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The theory of stabilizer quantum error correction allows us to actively stabilize quantum states
and simulate ideal quantum operations in a noisy environment. It is critical is to correctly diag-
nose noise from its syndrome and nullify it accordingly. However, hardware that performs quantum
error correction itself is inevitably imperfect in practice. Here, we show that stabilizer codes pos-
sess a built-in capability of correcting errors not only on quantum information but also on faulty
syndromes extracted by themselves. Shor’s syndrome extraction for fault-tolerant quantum com-
putation is naturally improved. This opens a path to realizing the potential of stabilizer quantum
error correction hidden within an innocent looking choice of generators and stabilizer operators that
have been deemed redundant.

PACS numbers: 03.67.Pp, 03.67.Lx

I. INTRODUCTION

Quantum error correction plays the central role in sta-
bilizing inevitably fragile quantum states and simulating
perfect quantum operations in a noisy environment [1, 2].
A critical problem the theory of quantum error correc-
tion faces is that quantum gates that perform error cor-
rection themselves are faulty in practice. Therefore, we
must build our quantum information processing device
on an architecture that does not fall apart even if all
components, including those responsible for quantum er-
ror correction, are imperfect. Such robust architectures
are fault-tolerant.
Fault tolerance is of particular significance because the

theory of quantum error-correcting codes typically as-
sumes perfect execution of error correction procedures.
For instance, stabilizer codes [3, 4] are the most exten-
sively studied quantum error-correcting codes that form
a very general and important class. Quantum error cor-
rection via stabilizer codes diagnoses noise by extracting
syndromes, which indirectly tell us how quantum infor-
mation may have been degraded. Because the conven-
tional theory of stabilizer codes does not provide pro-
tection of syndromes on its own, it has been considered
that external help is required to achieve robust syndrome
extraction.
The primary purpose of this work is to show that, con-

trary to this conventional wisdom, stabilizer codes have
a built-in capability of correcting faulty syndromes on
their own. In other words, the theory of quantum error-
correcting codes is shown to be able to reduce the burden
on the shoulders of a fault-tolerant architecture. Aspects
of quantum error correction that have been considered
irrelevant or redundant play a key role in realizing the
full potential of stabilizer codes.

∗ yuichiro.fujiwara@caltech.edu

It should be noted, however, that our findings are
not a replacement for fault-tolerant syndrome extraction.
Rather, the innate ability of stabilizer codes we will re-
veal augments the existing framework.
There are primarily three known fault-tolerant meth-

ods for quantum syndrome extraction, which were discov-
ered by Shor [5], Steane [6], and Knill [7, 8] respectively.
The simplest and most general is Shor’s method (see also
[9]). Unlike the other two schemes, it does not require
complicated quantum states, which makes implementa-
tion easier. Moreover, it works for all stabilizer codes.
Fortunately, Shor’s fault-tolerant method is particu-

larly suited for exploiting the innate ability of stabilizer
codes. Roughly speaking, the central idea of Shor’s ro-
bust syndrome extraction is to repeat the same set of
measurements for syndrome extraction in a safe manner,
so that each repetition increases confidence that the ob-
served syndrome is correct while avoiding propagation of
the effects of errors on quantum information and possible
failure of quantum circuits. Our observations naturally
extend Shor’s method and help reduce the required num-
ber of measurements by carefully choosing which mea-
surement should be performed.
The next section provides a brief review of stabilizer

error correction. Section III explains our main idea for
robust syndrome extraction. Its implication in the con-
text of fault tolerance and a main remaining problem
beyond the scope of this work are discussed in Section
IV. Section V concludes this paper with further remarks.

II. STABILIZER CODES

We briefly review the theory of stabilizer quantum er-
ror correction. For a more comprehensive introduction,
we refer the reader to [1, 2].
Take the Pauli group P over n qubits, which consists of

the n-fold tensor products of Pauli operators X , Y , and
Z as well as the trivial operator I with overall factors iλ,
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where λ ∈ {0, 1, 2, 3}. The weight wt(E) of E ∈ P is the
number of nontrivial operators in its n factors. All quan-
tum error-correcting codes we consider are realized as 2k-
dimensional subspaces of the full 2n-dimensional Hilbert
space (C2)⊗n, so that k logical qubits are encoded into n
physical qubits, which we call data qubits. In particular,
an [[n, k, d]] stabilizer code is the unique 2k-dimensional
subspace HS stabilized by an abelian subgroup S of P
with −I⊗n 6∈ S generated by n − k independent oper-
ators such that min{wt(C) | C ∈ CS \ S} = d, where
CS = {E ∈ P | ES = SE for all S ∈ S}. The group S is
the stabilizer of HS . Each S ∈ S is a stabilizer operator.
The minimum weight dp = min{wt(C) | C ∈ CS \ {I}}
is the pure distance. The stabilizer code is degenerate if
d > dp and nondegenerate otherwise.
All standard error correction schemes for stabilizer

codes involve discretization, which collapses an arbitrary
error into some operator E ∈ P [10]. Thus, without loss
of generality, we assume that noise is tensor products
of Pauli operators. In this setting, an [[n, k, d]] stabi-
lizer code can correct any error E ∈ P with wt(E) ≤
⌊(d− 1)/2⌋.
The syndrome bit si(E) of E by the ith stabilizer op-

erator Si is 0 if E and Si commute and 1 otherwise. The
vector (s0(E), . . . , s2n−k−1(E)) is the full syndrome of E.
Note that each syndrome bit is a linear combination of
those given by the generators G ∈ G, where S = 〈G〉.
Thus, n− k independent syndrome bits contain as much
information about E as the full syndrome.
We illustrate how n − k syndrome bits reveal which

error occurred by using the perfect 5-qubit code [11, 12]
as an example. The following four operators generate the
stabilizer of a 2-dimensional subspace of (C2)⊗5:

S0 = XZZXI, S1 = IXZZX,

S2 = XIXZZ, S3 = ZXIXZ,

where the symbol ⊗ for the tensor product is omitted.
Any nontrivial Pauli operator on one qubit is identified
by its syndrome as shown in Table I. Indeed, it can be

TABLE I. Syndromes by the perfect 5-qubit code.

