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A State Space Approach to the Design of Globally
Optimal FIR Energy Compaction Filters
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Abstract—We introduce a new approach for the least squared #(n) - eiw) * M y(n)
optimization of a weighted FIR filter of arbitrary order N under
the constraint that its magnitude squared response be Nyquisi/).
Although the new formulation is general enough to cover a wide
variety of applications, the focus of the paper is on optimal en-
ergy compaction filters. The optimization of such filters has re-

ceived considerable attention in the past due to the fact that they WhereH(ejw) is a real coefficient FIR filter of ordelN. The

are the main building blocks in the design of principal compo- . .
nent filter banks (PCFBs). The newly proposed method finds the constraint (2) means that the magnitude squared response

optimum product filter Fop:(2) = Hop,(z)Hop,(z_—l) corre- |H(c'*)|? is Nyquist() [1, pp. 151-152]].
sponding to the compaction filter H.,,..(z) . By expressingF'(z) in The problem described above has received considerable at-

the form D(z) + D(2~'), we show that the compaction problem A . . -
can be completely parameterized in terms of the state-space real- tention in the past because of its wide occurrence in different

ization of the causal functionD(z). For a given input power spec- disciplines depending on the choice of the frequency weight
trum, the resulting filter F.,..(z) is guaranteed to be aglobalop- function W (e’). As an example, consider the problem of de-

timum solution due to the convexity of the new formulation. The signing optimum FIR transmitter and receiver filters for data

new algorithm is universal in the sense that it works for anyM, o L .
arbitrary filter length IV, and any given input power spectrum. transmission over bandlimited channels [2]-[4]. Such filters

Furthermore, additional linear constraints such as wavelets reg- are used in data modems realized predominantly in digital
ularity constraints can be incorporated into the design problem. technology. The filters are designed so that maximum energy
Finally, obtaining Hop,(2) from Fo,(z) does not require an ad-  concentration is achieved in the transmission bandwidth of
ditional spectral factorization step. The minimum-phase spectral the channel, and zero intersymbol interference (ISI) is ob-

factor H,in (2) can be obtained automatically by relating the state ) ) - - -
space realization ofD,,(z) to that of H,,.(z). tained when the filters operate in cascade. With a receiver

. . ” filter H,.(e’*) matched to the transmitter filtel;(¢?“’) and
Index Terms—Discrete-time positive real lemma, energy com- . o ) .
paction filters, Kalman—Yakubovich-Popov (KYP) lemma, linear DY choosingW(e/*) = rect(w/we), wherew, is the cutoff
matrix inequality (LMI), optimum orthonormal subband coder  frequency of the lowpass channel, the problem can be indeed
(SBC), principal components filter bank (PCFB), semi-definite expressed in the form described by (1) and (2) (see [4] for de-
programming (SDP). tails). Other applications are in echo cancellation [5], the stan-
dard problem of designing FIR orthonormal filterbanks with
I. INTRODUCTION good frequency selectivity [6], quantization of a class of non-

C ONSIDER the following optimization problem bandlimited signals [7], optimization of wavelet basis [8], [9]

Fig. 1. Schematic of the FIR energy compaction problem.

and identification of time-varying systems [10], to name a few.

a o2 oy dw Although the new method proposed in this paper is general
o) /_7T [H (™) "W (e7) o () enough to cover any of the previously mentioned applications,
it is the design of FIR energy compaction filters that provides
subject to the main motivation of this work.
1 M-1 ) 2 )
o7 > ‘H (e“‘“*%’“/M)))‘ = |H(E@)? =1 (2) A. The FIR Energy Compaction Problem
k=0

Consider the scheme of Fig. 1, whefz) is a real coeffi-
cient FIR filter of orderN. The inputz(n) is assumed to be a
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Z(n) = 2(n) + e(n) z(n) Z(n) = T(n) + v(n)

Fig. 2. M-channel FIR orthonormal filter bank with scalar quantizers. e ) .
Fig. 3. M-channel FIR principal component filter bank. Here only the first

o . _ two channels are retained in the synthesis part.
A quantitative measure of performance (the compaction gain) is

defined as follows: i ) i
dure to obtain an optimum orthonormal SBC [12]. For the fi-

/7T |H(c)[2S (ejw)d_w nite-order case, several design techniques have been proposed,
a (M, N) = 0’_3 _J_= 2w 3) but global optimality of the resulting filters is not guaranteed.
COmPATE T 2 T One impetus for this is that the geometric mean is a concave

o dw

/_7T S”‘(Cjw)g function, making the above problem a difficult one to solve

both theoretically and numerically. An alternative solution to
whereo? is the variance ofi(n). A compaction filter there- the direct minimization of the geometric mean is the design
fore maximizes the compaction gain. Note that by the Nyquist a so-called principal component filter bank (PCFB). PCFBs
constraint,G.o.mp(M, N) < M. Note also that if the filter were first introduced in the context of optimal signal represen-
order is unconstrained, i.e., ideal filter solutions are permittegtion and are defined as follows [8], [15]: Consider Fig. 3,
an optimum filter has the following form [8], [11]-[13]: For all where(M — P) channels are dropped in the synthesis part of

w € [0, 2w /M] an M-channel filter bank. A filterbank that minimizes the av-
] erage mean square reconstruction errordibrP is called a

H (ej(w+2n7r/1\4)) - {1’ if we (4) PCFB. For the ideal filter case, the solution to this problem
0, otherwise was first derived by Unser [11] fabZ = 2 and then by Tsat-
whereQ = {w € [0, 2n/M]: W(eiorznm/ My > sanis and Giannakis [8] for the genefdlchannel case. While

Unser’s formulation imposea priori the orthonormality con-
straint on the filterbank, the work in [8] does not. Neverthe-
less, it turns out that the optimum PCFB is indeed orthonormal
and therefore satisfies the so-caltadjorization property : An
(orthonormal) PCFB produces a decreasing arrangement of the
FIR energy compaction filters, as defined above, play a keyibband variancersil > g2 ... > g2 such that, for all

