topological phases in many other lattice
gauge theory systems [1,2,14,17].
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