Error (s0, s1, s2, s3) Error (s0, s1, s2, s3)

No error (0, 0, 0, 0) IIY II (1, 1, 1, 0)

XIIII (0, 0, 0, 1) IIIY I (1, 1, 1, 1)

IXIII (1, 0, 0, 0) IIIIY (0, 1, 1, 1)

IIXII (1, 1, 0, 0) ZIIII (1, 0, 1, 0)

IIIXI (0, 1, 1, 0) IZIII (0, 1, 0, 1)

IIIIX (0, 0, 1, 1) IIZII (0, 0, 1, 0)

Y IIII (1, 0, 1, 1) IIIZI (1, 0, 0, 1)

IY III (1, 1, 0, 1) IIIIZ (0, 1, 0, 0)

checked that these stabilizer operators define a [[5, 1, 3]]
code. It is perfect because all 2n−k possible patterns of
syndromes are used up to distinguish single errors and
no error from each other.

III. CORRECTING IMPERFECT SYNDROMES

BY STABILIZER CODES THEMSELVES

The above theory relies on the assumption that all syn-
drome bits are noiseless. However, it is plausible that
errors occur on syndromes, potentially causing 1 to be
flipped to 0 or vice versa. Possible causes include imper-
fect ancilla qubits holding syndromes and faulty measure-
ments of stabilizer operators. Shor’s syndrome extraction
handles this kind of error by repeating the same syn-
drome measurements until enough confidence is gained.
We generalize this strategy.
To illustrate our key insight as plainly as possible, we

focus for the moment on how many data qubits and syn-
drome bits are allowed to be erroneous. This view is rea-
sonable if no error occurs on data qubits during syndrome
extraction. This error model was very recently studied in
[13] as well in the context of robust syndrome extraction
primarily with implementation via trapped ions in mind.

A. Global single error correction

Now, using the same single-error-correcting 5-qubit
code as before, let us assume that one of the five data
qubits or the four syndrome bits is erroneous after syn-
drome extraction. Since the perfect code already uses up
all 24 = 16 different syndromes, at first glance the stabi-
lizer does not seem to possess error correction power for
syndrome bits on its own. In fact, if the syndrome bit s3
is flipped when there is no error on the data qubits, we
end up with the erroneous syndrome (0, 0, 0, 1), which is
the same as the correct syndrome of X acting on the first
qubit. Fortunately, the reality is not as pessimistic.
Take stabilizer operator S4 =

∏3
i=0 Si. The conven-

tional theory of quantum error correction does not use
S4 because it is considered “redundant.” However, as
shown in Table II, joining S4 allows for distinguishing all
possible single errors including those on syndrome bits.
In fact, the same technique works for any single-error-

TABLE II. Syndromes with a redundant stabilizer operator.

Error (s0, s1, s2, s3, s4) Error (s0, s1, s2, s3, s4)

No error (0, 0, 0, 0, 0) ZIIII (1, 0, 1, 0, 0)

XIIII (0, 0, 0, 1, 1) IZIII (0, 1, 0, 1, 0)

IXIII (1, 0, 0, 0, 1) IIZII (0, 0, 1, 0, 1)

IIXII (1, 1, 0, 0, 0) IIIZI (1, 0, 0, 1, 0)

IIIXI (0, 1, 1, 0, 0) IIIIZ (0, 1, 0, 0, 1)

IIIIX (0, 0, 1, 1, 0) s0 flip (1, 0, 0, 0, 0)

Y IIII (1, 0, 1, 1, 1) s1 flip (0, 1, 0, 0, 0)

IY III (1, 1, 0, 1, 1) s2 flip (0, 0, 1, 0, 0)

IIY II (1, 1, 1, 0, 1) s3 flip (0, 0, 0, 1, 0)

IIIY I (1, 1, 1, 1, 0) s4 flip (0, 0, 0, 0, 1)

IIIIY (0, 1, 1, 1, 1)
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correcting stabilizer code.

Theorem 1 For any [[n, k, 3]] stabilizer code, there ex-
ists a set of at most n−k+1 stabilizer operators that dis-
tinguish all single errors and no error among data qubits
and syndrome bits that have distinct effects on the en-
coded quantum information.