T2 rp

role in the statistical optimization of orthonormal filter bankg « p ~ as Ef 02 ismaximized. In particular, foP = 1
1 1 Tk . ’ 1

when subband quantizers are present. To see this, considerolgTemust be maximized, that is, the objective function in (1)
M-channel FIR orthonormal filter bank shown in Fig. 2, wherg,ith W(e?*) = Sype(c?*) must be maximized. Since we specif-
the boxes labeled represent scalar uniform quantizers. Sincgally consider the class of orthonormal filterbanks in this paper,
the filter bank is orthonormal, the filters satisfy the followingne Nyquist constraint (2) is further imposed on the maximizing
condition: Hi(¢’*) Hi(c™)[ |y = &(i — j) [1], implying, fiter. Note that forP = M, "M o2 = Mo? and is there-

in particular, that|Hy (e’<)|* is Nyquist(\/) for each filterk  fore fixed. The set of subband_varigncési } generated by
(the superscript denotes complex conjugation). Given a fixedy pCFR is said to “majorize” any other possible set of subband
budget ofb bits for the subband quantizers, the design of an 0parianceg 2 }. The connection between PCFB's and optimum
timum orthonormal subband coder (SBC) consists of simultgrthonormal subband coders is established using a “majoriza-
neously optimizing the analysis and synthesis filters as well §§n" theorem [16]. The result states that the majorization prop-
choosing a subband bit allocation strategy such that the avergeg of the subband variances of a PCFB implies, in particular,
variance of the output err@(n) is minimized. Under théigh that(Hﬁisl o2 )*/M is minimized. Note that the converse is, in
bit rate quantizer assumptions [14], and with the optimum bjeneral, not true. Therefore, instead of directly maximizing (5),
allocation, the objective function is the well-known coding gaiye can, in principle, obtain an optimum orthonormal SBC by

W (edwt2me/MN\Y forall m # n. For more details, see any
ofthe above references.

B. Background and Motivation

expression designing a PCFB. Unfortunately, the existence of a PCFB over
v 1M the class of finite-order orthonormal filter banks is not, in gen-
_ 2 2 eral, guaranteed [17]. Nevertheless, if a PCFB exists, designing
Gspo(M) = o, / <k1_[1 U“”’V) ©®) an optimal FIR energy compaction filter imacessaryirst step

in finding such a filterbank [18]. Finally, in a recent develop-
whereaik is the variance of théth subband signal. Sine€ is ment, itis shown that a PCFB is optimal whenever the objective
fixed, the optimization of the analysis filters consists of minfunction to be minimized is a concave function of the subband
imizing the geometric mean of the subband variances und@riances produced by the orthonormal filter bank [19]. It fol-
the orthonormality condition. For the unconstrained filter ordéows that orthonormal PCFB’s are also optimal for a variety of
case, Vaidyanathan derives a set of necessary and sufficient ather signal processing applications, such as, for example, noise
ditions for optimality of the filterbank and presents a proceeduction.
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Although we have introduced the notion of a PCFB througéented in Section V. In Section VI, we prove the convexity of
its relation to the orthonormal subband coder problem, the toiee new formulation and, in Section VII, we show how regu-
itself is an active and equally important area of research. PCFBasity constraints can be formulated as linear matrix inequalities
usually play a fundamental role in multirate signal modelingnd equality constraints in terms of the state space realization of
[7], optimal signal representation [13], multitone digital comD(z). Finally, in Section VIII, numerical examples are provided
munications and CDMA [4], and sampling applications [20}o illustrate the performance of the proposed algorithm. Part of
We also note the work of Strintzis [21], who extends the abovkis work has been presented in [24] and [25].
ideas to the class of multidimensional biorthogonal filterbanks
and shows a close connection between the energy compaction [I. SUMMARY OF PREVIOUS WORK

problem and the problem of finding optimal analysis filters, The general FIR optimization problem described in (1) and

given an arbitrary set of synthesis filters. We emphasjze, ho& has been considered by a number of authors. The different
ever, that the energy compaction problem statement differs fr sign approaches can be broadly classified into four main cat-
the one proposed in this paper when the class of biorthogogabrieS

filter banks is considered. 1) Optimizing the FIR Lattice Structurelt is well known

that the class of two-channel FIR orthonormal filter bardam-
pletely parameterized by a lattice structure [1, pp. 302-314].
The main contribution of this paper is the development of abne can therefore optimize the lattice coefficient, which is a
efficient and numerically robust algorithm that finds tjlebal get of & anglesf,, 1 < k < N, to obtain the compaction
optimum solution for the FIR energy compaction problenfijter's impulse respons&(n). Since the Nyquist condition (2)
The proposed method is universal in the sense that it woriksautomatically enforced by the lattice structure, the problem
for any M, arbitrary filter length/V, and the whole class of js unconstrained, and unlike other approaches described below,
WSS random processes. The new method is expressed & &pectral factorization is required. The main drawback with
multiobjective semidefinite program that is convex and can Bgis formulation is that it is highly nonlinear and cannot be ex-
solved efficiently and with great accuracy using recently deressed as a convex program. The quasi-Newton method used
veloped interior point methods [22]. The semidefinite prograiR [26] and the ring algorithm proposed in [27] both converge
finds the optimum product filteF,,;(2) = Hopt(2)Hopr(2 ') to alocal maximum that depends on the starting point of the al-
corresponding to the compaction filtéf,,.(») and, in gen- gorithm. Taubman and Zakhor [28] propose to use a multistart
eral, requires an additional spectral factorization step to obtaiorithm that generates several local optima over a subset of
H,,(#). Spectral factorization is a procedure that is computge parameter space.
tionally expensive and numerically unstable. Nevertheless, WeZ) Quadratica”y Constrained Quadratic Programming
will show that if the minimum-phase spectral factor is desire@ljethod: The problem in this case is formulated in terms of the

the spectral factorization step can be avoided. Finally, we bgpulse responsk(n) of the filter H(z) as follows:
lieve that this paper has some tutorial value in the sense that

it brings to the attention of signal processing researchers im- maximize h" Ry.h (6)

portant and newly developed convex optimization techniques, . . . S

[22], particularly semidefinite programmingrhese optimiza- Subject to the Nyquist{f) constraint, which is now expressed

tion tools have been extensively used by the control comm>

nity due to the n.atural occurrence'of linear matrix inequalities KT P = §(1) forl=0,1, -, |[N/M] @)

(LMI's) (to be discussed shortly) in systems theory [23] but

seem to have not been fully exploited in the field of signathereR,... is a Toeplitz Hermitian matrix with first row equal to

processing. [r(0)r(1) --- r(N)], andr(n) is the autocorrelation sequence
The paper is organized as follows. In Section Il, the difficultgf «(n), 2T = [(0) h(1) --- h(N)] are the filter coefficients,

in solving the general problem described by (1) and (2) is owtnd P, are matrices withP,(¢, j) = 1 for¢é — j = M and

lined by a brief overview of previous work. In Section Ill, byzero otherwise. Note that, = I, wherel is the N x N

expressing the product filtdr () asD(z) + D(= 1), we show identity matrix. Since the matrice, I # 0 are singular, the

that the FIR compaction problem is completely characterizethove quadratically constrained quadratic optimization problem

by the state space realization of tteeusalfunction D(z). The is nonconvex and is very hard to solve both theoretically and nu-

main advantage of this approach is that it fully exploits the ratioaerically due to the existence of local minima. Several authors

nality of the function to be optimized. The problem constraintsave used the classical method of Lagrange multipliers, which

can be now satisfied using a finite number of parameters, pérads to an iterative augmented Lagrangian algorithm (see, for

mitting the exact solution to be found. In Section IV, we studgxample, [29] and [30] for/ = 2 and [2] for arbitraryM).