Proof. Let G be a set of n− k independent generators
of the stabilizer of an [[n, k, 3]] stabilizer code. Define
G′ =

∏

G∈G G as the product of n − k generators in G.
Let sE , s

′
E be the syndromes of an error E on data qubits

given by G only and by G ∪{G′} respectively. Because G
generates the stabilizer of an [[n, k, 3]] stabilizer code, it is
trivial that for any pair E0, E1 of single errors that have
different effects on the encoded quantum information, we
have s′E0

6= s′E1
. Because G′ is the product of generators

in G, the extra syndrome bit by G′ is 0 if wt(sE) is even
and 1 otherwise. Hence, we have

wt(s′E) =

{

wt(sE) if wt(sE) is even

wt(sE) + 1 otherwise
,

which implies that wt(s′E) 6= 1 when there is an erro-
neous data qubit. Because all single errors on syndrome
bits result in syndromes of weight 1, if the syndrome
bit by the redundant stabilizer operator G′ is extracted
along with the other n − k syndrome bits, single errors
on syndrome bits result in different syndromes from any
correctable error on data qubits. When a single error oc-
curs on the extracted syndrome, the erroneous syndrome
bit is identified as the one whose value is 1. �

More curious, perhaps, is that redundant stabilizer op-
erators are not always necessary. For instance, the Steane
code [14] is typically presented as a [[7, 1, 3]] Calderbank-
Shor-Steane (CSS) code [15, 16] with generators

S0 = XIIXIXX, S1 = IXIXXIX, S2 = IIXIXXX,

S3 = ZIIZIZZ, S4 = IZIZZIZ, S5 = IIZIZZZ.

At first blush, it may appear that this code also needs one
more stabilizer operator to become globally single-error-
correcting. In fact, the correct syndrome of Z acting on
the first qubit is (1, 0, 0, 0, 0, 0), which is indistinguish-
able from a plain bit flip on s0. However, this is due to
the choice of generators. The following independent gen-
erators of the Steane code distinguish all single errors on
data qubits and syndrome bits

S′
0 = S0S3, S′

1 = S1S3, S′
2 = S2S3,

S′
3 = S3

5
∏

i=0

Si, S′
4 = S4

5
∏

i=0

Si, S′
5 = S5

5
∏

i=0

Si.

The alternative six independent generators S′
i can be

written as



















S′
0

S′
1

S′
2

S′
3

S′
4

S′
5



















=



















Y I I Y I Y Y

Z X I Y X Z Y

Z I X Z X Y Y

X Y Y Z I Z X

Y X Y Z Z I X

Y Y X I Z Z X



















.

Table III lists the syndrome of each single error by the
original generators Si of CSS type and the alternative
minimal generating set.

TABLE III. Syndromes by the Steane code.

Error (s0, s1, s2, s3, s4, s5) (s′0, s
′

1, s
′

2, s
′

3, s
′

4, s
′

5)

No error (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0)

XIIIIII (0, 0, 0, 1, 0, 0) (1, 1, 1, 0, 1, 1)

IXIIIII (0, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 1)

IIXIIII (0, 0, 0, 0, 0, 1) (0, 0, 0, 1, 1, 0)

IIIXIII (0, 0, 0, 1, 1, 0) (1, 1, 1, 1, 1, 0)

IIIIXII (0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 1, 1)

IIIIIXI (0, 0, 0, 1, 0, 1) (1, 1, 1, 1, 0, 1)

IIIIIIX (0, 0, 0, 1, 1, 1) (1, 1, 1, 0, 0, 0)

Y IIIIII (1, 0, 0, 1, 0, 0) (0, 1, 1, 1, 0, 0)

IY IIIII (0, 1, 0, 0, 1, 0) (0, 1, 0, 0, 1, 0)

IIY IIII (0, 0, 1, 0, 0, 1) (0, 0, 1, 0, 0, 1)

IIIY III (1, 1, 0, 1, 1, 0) (0, 0, 1, 1, 1, 0)

IIIIY II (0, 1, 1, 0, 1, 1) (0, 1, 1, 0, 1, 1)

IIIIIY I (1, 0, 1, 1, 0, 1) (0, 1, 0, 1, 0, 1)

IIIIIIY (1, 1, 1, 1, 1, 1) (0, 0, 0, 1, 1, 1)

ZIIIIII (1, 0, 0, 0, 0, 0) (1, 0, 0, 1, 1, 1)

IZIIIII (0, 1, 0, 0, 0, 0) (0, 1, 0, 1, 1, 1)

IIZIIII (0, 0, 1, 0, 0, 0) (0, 0, 1, 1, 1, 1)

IIIZIII (1, 1, 0, 0, 0, 0) (1, 1, 0, 0, 0, 0)

IIIIZII (0, 1, 1, 0, 0, 0) (0, 1, 1, 0, 0, 0)

IIIIIZI (1, 0, 1, 0, 0, 0) (1, 0, 1, 0, 0, 0)

IIIIIIZ (1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 1, 1)

s0 flip (1, 0, 0, 0, 0, 0) N/A

s1 flip (0, 1, 0, 0, 0, 0) N/A

s2 flip (0, 0, 1, 0, 0, 0) N/A

s3 flip (0, 0, 0, 1, 0, 0) N/A

s4 flip (0, 0, 0, 0, 1, 0) N/A

s5 flip (0, 0, 0, 0, 0, 1) N/A

s′0 flip N/A (1, 0, 0, 0, 0, 0)

s′1 flip N/A (0, 1, 0, 0, 0, 0)

s′2 flip N/A (0, 0, 1, 0, 0, 0)

s′3 flip N/A (0, 0, 0, 1, 0, 0)

s′4 flip N/A (0, 0, 0, 0, 1, 0)

s′5 flip N/A (0, 0, 0, 0, 0, 1)

Note that if we would like to maintain the CSS prop-
erty that each stabilizer operator is composed of I and X
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only or I and Z only, we need 2 extra stabilizer operators.
For this purpose, the stabilizer operators

∏2
i=0 Si and

∏5
i=3 Si work. Because the classical linear code underly-

ing the Steane code is a perfect code, this is an unavoid-
able penalty for being globally single-error-correcting and
maintaining the CSS property. In general, global single
error correction can be achieved while maintaing the CSS
property by adding a pair of stabilizer operators analo-
gously to Theorem 1 if there is no good choice of inde-
pendent generators.

B. Global double error correction

More attractive may be double-error-correcting codes
because they can offer stronger protection against deco-
herence. The concept of perfect hash families [17] assures
that the cost of extending double error correction is at
most logarithmic, even if double errors include two in-
correct syndrome bits as well as one data qubit and one
syndrome bit being simultaneously erroneous.

Theorem 2 For any [[n, k, 5]] stabilizer code, there ex-
ists a collection of at most n−k+2⌈log2(n−k)⌉+3 stabi-
lizer operators that distinguish all single, double, and no
errors among data qubits and syndromes bits that have
distinct effects on the encoded quantum information.

To verify Theorem 2, we first prove a lemma, which
uses a binary vector to represent an operator on qubits.
For an n-fold tensor product P = O0,⊗ · · · ⊗ On−1 of
operators Oi ∈ {I,X, Y, Z}, the error vector of P is the
2n-dimensional vector v = (v0, . . . , v2n−1) ∈ F2n

2 over the
finite field F2 of order 2 such that for 0 ≤ i ≤ n− 1

vi =

{

0 if Oi = I, Z,

1 otherwise

and

vi+n =

{

0 if Oi = I,X,

1 otherwise.

Ignoring the overall factor iλ, we may speak of the error
vector of any P ∈ P including stabilizer operators of a
stabilizer code. Given a set O of m stabilizer operators
of an [[n, k, d]] stabilizer code, a quantum parity-check
matrix specified by O is an m× 2n binary matrix whose
rows are the error vectors of stabilizer operators in O.

Lemma 3 Let H be an (n−k+ r)× 2n quantum parity-
check matrix of an [[n, k, d]] stabilizer code specified by a
set of n− k independent generators and r redundant sta-
bilizer operators. The corresponding n − k + r stabilizer
operators produce different syndromes for all patterns of
errors on up to

⌊

d−1
2

⌋

data qubits and/or syndromes bits
that have different effects from each other on the encoded
quantum information if any error vector e ∈ F2n

2 corre-
sponding to an error on t qubits with t ≤ d − 1 satisfies
that wt

(

HeT
)

≥ d− t or that HeT = 0.

Proof. We consider a slightly stronger condition that
any pair of errors, one of which is on up to

⌊

d−1
2

⌋

data
qubits and/or syndromes bits and the other of which is
on up to

⌊

d
2

⌋

data qubits and/or syndromes bits, give
different syndromes if they have different effects from
each other on the encoded quantum information. Let
t0, t1 be a pair of positive integers such that t0 ≤

⌊

d
2

⌋

and t1 ≤
⌊

d−1
2

⌋

. Take arbitrary error vectors e0 and
e1 corresponding to errors of weight t0 and t1 respec-
tively. Assume that there may be errors on up to

⌊

d
2

⌋

−t0
and

⌊

d−1
2

⌋

− t1 syndrome bits when extracting the syn-
dromes of e0 and e1 respectively. We let (n − k + r)-

dimensional binary vectors f0 = (f
(0)
0 , . . . , f

(0)
n−1),f1 =

(f
(1)
0 , . . . , f

(1)
n−1) ∈ F

n−k+r
2 represent the errors on syn-

dromes by defining f
(i)
j = 1 if the jth syndrome bit is

flipped when extracting the syndrome of ei and 0 oth-
erwise. By assumption, we have wt(f0) ≤

⌊

d
2

⌋

− t0 and

wt(f1) ≤
⌊

d−1
2

⌋

− t1. The two errors give the same syn-
drome if and only if

HeT0 + fT
0 = HeT1 + fT

1 ,

which holds if and only if

H(e0 + e1)
T = (f0 + f1)

T .

Note that the errors corresponding to e0 and e1 have the
same effect on the encoded quantum information if and
only if the n-fold tensor product of Pauli operators that
correspond to e0 + e1 is a stabilizer operator. Because
t0+t1 < d, this is equivalent to the condition thatH(e0+
e1)

T = 0. Note also that

wt(f0 + f1) ≤

⌊

d

2

⌋

− t0 +

⌊

d− 1

2

⌋

− t1

= d− t0 − t1 − 1.

Thus, by rewriting e0 + e1 and t0 + t1 as e and t respec-
tively, the n−k+ r stabilizer operators produce different
syndromes for all patterns of up to

⌊

d−1
2

⌋

errors among
data qubits and syndromes bits that have different effects
from each other on the encoded quantum information if
any error vector e ∈ F2n

2 corresponding to an error of
weight t ≤ d − 1 satisfies that wt

(

HeT
)

≥ d − t or that

HeT = 0 as desired. �

To prove Theorem 2, we use a special set of functions.
A (w, v)-hash function is a function h : A → B between
finite sets A and B, where |A| = w and |B| = v. The
function h is perfect with respect to a subset X ⊆ A if
h is injective on X , that is, if h|X is one-to-one. Let F
be a set of m (w, v)-hash functions between A and B,
where w ≥ v ≥ t ≥ 2. Then F is a perfect hash family
PHF(m;w, v, t) if for any X ⊆ A with |X | = t, there
exists at least one h ∈ F such that h|X is one-to-one.
We employ a perfect hash family with v = t = 2. In

this case, there is a convenient representation in terms of
binary matrix. A perfect hash family PHF(m;w, 2, 2) is
equivalent to anm×wmatrix over F2 in which any pair of
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columns has at least one row whose entries sum to 1. This
is equivalent to say that any m× 2 submatrix has (0, 1)
or (1, 0) somewhere in their rows. The equivalence can
be seen straightforwardly by indexing rows and columns
of M by functions in F and elements of A respectively,
so that the entry of column i of the row h represents the
value of h(i).