in detail the minimum-phase spectral factor and its properties.3) Optimizing the Product Filter:Instead of directly opti-

In particular, several theorems characterizing this special speuzing the coefficientsi(n), the idea is to find the optimum

tral factor are derived. The results of this section are importagmioduct filter £7,,,(2) = opt(z)Hopt(zfl), and then obtain

in order to avoid an additional spectral factorization step aftéf,,,(z) from F,,.(z) by spectral factorization. This approach

obtainingF,,,:(z). Simplifications of some of the results of Secwas first introduced by Vaidyanathahal. [6] as part of the de-

tions Il and IV for the particular FIR case under study are preaign of anA/-channel FIR orthonormal filter bank. To obtain a

C. Contribution and Organization of the Paper
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QUALITATIVE COMPARISON BETWL?EEITI'EI—HIDIFFERENT FIR DESIGN METHODS

authors Approach M objective problem solution Nyquist Positivity spectral
function type constraint constraint fact.

[29], [30] QCQP 2 compaction | non linear | local optimum | Yes No No
filter non convex

[2] QCQP arbitrary | ideal low | non  linear | local optimum | Yes No No

v pass filter non convex

[26]-[28] FIR Lattice 2 compaction | non linear | local optimum | No No No
filter non convex

[6] eigen filter @ arbitrary | ideal low | iterative ® suboptimum Yes No Yes
pass filter

[33] window method ¢ | arbitrary | compaction | iterative ? suboptimum Yes Yes Yes
filter

[31],{32],[45] product filter 2 compaction | linear convex | global optimum © | Yes Yes Yes
filter

9] analytical 2 ideal low | Non iterative | global optimum | Yes No Yes
pass filter

(33] analytical 2 compaction | non iterative | global optimum ¢ | Yes No Yes
filter

New method state space arbitrary | compaction non linear | global optimum | Yes Yes No
filter convex

“The eigen filter and window methods are special cases of the product filter approach where the product filter is assumed to be a cascade of two filters
®Since the product filter is assumed to be a cascade of two filters, the optimization procedure alternate between the two in an iterative manner
°QOver only the defined discrete set of frequencies

4Only for a certain class of random processes

low pass subband filter with a sharp frequency response, the au-
thors used the eigen filter method [6] which is not guaranteed 0 om (1) and (2), we can immediately observe that the op-

converge to the global optimum. Moulet al. [31] considered
the design of FIR energy compaction filters and observed tr@énotingthe product filter H
the problem reduces to a linear semi-infinite (SIP) program. Th& iances

authors solve a “discretized” version of the SIP using standard

Il. STATE-SPACE APPROACH

timum solution, if it exists, is onl

y a function ¢f (¢/<)|2. By
(2)H(271) asF(z), the output
5 in (1) can be rewritten as

linear programming methods. Other discretization methods can N
be found in [32], [33]. The main drawback with any discretiza- op =r(0)+2> f(n)r(n) (8)
tion approach is that global optimality is not guaranteed. We n=1
emphasize again that in the product filter approach, a spectali the constraint (2) becomes
factorization step is required to obtalf},,;(z).
4) Analytical Methods: The goal in this case is to derive an f(Mn) =6(n) 9)

analytical procedure to obtaifi,.(z). The elegance of this ap-
proach lies in the fact that no iterative numerical optimization
is involved. ForM = 2 andW (e/*) = rect(w/w.) (ideal low-
pass filter with cutoff frequency.), Aaset al.[9] were able to  where (i) denotes theth autocorrelation coefficient of the
identify the unit-circle zeros af,,,;(z). Once these are known,input z:(n). The problem is now linear in the real optimization

~
F(*) =142 f(n)cos(wn) >0 Yw  (10)
n=1

the other zeros can be found using Gaussian quadrature thegsyiables f(n), » > 1 at the expense of an additional con-
Kirac and Vaidyanathan [33] extend the results of [9]6r= 2 straint, namely, (10), which we will refer to as the positivity con-
andW(e?*) = S,.(e’*), whereS,,(¢’*) is the power spec- straint. The positivity constraint has to be satisfied at each fre-
trum of z(n). Unfortunately, the method works only for a cerquencyw and is therefore equivalent to an infinite number of in-
tain class of WSS random processes. Note that in both casesgaality constraints. The above formulation has a finite number
spectral factorization step is still necessary at the end. of variables and an infinite number of constraints, hence, the
Table | provides a qualitative comparison between some preame semi-infinite programming (SIP). The semi-infinite pro-
vious work and the newly proposed method. gram can bepproximatedy samplingor discretizingthe con-
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tinuous frequency axis. We choose a finite set of discrete fraad furthermore, it = ¢/*°, w, realis a pole oD(») and if K
quencies{w;, 0 < i < L} that are often uniformly spaced ands the residue matrix ab(z) atz = 2o, the matrixs = ¢ =7« K
enforce the positivity constraint only at those frequencies. ThsHermitian positive semi-definite.

approach was first suggested and analyzed in depth by MoulirAssume now thab(z) has the following state space realiza-
etal.[31]. The authors solve the “discretized” version of the SIkon:

using standard linear programming methods. Other discretiza-

tion methods were proposed by Pesquet and Combettes [32], z(n+1) = Agz(n) + Byu(n)

who use a projection onto convex sets (POCS) type of algo- y(n) = Cqx(n) + Dgu(n) (13)
rithm, and Kirac and Vaidyanathan [33], who use a fast algo-

rithm called the window method. The main problem with thehere

sampling approach is that we can no longer guarantee the posida N x V;

tivity of F,,+(~) between the discrete frequencigsno matter ~ Ba IV x M;

how large L is. This, in turn, can create an infeasible spectral Ca M X N;

factorization step. Indeed, the discretized version is an outerapDa M x M.

proximation of the original SIP problem; its feasible setincluddsor our case)M = 1. Then, the following lemma can be estab-
the feasible set of the original SIP problem. There are, of cour§ghed.