A PHF(m; 2m, 2, 2) can be constructed by taking all
distinct m-dimensional binary columns. Deleting a col-
umn from a perfect hash family gives another one with
fewer columns. Hence, a PHF(m,w, 2, 2) exists for m =
⌈log2 w⌉.

Proof of Theorem 2. Let H be an (n−k)×2n quan-
tum parity-check matrix of an [[n, k, 5]] stabilizer code.
Let m = ⌈log2(n − k)⌉. We define 2m + 3 redundant
stabilizer operators to be joined. Write the ith row of H

as h(i). Let M be an m × (n − k) binary matrix form-
ing a PHF(m;n − k, 2, 2). Write the ith row of M as

r(i) = (r
(i)
0 , . . . , r

(i)
n−k−1). Let N be the m × 2n binary

matrix N whose ith row n(i) is defined by

n(i) =
∑

j∈{l|r
(i)
l

=1}

h(j), (1)

where addition is over F2n
2 . Let A be the 3 × 2n binary

matrix in which each row is the sum of the n − k rows
in H over F2n

2 . Note that the rows of H , N , and A all
correspond to stabilizer operators of the [[n, k, 5]] stabi-
lizer code. Let S be the (n− k + 2m+ 3)× 2n quantum
parity-check matrix defined by n− k + 2m+ 3 stabilizer
operators as follows:

S =











H

A

N

N











.

We show that S gives different syndromes for all pat-
terns of up to two errors among data qubits and syn-
dromes bits that have different effects from each other
on encoded quantum information. By Lemma 3, we only
need to check whether any error vector e ∈ F2n

2 corre-
sponding to an error of weight t ≤ 4 which is not a stabi-
lizer operator satisfies the condition that wt

(

SeT
)

≥ 5−t.

Let W be the set of coordinates i such that ei = 1,
where e = (e0, . . . , e2n−1). Note that because any
[[n, k, 5]] stabilizer code obeys the quantum Singleton
bound n − k ≥ 2(d − 1), the condition that t ≤ 4 im-
plies that |W | = wt(e) ≤ 2t ≤ n − k. We write the
ith columns of S, H , A, and N as s(i), c(i), a(i), and
p(i) respectively. If SeT = 0, it is a harmless error. We
assume that e corresponds to a harmful error that acts
nontrivially on the encoded quantum information. Thus,

we have

wt
(

HeT
)

= wt

(

∑

i∈W

c(i)

)

> 0. (2)

First we consider the case wt
(
∑

i∈W a(i)
)

= 0. Because

wt
(
∑

i∈W a(i)
)

= 0 if and only if wt
(
∑

i∈W c(i)
)

is even,
we have

wt

(

∑

i∈W

c(i)

)

≥ 2,

where the left-hand side is even. If

wt

(

∑

i∈W

c(i)

)

≥ 4,

then wt
(

SeT
)

≥ 4 as desired. Hence, we only need to
consider the situation where there exist exactly two co-
ordinates at which the entries of

∑

i∈W c(i) are 1. Let
a and b be these two coordinates. By the definition
of a perfect hash family, there exists at least one row

r(j) = (r
(j)
0 , . . . , r

(j)
n−k−1) in M such that r

(j)
a + r

(j)
b = 1.

Hence, by Equation (1), NeT contains a row which is
the same as either h(a)eT or h(b)eT , either of which is 1.
Thus, we have

wt

(

∑

i∈W

p(i)

)

≥ 1.

Because we have two copies of N in S, we have

wt
(

SeT
)

= wt

(

∑

i∈W

s(i)

)

= wt

(

∑

i∈W

c(i)

)

+wt

(

∑

i∈W

a(i)

)

+ 2wt

(

∑

i∈W

p(i)

)

≥ 2 + 0 + 2

= 4.

Thus, for any positive integer t, we have wt
(

SeT
)

≥ 5−t.

The remaining case is when wt
(
∑

i∈W a(i)
)

6= 0. Because
each row of A is the sum of the n − k rows of H , this
means that wt

(
∑

i∈W a(i)
)

= 3. By Inequality (2), we
have

wt
(

SeT
)

≥ wt

(

∑

i∈W

c(i)

)

+wt

(

∑

i∈W

a(i)

)

≥ 1 + 3

= 4.

The proof is complete. �
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C. Asymmetric global error correction

In the previous two sections, we showed how to make
stabilizers globally single- and double-error-correcting
without changing the Hilbert spaces they stabilize. In
principle, we could consider global t-error correction for
data qubits and syndrome bits for t ≥ 3 as well. However,
such an approach would be suboptimal if the error prob-
ability of data qubits is different from that of syndrome
bits, which is very likely the case in practice. Hence,
in a situation where more powerful error correction than
single or double error correction is required, it is more
reasonable to treat error correction for data qubits and
syndrome bits separately. In this section, we study a
set of stabilizer operators of an [[n, k, d]] stabilizer code
that is ⌊(d − 1)/2⌋-error-correcting for data qubits and
⌊(t− 1)/2⌋-error-correcting for syndrome bits for given t.
To study such asymmetric global error correction, we

introduce a useful view of what a whole stabilizer looks
like. Take a set Q of n qubits. The l-local action of
P ∈ P on a subset L ⊆ Q with |L| = l is the l-fold
tensor product obtained by discarding the overall fac-
tor iλ and operators acting on the n− l qubits not in L.
Delsarte’s equivalence theorem [18] in algebraic combina-
torics shows that stabilizer codes are everywhere locally
completely stochastic.

Theorem 4 Let S be the stabilizer of a stabilizer code of
pure distance dp and L a set of l data qubits with l < dp.
Take uniformly at random a stabilizer operator S ∈ S and
let AL be its l-local action on L. For any l-fold tensor
product T of operators Oi ∈ {I,X, Y, Z}, the probability
that AL = T is 4−l.

To prove the above theorem, we first give a proposition.
We write the finite field of order qr with q prime power
as Fqr . An inner product over the elementary abelian
group Zn

v of order vn is a symmetric biadditive form B
such that B(a, b) = B(a, c) holds for any a ∈ Zn

v if and
only if b = c. An Fq-additive code C of length n, dimen-
sion k, and minimum distance d over Fqr is an additive
subgroup of Fn

qr of order |C| such that logq(|C|) = k and
min{wt(c) | c ∈ C\{0}} = d. Each element of C is a code-
word. The dual of C with respect to inner product B is
the additive code C⊥ = {c′ | B(c, c′) = 0 for any c ∈ C}.
The dual distance d⊥ of C is the minimum distance of
C⊥. An orthogonal array OA(u, n, v, s) is an u × n ma-
trix over a finite set Γ of cardinarity v such that in any
u×s submatrix every s-dimensional vector in Γs appears
exactly u

vs times as a row. The following is a straight-
forward corollary of Delsarte’s equivalence theorem [18,
Theorem 4.5] in algebraic combinatorics.

Proposition 5 Let C be an Fq-additive code over Fqr of
length n, dimension k, and dual distance d⊥ with respect
to some inner product B. A qk × n matrix formed by all
codewords of C as rows is an OA(qk, n, qr, d⊥ − 1).

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Let S be the stabilizer of an
[[n, k]] stabilizer code whose pure distance is dp. For
each stabilizer operator S = iλO0 ⊗ · · · ⊗ On−1 ∈ S,
define its corresponding n-dimensional vector c(S) =

(c
(S)
0 , . . . , c

(S)
n−1) ∈ F

n
4 over the finite field F4 =

{0, 1, ω, ω2 = ω + 1} of order 4 such that

c
(S)
i =



















0 if Oi = I,

1 if Oi = Y,

ω if Oi = X,

ω2 if Oi = Z.

The set C = {c(S) | S ∈ S} is an F2-additive
code of length n, dimension n − k, and dual dis-
tance dp over F4 (see [4]). Thus, by Proposition 5,
a 2n−k × n matrix M formed by all codewords of C
as rows is an OA(2n−k, n, 4, dp − 1). By definition an
OA(2n−k, n, 4, dp − 1) is an OA(2n−k, n, 4, l) for any l ≤
dp−1 as well. Thus, in any 2n−k×l submatrix ofM , every
l-dimensional vector in Fl

4 appears exactly 2n−k−2l times
as a row. Hence, given an l-dimensional vector v ∈ Fl

4

and 2n−k × l submatrix of M , the probability that a uni-
formly randomly chosen row is v is 2n−k−2l−(n−k) = 4−l.
�

We consider how many stabilizer operators are suffi-
cient to correct ⌊(t − 1)/2⌋ erroneous syndrome bits for
a given positive integer t. Because the use of redundant
stabilizer operators changes the number of syndrome bits
we needs to take care of, it is natural to aim for correct-
ing all errors of weight up to a fixed fraction of the total
number m of extracted syndrome bits rather than an ab-
solute constant. Hence, we let t = ⌈δm⌉ for some positive
constant δ < 1/2.
A fundamental lower bound on the achievable rate k/n

for an [[n, k, d]] stabilizer code is the quantum Gilbert-
Varshamov bound [19]. It states that for any positive
integers n, k, and d such that

d−1
∑

i=1

3i
(

n

i

)

≤ 2n−k,

there exists an [[n, k, d]] stabilizer code. In fact, it can be
shown that the stabilizer code can be nondegenerate so
that d = dp. We consider how many stabilizer operators
are necessary for a nondegenerate stabilizer code meeting
this bound to overcome a reasonable number of syndrome
bit errors.
In what follows, H2(x) = −x log2 x−(1−x) log2(1−x)

is the binary entropy function. We use probabilistic com-
binatorics [20] to exploit the local randomness of stabi-
lizer codes.

Theorem 6 Let S be the stabilizer of an [[n, k, d]] stabi-
lizer code of pure distance dp = d that obeys the quantum
Gilbert-Varshamov bound. Take a constant δ such that
0 < δ < 1/2 and define

m =

⌈

n− k

1−H2(δ)

⌉

.
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There exists a collection C of at most m stabilizer opera-
tors chosen from S that corrects an arbitrary error on up
to ⌊(dp−1)/2⌋ data qubits and up to ⌊(t−1)/2⌋ syndrome
bits, where t = ⌈δm⌉.