several ways to get around this problem (see for example [1, ppFact 1—Discrete Time KYP Lemma [35ket D(z) be a
219-220]), but the point is, no matter which method we choos@juare transfer matrix (function) with real rational elements that
global optimality of the SIP described by (8)—(10) cannot bé analytic in|z| > 1 with only simple poles orjz| = 1.
guaranteed. We show next, using the discrete-time KYP lemn&t (A4, Ba, Cu, Dy) be a minimal realization abD(z). Then,
that the positivity constraint can be satisfied overdly adding (z) is discrete time positive real if, and only if, there exist a
N(N +1)/2 additional optimization variables to tié original ~ real symmetric positive definite matrik; and real matrice®’y

variablesf (n). and Lq such that

A. Discrete-Time KYP Lemma Py— AT PjA; =LY Ly (14)
SinceF(z) = H(z)H(z™1), the product filter is a two sided Ci — AjPsBy=LiWy (15)

symmetric sequence, and we can therefore Wf{te) asD(z)+ Dy+ DY — BYP,By =W]Wy. (16)

D(»71), whereD(z) is a causal function, anB(~>~1) is an an-

ticausal one. ClearlyD(z) completely characterize&(z). Itis The above equalities (14)—(16) can be rewritten as the following
therefore natural to wonder whether the positivity condition ofinear” matrix inequality (LMI)

F(¢’) can be reformulated in terms of some other condition(s) P, ATPA T _ ATP.B

on D(¢/*). The answer dates back to the work of Caratheodory A, = [Cd B B%PdAd D, AT dB(%FP;iB

and Schur [34]F(c7*) > 0 for all w if, and only if, D(z) is d = Bglafda Da+ Ly = Dbglaba
analytic in|z| > 1, andD(z) is a discrete time positive real _ [ L
function. Moreover, Schur characterized all such functions in wi
terms of the so-called Schur parameters (which are also knogvnd therefore represent an equivalent condition for the positivit

as the reflection coefficients). The results of Caratheodory afq P q P y

Schur, however, apply to functions that are not necessarily (A nstraint to be satisfied. The symbolsand > are general

; . ; . . ized inequalitieswhich are defined as follows” > 0 if, and
tional. SinceD(z) is rational and, furthermoreausal it has . : o e - .
. . only if, P is positive semi-definite. Similarly? > 0 if, and
a state-space representatiot,, By, Cy, D). The question . . . . . )
} o S only if, P is positive definite. As usual with the product filter
then becomes: Can the positive real property, which iaran

. . . . formulation, the major difficulty at this point is to deal simul-
alytic frequency domain constraint, be expressed in terras-of taneously with the positivity and Nyquist constraints. It turns
gebraicconditions on the matricesi,, By, Cy4, Dy4)? The an- y b y ya :

swer, for the continuous time case, is in the affirmative and c|)sUt that, in this case, the Nyquist constraint can be imposed as

established by the famous KYP lemma. The discrete-time v%r-] equall_ty_constralnt na swn_ple manner. To see t.h's’ assume
; . . : atD(z) is implemented in a direct-form structure with the fol-
sion was derived by Hitz and Anderson [35] and is also kno

n.. -
as thediscrete time positive real lemma To state the Iemma,VY owing state-space representation:

we first start with the definition of discrete-tinrational posi- o I -
tive real functions. Ag = 0 of|’ Ba=[00---1]

Definition 1—Discrete-Time Positive Real FunctionA: 1

. . Cy=[f(N) - f(1 Dy =5 18

square transfer matrix (functiod)(=) whose elements are real a =) Fl; 472 (18)
rational functions analytic iffz| > 1 is discrete-time positive here0 is the (N — 1) x 1 zero vector, and is the (N —
) is minimal since the number of delay elements is equal to the

degree ofD(z). Then, the Nyquist constraint can be written as
and a linear equality constraint;

:| [Ld Wd] >0 a7

poles of D(z) on |z| = 1 are simple (11

D(e’*) + D(e™*) >0 Vw atwhichD(e/*) exists (12) QCL =0 (19)
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where0 is the N x 1 zero vector, andy is a diagonal matrix function (20) in order for the program to return, along with
with diagonal elements {0, 1} The positions of the unity ele- a globally optimal vectorCy, ,, the specific matrixF;
ments are determined By and/N. For example, fotV = 5and  OnceCy,,, and Py, .. are found,H.,in(2) is readily obtained,
M = 2, the diagonal elements af®1010}. Summarizing, and the spectral factorization procedure is eliminated. It is
we can represent the positivity constraint as an LMI whose eémportant to keep in mind that althoud#,.;,,(2) is unique (as
tries are affine functions of the variableB,(andCy), and the we will show next),F,,:(z) is not guaranteed to be so. The
Nyquist constraint as an equality constraint@p. The com- characterization of the optimal set of solutions of an SDP is an
paction problem described by (8)—(10) can be rewritten as fahiteresting and relevant issue but, due to space limitations, is
lows: outside the scope of this paper. Related material can be found
at http://www.systems.caltech.edu/tugan.
Irg}ix C4R* (20)

min *

IV. MINIMUM -PHASE SPECTRAL FACTOR
whereR = [r(N) ---r(1)] and finds a symmetric positive def-

inite matrix 2, = P¥ » 0 such that We first derive an expression for a spectral factor.

Theorem 1:Assume thatD(z) satisfies the discrete time

P, — ATP,Ay CT — ATP,B, KYP lemma with a minimal realizatiof A4, By, Cy4, Dy).
C, - B%PdAd D, erpg —dB("{PdBd 20, QC4 =0.  Then, a transfer functiofl (=) in the form
(21)
H(Z) =Wy+ Ld(zI - Ad)_le (22)

This new formulation is therefore a maximization problemin the
variable vecto’y and a feasibility problem in the matriX; and  is a spectral factor af(2) 2 D(2)+D(zY) = H(»)H(=™1).
can be solved usingemidefinite programmir@DP). For more Proof: The proof is given in Appendix A. u
details on SDP, see the excellent survey paper by Vandenberghehe above theorem is the discrete-time counterpart of the con-
and Boyd [36]. We would like to mention at this point that intinuous-time result found in [38, pp. 220—221]. The theorem in-
dependent work in [37], which came to our attention after th@icates that ifD(z) satisfies the discrete-time KYP lemma, a
submission of this paper, briefly uses the positive real lemmadpectral factor always exists and can be expressed in the form
a standard FIR filter design application. Nevertheless, the waukp). It is important to note that in Theorem 1, the number of
in [37] does not address the multirate case nor the spectral faggfumns ofiv, and the number of rows df, are unrestricted,
analysis presented in this paper. More important, however, a dighere the dimensions d@%; and the other dimensions &f; and
cretization step is still necessary in [3#jen aftethe use of the 1/, are automatically fixed. For example, in the single-input
positive real lemma, which, in turn, sacrifices the global Optising|e_0utput (S|SO) casél’; can be a scalar or a row vector.
mality of the resulting filter. The remainder of this section is dedicated to the study of the
To summarize, the FIR energy compaction problem, whigfiSO minimum-phase spectral fac, ;. (z). The motivation
is expressed in terms of the coefficients of the filté(z), is @ for such a study was given at the end of the last section. We first
nonlinearnonconveoptimization problem. The product filter establish that the SISO minimum-phase spectral fadton ()
formulation is a semi-infinite, linear, and convex problemzan be expressed in the form (22) with; being a scalar and
The discretized version of the SIP is linear, convex, and Cql, a row vector. We then present acharacterizatioﬂlgfn(z)
be solved using standard linear programming problem butjisterms of the matrice§dy, By, Cu,,,. Da) and the minimum
an approximationof the original problem. The state-spacelementP, . . The development of these results follows by ap-
approach proposed in this paper is nonlinear, convex, agfling the bilinear transformation = (z — 1)/(z + 1) to
semi-definite Using the rationality off’(z), the infinite set of the continuous-time minimum-phase spectral factor and then
inequality constraints are replaced by a (finite-dimensional), using some deep results proved for the continuous-time case
pOSitive semi-definite constraint (17) with the auxiliary Variablgy Willems [39] and Anderson [38], [40] Unlike, however, the
P4, permitting a globally optimal solution to be found. In prinwork in [38]-[40], the discussions and proofs presented here
ciple, the problem as stated above can be solved. Specificadligply only to the scalar case, which is sufficient for the purpose
we can write a SDP that returns a global optimum vectey this paper. We now introduce some well-established facts.
Cq,,. and a feasible matrify; that will meet the constraints  Fact 2—KYP Lemma [38]:Let D(s) be a square transfer
(21) and maximize the objective function (20). We can thematrix (function) with real rational elements that is ana-
spectrally factorize,.(z) to obtainf,,(z) using any of the |ytic in Res > 0 with only simple poles on Re = 0. Let
well-known algorithms (see, for example, [1, pp. 854-856]j.4., B, C., D.) be a minimal realization ofD(s). Then,
It turns out, however, that this additional spectral factorizatioD( s) is positive real if, and only if, there exist a real symmetric

step can be completely avoided if the minimum-phase spectgasitive definite matrix?. and real matrice$V, and L. such
factor is desired. Indeed, we show in the next section thgiqt

the state-space representation of thimum-phase spectral
factor, H,,in(2) can be expre_ssed in terms of thg _matnces _ATP. _pA. —ITL, 23)
(Ag, By, Cy,,,, Da) and a particulal’;, namelythe minimum e - CT

elementP,__ of the convex cone of positive definite matrices C. —FP.B. =L W. (24)
satisfying (21). Using this result, we then modify the objective D.+ DY =wrw.. (25)
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As in the discrete-time case, an equivalent condition for tlegjuality < if for every P € S we haveP,,;,, =< P. If a set
above equalities is the following matrix inequality: has a minimum element, this elementisique

_PA _ATP. OT_ PR Definition 5—Cong_ruence'An_N x N rea}I matrixA is said.
M, = 6 < BTP ¢ b N BTC >~ 0. (26) to be congruent td3 if there exits a nonsingular real matrix

¢ cte ¢ ¢ T such thatB = TAT?. The following property of congru-
The definition of positive real functions for the continuous-tim@nce with respect to positive semi-definite matrices can be easily
case can be found in [38, pp. 51-54]. proved:
Fact 3—Continuous-Time Minimum-Phase Spectral Factor The partial order induced by the positive semi-definite cone

[39], [40]: Let(A., B., C., D.) be a minimal realization of is invariant under congruence, i.e.,
a positive real transfer matri®(s). Then, the set of symmetric T T
positive definite matrice$P. :( }’CT > 0} satisfying the LMI A3h=ThI" 2ThI". (29)
constraint (26) has a minimum elemeft , (see the defini- Assuming thaf” is nonsingular a similar relation holds for the

tion below). This minimum element is associated with a mirpositive definite case witk replacing=. Note that by taking
imum-phase continuous-time spectral facthf;,(s), whichis P, = 0, it follows that the cone of positive semi-definite ma-

expressed as trices is invariant under a congruence transformation.
. Theorem 2—Discrete-Time SISO Minimum-Phase Spectral
Huin(s) = We + Lo(s] — Ac)™ B, (27)  Factor: Let F(») = D(») + D(»71) be a real rational
whereL. andW, satisfy equations (23)~(25) witR, = ... . function that is analytic inz| > 1. Assume thatD(z) sat-

Using the above facts and for the special SISO case, it imniglieS the discrete-time positive real lemma with a minimal
Ag, By, C4, Dg). Then, the minimum-phase

diately follows that the continuous-time minimum-phase SpeE@aIization ( .
tral factor is unique, stable, and has no zeros in the right haectral factor Huin(2) can _tl)e expressed in the form
plane(Re s > 0). Furthermore, ifH,in(s) = W, + Lo(s] — Huin(7) = Wa + La(z] — Ag)™" Bq with
A.)71B,, thenW, is al x 1 scalar, andL.. is al x N row Wy =(Dy +Df _ Bde Bd)l/2 (30)
vector. Finally, all the eigenvalues df. have Re\; < 0. The _ T pT —1/2 T
following result can be then established. Ly =(Da+ Dy = Ba Pay, Ba)™ " *(Ca = By Fay,; Aa)
Corollary 1: Assume that the continuous-time min- (31)
imum-phase spectral factotHnin(s) is given in the 4,4 p, s the minimum element in the convex set of sym-
form (27). Then, by applying the bilinear transformation,etric positive definite matrices satisfying (21).
s = (2 —1)/(z+1), Huin(s) maps to themniquediscrete-time Proof: The fact that the minimum-phase spectral factor
minimum-phase spectral factd..in(7), which can be ex- pas the form (22) has been established in Corollary 1. Equations
pressed in the form (22), with (30) and (31) are obtained from (15) and (16) by recalling that
Ag=(— A)Y(I+A), By=2(I—A) 2B, for'_[he SISO minimum-phase spectral factdi; is ascalar_, and
L, is a column vector. The proof that the LMI and Nyquist con-

min

min min

La=Le; Wa=Wert Le(l = A)™ Be. (28)  straints are satisfied witl, = Py, . for the case 0fyn(z)
Furthermore, if A, B., C., D) is a minimal realization, then is established through the following series of steps.
(Ag4, Ba, Cy, Dy) is also a minimal realization. 1) The Nyquist constraint (19) can be incorporated in the