Proof. If C never gives the all-zero syndrome when up
to dp − 1 data qubits and up to t− 1 syndrome bits are
erroneous except when there is no error, then C corrects
an arbitrary error on up to ⌊(dp − 1)/2⌋ data qubits and
up to ⌊(t − 1)/2⌋ erroneous syndrome bits. Indeed, the
condition assures that all patterns of up to ⌊(dp − 1)/2⌋
erroneous data qubits and up to ⌊(t − 1)/2⌋ incorrect
syndrome bits result in distinct syndromes.
Pick uniformly at random m stabilizer operators in S

allowing repetition. Take a nontrivial error E ∈ P of
weight l such that 1 ≤ l ≤ dp − 1. By Theorem 4, the
probability that the m syndrome bits can be all 0 for E
when up to t− 1 syndrome bits are flipped is

pE = 2−m

t−1
∑

i=0

(

m

i

)

.

Let V be the random variable counting the number of
nontrivial errors of weight less than dp that result in the
all-zero syndrome due to up to t − 1 syndrome bit flips.
Its expected value is

E[V ] = 2−m

t−1
∑

i=0

(

m

i

) dp−1
∑

j=1

3j
(

n

j

)

.

Note that because our nondegenerate stabilizer code
obeys the quantum Gilbert-Varshamov bound, we have

dp−1
∑

j=0

3j
(

n

j

)

≤ 2n−k.

Hence, by applying the following bound on the partial
sum of binomial coefficients

⌊δm⌋
∑

i=0

(

m

i

)

≤ 2mH2(δ)

(see, for example, [21]), we have

E[V ] < 2m(H2(δ)−1)+n−k.

If E[V ] < 1, there exists a collection of m stabilizer op-
erators in which no combination of a nontrivial error of
weight less than or equal to dp − 1 and up to t − 1 syn-
drome bit flips results in the all-zero syndrome. E[V ] < 1
holds if

m ≥
n− k

1−H2(δ)
.

Noting that m must be an integer, the above inequality
shows that

m =

⌈

n− k

1−H2(δ)

⌉

is sufficient as desired. �

D. Hybrid Hamming bound

In this subsection, we turn our attention to how many
redundant stabilizer operators are necessary instead of
how many are sufficient. The Hamming bound [21] de-
scribes a fundamental limit on the parameters of a classi-
cal error-correcting code. There is a quantum analogue,
called the quantum Hamming bound [3, 19]. By count-
ing the combinations of quantum errors and classical bit
flips, we obtain a hybrid Hamming bound for a scheme
that protects a physical system holding both quantum
and classical information.

Theorem 7 Take nq qubits and nc bits. If s-bit classical
information distinguishes all combinations of discretized
errors on up to tq qubits and up to tc bits, then

tq
∑

i=0

tc
∑

j=0

3i
(

nq

i

)(

nc

j

)

≤ 2s.

This reduces to the classical Hamming bound for codes
decodable by syndromes, such as linear codes, by setting
nq = 0 and the quantum Hamming bound by setting
nc = 0. Assuming an [[n, k, d]] stabilizer code with r
redundant stabilizer operators, plugging nq = n, nc =
s = n− k + r gives

tq
∑

i=0

tc
∑

j=0

3i
(

n

i

)(

n− k + r

j

)

≤ 2n−k+r.

For symmetric global t-error correction that uses one
same distance parameter for both quantum errors and
classical bit flips as in Sections III A and III B, we have

t−j
∑

i=0

t
∑

j=0

3i
(

n

i

)(

n− k + r

j

)

≤ 2n−k+r.

It should be noted that, as in the standard quan-
tum Hamming bound, the hybrid bounds only apply to
schemes that do not exploit degeneracy. As we have seen
in the proofs of Theorems 1 and 2, stabilizer codes can
take advantage of degeneracy when correcting combina-
tions of erroneous data qubits and flipped syndrome bits.
While no stabilizer codes are known to violate the quan-
tum Hamming bound, more efficient stabilizer codes are
not entirely ruled out.

IV. RELATION TO FAULT-TOLERANT

SYNDROME EXTRACTION

In this section we relate stabilizer codes’ ability to cor-
rect imperfect syndromes to Shor’s syndrome extraction
for fault-tolerant quantum computation. A concise in-
troduction to fault-tolerant quantum computation can
be found in [22].
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Assuming each quantum gate is implemented with
standard fault-tolerant techniques, Shor’s method ex-
tract the information about the eigenvalue of an error
for each stabilizer operator in succession. Abstractly, this
means that syndrome bits are obtained one-by-one in a
sequence. During this process, any physical qubit includ-
ing one for storing a syndrome bit can spontaneously de-
cohere. Each quantum gate involved in extracting a syn-
drome bit may also introduce errors on qubits it interacts
with.
In general, we would like to know what error there was

when syndrome extraction started and what error has
been introduced since then. More precisely, our task is
to infer a most likely fault path that is consistent with
the extracted syndrome under a given error model (see,
for example, [23]).
Such inference needs redundancy in the extracted syn-

drome. Shor’s method creates redundancy by repetition.
The straightforward implementation is to repeat extrac-
tion until the same syndromes are observed several times
in a row so that the probability of the observed syn-
dromes being incorrect is sufficiently low [5].
The point we make is that if well-chosen stabilizer op-

erators are used in repetition, the extracted syndrome
in each repetition cycle need not be the same. With the
ability to detect incorrect syndrome bits, we only need to
consecutively observe coherent results that point to the
same error on qubits until enough confidence is gained.
Moreover, if stabilizer operators are chosen so that