Proof: Hoin(s) maps toH ,i(#) is a consequence of the LMI by replacingCy in (17) with Cy, ., = Cua(I — Q),
s-plane toz-plane mapping property of the bilinear transforma- ~ wherel is the N x IV identity matrix. In the remainder of
tion. The uniqueness df,.,;,(z) follows from the uniqueness the proof, we will therefore only consider the LMI con-
of Hyin(s). The proof of the other statements is given in Ap-  straint, keeping the above substitution in mind.
pendixes B and C, respectively. ] 2) The se{ P. = P » 0} generating the cone of positive

Note thai(7 — A.) must be nonsingular. Otherwise, one ofthe ~ semi-definite matricesf M| M[, = M'.T, M = 0}
eigenvalues oft., is equal to one that contradicts the stability of ~ defined by

Hmin(_s). Bef_or_e_ stating the main theorem of this section, the ) _P.A, —ATP, O _P.B,

following definitions are required. _ M, = { c.  —BTp,  Di+DT } =0 (32
Definition 2—Convex ConeA setC is called a cone if for

everyz € C and scalap\ > 0, Az € C. A cone is convex if is the same set of symmetric positive definite matrices

for A1, Ao > 0 andzy, z2 € C, Mz + daxa € C. The set of satisfying the following matrix inequality:

symmetric positive semi-definite matric¢®|P = P¥, P = 7 0] [ -P.A. —ATP, CT - P.B,

0} is a convex cone. _ |:B3“(I+A5)—l 1} [ C... —BTP, D:_i_D(I:“ }
Definition 3—~Partial Order: The convex cone of symmetric I I+ AN-1B

positive semi-definite matricek = {P|P = P”, P + 0} [OT I+ f) d} =0 (33)

defines a partial order on the space of symmetric matrices in the

following sense:» = P if, and only if, P, — Py is positive where! is the N x N identity matrix,0 is the NV x 1

semi-definite. zero vector, and”, ., = C.(I — Q). To see this, ob-
Definition 4—Minimum ElementWe say thatF,,;, € S is serve that the left-hand side of (33) is congrueni\.

a minimum element of with respect to the generalized in- Since the cone of symmetric positive semi-definite ma-



TUQAN AND VAIDYANATHAN: STATE SPACE APPROACH TO THE DESIGN OF GLOBALLY OPTIMAL FILTERS 2829

trices is invariant under a congruence transformation and Proof: Equation (37) follows by substituting (31) in (14).
since the congruence transformation is independeRt,of Equation (38) is derived from (37), assuming thais positive

the claim follows automatically. definite, and the proof can be found in Appendix E. [ |
3) By multiplying the three matrices in (33) and performing Corollary 2: P, . can be obtained fron®, . using the
the following substitutions: congruence relation (35) and the fa&t . is the unique so-
L ) lution to the following equations:
Ac=(Ag+ 1) (Ay—1), B.=2(A4q+1)""By
_ —p._ -1 - ATP. - P.A.
Ccnew = Cdnew? D.=D, Cdnew (Ad + I) By (34) ¢
. . = (OZ — PBe)(D. + DC)il(CZ - Pch)T (39)
it can then be shown (see Appendix D) that these opera- ATP _PoA
tions produce the LMI (17) with 2ie™ Seli2
. ) X =P.B.R*'BYP.+ C*R™'C. where
Pd:2(Ad +I) Pc(Ad+I) . (35) AQ IAC—BCR_ICC, RIDC—FD(T (40)

Equation (35) describes another nonsingular congruenggy (4., B., C., D,) are given by (34). The proof that,

transformation applied this time on the 4ét. = P - g the unique solution to (39) and (40) can be found in [38].

0}. The congruence transformation preserves the positive

definiteness of the matrices as well as the partial order \; some SMPLIEICATIONS FOR THESISO FIR Q\SE

induced on the set. » i i
4) Using Fact 3 WithC, = C, ) and steps 1) — 3) Assume that the positive real functi@¥(z) has the following

described above, we have therefore proven that the S¥pimal state-space realization:

{}_)d_ = P} » 0} satisfying the con:s_traints (21) has_ a e 0o I B — (00 0

minimum element?,_, and that minimum element is 4= 19 oT |’ a=1[00---1]

ivenbyP; . =2(AT +D)~'P.  (A;+ D~ Itnow

gven DY P, =224 +1)° Fon Lla & 1) Ca=LF(N) - J(D], Du=1 4D)

remains to show that, . is the solution associated with
Hin(#). This can be done by starting with (23)—(25)where0 is the (V — 1) x 1 zero vector. The minimum-phase

with P, = F. .., applying the bilinear transformation onspectral factoid,,,;, () is then given by
H,in(s), which produces the following relations: Hon(2)
mini %
Ao =(Ag+ DAy — 1), B.=2(Aq+1)"*By _ VN + (Cqa— BYPy,, Ag)
Le=Lg, W.=Wy— Ly(Aq+1)"By (36) - Pelmin 1Y 1—pe. (N, N)

—1
making the additional substitutions (2l = Aa)” By

(Cy — B] Py, Ad)
(Ag + 1)~ By = V1 —pa,.,.(N, N) + 4

C =Cy D.=Dy;—-Cy

Crew ne;v -~ new_l 1 = Pdpin (N, N)
Pdmin = 2(Ad + I) Pcmin (Ad + I) T
. [z—Nz—U\’—l) ...Z—l}

and simplifying to obtain (14)—(16). The conclusion that 1

these final equations are associated wih;, () fol- = {1 —pa,. (N, N)

lows from Corollary 1. The exact derivations of the above V1= Pdpin (N, N)

steps are algebraic in nature and very similar to the proofs +(f(1) = pa,,. (N, N —1))z7!

found in Appendix D and are therefore omitted. m + oo (f(M) = pa. (N, N = M))zM

An alternative characterization @f;_._ is given by the fol- N f(N)Z_N}_ (42)

lowing theorem.

Theorem 3: Assume thatD? + D, — BT P,B, # 0. Then, The second equality follows by analogy with the transfer func-
the minimum element?;_ .. in the convex set of symmetric tion of D(z), and the third equality is obtained by direct substi-
positive definite matrices satisfying the constraints (21) is thetion of (41). Itis interesting to note that among all the elements
unique solution to the followingalgebraic Riccati equations of P;_. , only the last row affects the coefficients B, (2).

(AREsS): Closed-form expressions for the continuous-time system
T T T B., D. can be also derived and are given by
Py =Ay Puda + (Cy,., — Ag PuBay) N_1
(Da+Dg = Bi PaBa)™(Cq,,, — AqPaBa)” (1) _1 E:BALQ
(37) A= |. :
P, =ATPjA; + ATPyBy(R — BYPyBy) ™! (1) 8 1
“BiPsA1 +C; R7'C,,., where 11 o
Ay =Ag—B4R™'C; ., R=Dy+D¥ =0 0 1 :
(38) . _ ' (43)
. 0 . 1

whereCy . = Cy(I — Q). 0 0 ... —1
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rl -1 (-t ny-t where
B o 0 1 (DN [ (=N 0 scalar;

R 0 - : : 0 1 x N zero vector;
lo0 0 --- 1 1 O N x N zero matrix.
r ON(=D)N

— — N=-2 . .y
—9 (V=1)(=1) (44) SinceDy + DY = 1, Tr(P1) = 1. The other conditions are
: obtained by direct evaluation. The above corollary produces a

L 1 more compact form for the positivity constraint and can be used

D.=D()|.__,=1/2—f()+ -+ (—1)Nf(N) to increase the&omputational efficiencyf the SDP program
T = [47]. Moreover, Corollary 4 can be used to generate new “theo-
Dc + D = F(Z)| (45) ” I ” H H :
¢ rems” and “forms” for the spectral factorization of polynomials
. . [47]. The next example, while easily handled using elementary
The above follows by noticing that, + 1 is anV x IV Jordan  ethods, serves to demonstrate the main points of the previous
block. It is easy to show that its inverse is equal to an upper tfjisc\;ssions.

angular Toeplitz matrix with first rofl — 11 - (—1)1\_"—1]. Example—2 x 2 KLT: Assume thatN = 1 and that
The knowledge of the form of equations (43)—(45) is useftﬂl/[ = 2. The state-space representation ©¢z) in this
in order to avoid computing inverses during the optimizatiog, oo isAg = 0,By = 1,Cy = f(1), andDy = 1/2.

process (if the continuous-time characterization of Corollaryl_2h;mg (37) and this particular state-space realization, the

is to be used).. _ .. optimization problem can be simplified and recast as fol-
_Corollary 3 For the special SISO FIR case _under considef; s Maximize F(1)R(1) subject to the equality constraint

ation, the minimum eleme®,_, has the following form: Po (1—Ps.) = f(1), where0 < P, < 1. Note

z=—1

that by using (38) instead of (37) witd; = —f(1) and
=L R = 1, the same formulation is obtained. The problem
_ 5 5T k _ T it ’ .
Papsn = kz As Lalada=0Or, 4,00, 44 (46)  can be reexpressed as an “unconstrained” problem in the
v=0

variable P, . , namely, maximize\/ P, . (1 — P, . YR(1),
where0 < Py

whereQy,, 4, denotes the observability matrix of the realiza- biecti f< 1t.' Usmg the AMt')GM én((ejquall';y, t2he
tion {Ay, L1}. The above result follows from the fact thidt \?Q}?Xﬁxisoi AZZ;I)Veen dgr?tc 'c;}?( 1')3 #Egegoucr)\lcjinise act:]?év)e/ d ’if
has to satisfy a discrete-time Lyapunov equation (14). The s it only if,1 — Py . = Py . ie, Py = 1/2. From

lution of a di ime L i f iy .
ution of a discrete time Lyapunov equation can be found i Pa (1= Po_) = f(1). it then follows thatf(1) = 1/2.

[1, pp. 684-685] and can be further simplified for this cas# . .

using the fact that?) = 0 to obtain (46). It also follows that — > 9 (22), (30), and (31) with the above state-space repre-

TH(Py. ) = EN ni2(n) and that (16) is the unit energy Con_sentatlon, the minimum phase spectral factor has the form
chmin n=l v Hmin(z) = (1 _Pdn]in)l/Q +f(1)(1 _Pdn]in)_l/Qz_l' By sub-

straint enforced on the optimum filter. . _ - : 0T
Corollary 4: For the special SISO FIR case under considepttingFu, ., = f(1) = 1/2, we gethmin(2) = 5+ 77",
. . . s . : which corresponds to the first row of tlex 2 universal KLT.
ation, the discrete-time positive real lemma is equivalent to t

following condition: There exists afiV + 1) x (N + 1) matrix e also note thaﬂmi“(z) could haye been obtained fgom
P, = PI » 0 such that Corollary23 by u25|ng the two equations'2 = F = l
and1 — [* = w*, wherel andw are the filter coefficients
of H.,in(2). Neither the product filter nor the spectral factor
(47) coefficients depend on the value Bf1). The compaction gain
is, however, equal taé + |R(1)|/R(0). To check Corollary 2,
note thatd. = -1, B, = 2, C. = f(1), D. = 1/2 — f(1)

min

Dy+ DY, ifk=N+1

Ty _
Tr(MyPL M) = { Cu(k),  otherwise

with M, =[5 g5], where and with A, = —1/(1 — 2f(1)), R = 1 — 2f(1), (39)
0 1 x (N +1 — k) zero vector; and (40) reduce to/2F. . (1—2F, . ) = f(1), where
I k x k identity matrix; 0 < P.. < 1. The problem can be put in the following

o (N +1—k)x (N 41— k) zero matrix; form. Maximize /2P, (1-2P., )R(1) and solve in
Ca(k) kth element of the vectal. the same way as the discrete-time case. The final result is
The above conditions mean, in particular, that the trace of = f(1) = C; = 1/2andP. . = 1/4. We also note

P, = 1andthatthe sum of the elements of each lower (or uppenat P, . = 2(AL + I)7'P.(A4 + I)~! = 1/2. Finally, the

diagonal ofP; is equal to a coefficienf(k). The result follows continuous-time spectral factéf,,,;, (s) is equal to\/i/(s+1).

by substituting (41) into (17), which simplifies to the followinglt can be easily verified that this is the result we obtain by

form: applying the bilinear transformatiom® = (1 — s)/(1 + s) to
Hmin(z)-
p o= |:Pd OT} [0 OT} Although the above example uses conditions (37) and (38)
1= + . . . . .
0 0 0 Fy (which are nonlineanonconvekand/or their continuous-time

o ct 0 48 equivalents to solve the maximization problem, itis actually the
Cy Dy+DY| = (48) LMIs My in (17) and M. in (26) that come into play when
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using a SDP to solve the genefa&¥, M) case, as we discusswhere R andW are defined as before such that
next.
M= -ATP.—P.A, CY-PB.
e C.—BIP. Dy+D¥-1/2(C.B.+BICT)
QCt =o. (52)
The minimum-phase spectral factor is determined by
(A4, Ba, Ca,,,. Da) and Py, . Since Ay, By, and Dy are  The matrixP; using (35).