most low-weight fault paths give distinct syndromes,
maximum likelihood decoding [24] or its approximation
can be reliable enough to infer a most likely fault path
from a single extracted syndrome. For instance, as was
assumed in the previous sections, if syndrome extrac-
tion does not frequently introduce errors on data qubits,
it is reasonable to assume that the extracted syndrome
bits are mostly correct because the hypothetical “cor-
rect” syndrome does not change during the extraction
process. As we have seen, a good choice of generators
or a few redundant stabilizer operators can be enough
to make the syndromes of likely errors all distinct under
this error model.
It should be noted, however, that depending on the

error model, tolerance against a decent number of er-
roneous syndrome bits may not be sufficient to achieve
the highest possible reliability. For instance, if syndrome
extraction itself likely causes quantum errors that dras-
tically change what the correct syndrome should be, a
low-weight fault path can correspond to a large number
of flips in the extracted syndrome.
To see how a newly introduced error on a single data

qubit can cause a catastrophic effect, take the four inde-
pendent generators

S0 = XZZXI, S1 = IXZZX,

S2 = XIXZZ, S3 = ZXIXZ,

of the perfect 5-qubit code we used in Section II. Assume
that syndrome bits are extracted in order from s0 to s3

according to their subscripts. It is a benign fault if the
measurement of S0 introduces, say, Z on the fifth data
qubit because the subsequent measurements will pick up
on it and correct the error as long as there was no er-
ror at the start of syndrome extraction and the proce-
dure finishes otherwise perfectly. However, if the final
measurement involving S3 introduces Z on the first data
qubit, even if everything else is completed perfectly as in-
tended, the two syndrome bits s0 and s2 are now “wrong”
because the commutativity of S0 and S2 with the current
error on data qubits is flipped due to X on the first data
qubit. Even if we use the redundant stabilizer opera-
tor S4 =

∏3
i=0 Si as in Section IIIA, this error will slip

through this round of syndrome extraction and should
be identified during subsequent rounds.
Another example is failure of a controlled NOT

(CNOT) gate between a data qubit and ancilla qubit
that results in a double error, such as the back action of
the CNOT gate. This type of error can flip a syndrome
bit while introducing a single error on data qubits. Even
if the rest of the quantum circuit operates perfectly, the
extracted syndrome of weight 1 generally points to an
error that is different from what is happening on data
qubits.
It is notable that, with the help of S4, the global 1-

error-correcting property may be able to detect the dou-
ble error we just described. For instance, if the error
model is such that this type of error is fairly frequent
compared to other kinds, a reasonable inference algo-
rithm would report this fault path of weight 1 as a likely
suspect, perhaps along with a single syndrome bit flip as
another likely possibility. If the next round of syndrome
extraction finishes without an error, it will point to the
former possibility rather than a hiccup on one syndrome
bit during the first round, giving the decoder a stronger
clue about the error than if S4 is not used.
As the above discussion shows, while it is generally

beneficial to be able to correct erroneous syndrome bits
or give more clues about the nature of noise, it requires
a sophisticated analysis to truly optimize the choice of
stabilizer operators to a realistic error model for fault
tolerance.

V. CONCLUDING REMARKS

We have examined stabilizer quantum error correction
and revealed its built-in tolerance against imperfect syn-
dromes. A challenging problem arose regarding optimiz-
ing the choice of stabilizer operators for a realistic error
model. Nevertheless, we were able to generalize Shor’s
syndrome extraction and opened a path to unlocking the
hidden potential of stabilizer codes. Indeed, we demon-
strated that extra reliability may come at little or no cost
by carefully choosing generators in the sense that a sta-
bilizer code can acquire error correction power for imper-
fect syndromes without increasing the number of physical
qubits, reducing the amount of encoded quantum infor-
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mation, or requiring many additional measurements.

An interesting question is when and how an [[n, k, d]]
stabilizer code can identify all likely fault paths through
just n − k independent generators. From our observa-
tions, it appears that for given n and k, a stabilizer
code with poorer distance parameter d tends to possess
a greater potential in correcting syndrome bits because
such a code leaves plenty of room in the available syn-
drome patterns for syndrome error correction.

Another important direction of research is how to op-
timize the choice of stabilizer operators in the context
of fault-tolerant quantum computation. In fault-tolerant
syndrome extraction, the performance is affected also by
many factors other than the maximum weight of errors
a code can tolerate. Ultimately, we would like to choose
stabilizer operators in such a way that the chosen set un-
likely introduces difficult errors, is the easiest to imple-
ment, and leads to the best possible raw error correction
power from the coding theoretic viewpoint. While this is
a very challenging problem, it is a very important one to

be settled.
In particular, one of the remaining problems that de-

serve greater attention is that the chosen generators
and/or few extra stabilizer operators that are coding the-
oretically promising may not always be of low weight.
In many cases, it is important to use low-weight stabi-
lizer operators for practical reasons. Moreover, if the low
weight propaty can not be guaranteed, it is plausible that
Knill’s and Steane’s syndrome extraction can work bet-
ter than the idea of redundant syndromes in practice as
long as the implemented quantum error-correcting code
is compatible with them. Therefore, it is of importance
to consider additional constraints that arise in practical
situations.
We have made progress in robust syndrome extrac-

tion through a coding theoretic approach. Nonetheless,
this is just an initial step towards more general and re-
alistic solutions. As the feasibility of universal quantum
computation rests on the shoulders of inevitably imper-
fect quantum error correction, it is hoped that further
progress will be made in this field.
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