fixed by the choice (18), and sindg,,, is determined by  opservation 2: The multiobjective optimization problems
the program, we can also includg in the objective function described, respectively, by (49) and (50) and by (51) and (52)

(20) to obtainFy,,,,. Minimizing Py directly will produce a .o ¢onvex programs with respect to the varialfigsand £,
vector-valued objective function. To avoid this situation, WE dC. and P

can instead minimize a scalar-valued function/f and this
can be established by the following observation.
Observation 1: Assume that?,,_. . is the minimum element

in the convex set of symmetric positive definite matrices sati . ; . '
fying the LMI constraint (17). ThenP, = P, if, and only and is therefore a convex function. The constraint set defined

if, Tr(W P,) is minimum for any diagonal positive definite ma-by (50) is a convex set with respect to the optimization variable
; C, since for allCy, andC,, € RY andforallo < X < 1
trix W. d dy do SAS

>0
VI. SPECTRAL FACTOR FORMULATION

is then obtained fron®,

min Cmin

opt

min *

Proof: Since the two problems are identical in form, we
only provide a proof for the discrete-time formulation (49) and
gS_O). The objective function (49) is linear in boty; and Py

Proof: The necessary part is obvious becalse> P»
implies that TEW P,) > Tr(WP,). For the sufficiency part, Ma(ACq, + (1 = A)Ca,) = AMa(Cq, ) + (1 = N)Ma(Cy, ).
we proceed as follows: Assume there exists a malthxand

a minimum element; such that TTWPF,) = Tr(WF;) = The same argument holds fé#;. The equality constraint is
min Tr(W F;) over all P;. Note that by the definition of the linear inC, and is therefore convex. |
minimum elementp, — P, > 0. We will show thatP> must It follows that any local solution to these programs is also a

be equal toP;. From TAW P») = Tr(W P,), it follows that global one.

Tr(W(P; — P1)) = 0. SinceW is a diagonal matrix with  |nitialization and Strict Feasibility: The LMI control
positive elements, then the diagonal elements of the positi@lbox and the software package in [41] require a strictly
semi-definite matrix, — 1 are equal to zero. Using the factfeasible primal or dual problem (the so-called Slater conditions)
that the principal minors of a positive semi-definite matrix mug, converge. Indeed, this is a sufficient condition for the duality
be non-negative, it follows thaP, — P must be identically a5 10 he zero [36]. For the design of compaction filters, we can

zero. L B usethe followingstrictly feasible poings an initial solution to
The optimization problem formulated at the end of Section I{he primal problem:

now reduces to the following final form:
N-1
T 1 kg
max CuR" — TrH(W Fy) (49) Ca=0, Pu=gp kzo AT Ak, (53)
where R = [»(N)---r(1)]*, andW is a diagonal positive

_ J—— ) .
definite weight matrix such that By definition, £; = P; > 0. With the above choice, the LMI

in (50) is diagonal and positive definite.
P, — ATPA, ct — ATpP,B, -0
Cd — BgPdAd Dy + Dg — BgPdBd -
QCct =0 (50)

My =
VIl. REGULARITY CONSTRAINTS

The regularity property is important in wavelets applications
and is therefore a maximization problem in the variable vecteuch as image coding, numerical analysis, and computer
Cq and a minimization problem in the mati¥;. The particular graphics, to name a few. An orthonormal wavelet scaling
choice of the trace function ) was intentional in order to use function is obtained by cascading subband filtersH (z?),

SDP. The weight matri¥V is included in the objective function ywhere H(z) is an FIR filter with a Nyquist{) magnitude
because, unlike in Section Ill, WeTnoW have two separate agfuared response. For certain applications, it is important that
competingobjectives, namelyC’u ™ and T(W Py). The idea  the product[ [~ H(~") converges to a “smooth” function.

is to choose the weight so that optimality ©f; is never com- The degree of smoothness or regularity is characterized by

promised, i.e., in order to prohibit W F;) from becoming the {he number of zeros thdf () has at the aliasing frequencies
dominant factor in (49). Finally, note that the continuous-timg _ 27m/M for 1 < m < M. For M = 2, this amounts

characterization can also be used. In particular, with the Cont{B'forcing L zeros atz = —1 (w = x). The first of these
uous-time state-space realization described in (43) and (44) af@’os ¢ = 0) is simply obtained from#(—1) = 0 [because
with €. = Cg, the optimization problem becomes F(e/) > 0 Vw, F(z) will automatically have a double zero

C.RT P at r]. The second zer¢r = 1) is obtained by differentiating
Gax CeRt —Tr(WF) G preivy twice with respect tov, evaluating the result a,
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and setting it to zero. Repeating this procedure, we derive the Proof: The key idea is to observe that for= 0, the LMI

following equation: (52) in the continuous-time formulation reduces to the following
N2 0 0 form:
_ 2r
Dd6(7’) —Cy 0 (N 1) D.+ Dg =0, CZ —P.B.=0
: 0 -0 —ATP, - P.A. 0. (58)
0 0 1

(Ag+I)'By =0, 0<r<L-1(54) The above follows from (24), (25), and (45). By applying (34),

For generalV/, the regularity condition can be expressed as tﬁgs) can be rewritten as follows:

following linear constraint on the filter product coefficients: - L
Dy IBd (Ad + I)_ FP;By,

| (N)Q”Cos<27rj\]}7m> ] Ca =B (AL + D)7 Py(Aa+ 1), Py— AjPsAs = 0.
21m(N —1 9
(N —1)* cos <4”( _ )m>
Dybé(r) — Cy M =0 Substituting (59) in the LMI (50) and simplifying, we get
(60), shown at the bottom of the page. The above matrix is
singularfor all F; because the last column @, is a linear
cos <27r7m) combination of the previou®’ ones. To see this, observe that
- - Mg(N +1 : N4+1) = My(1 : N)(Ay + 1)~ By, where
0<r<L-11<m<M. (55) al ) all : N)(Aa + D) B

the notationM (¢ : j) defines thej — ¢ + 1 columns ofM,,
%@rting with columni. Some of the variables are therefore
linearly dependent and have to be eliminated. This can be
g{)ne by using (59), and the new formulation of Theorem 5 is
lgnmediately obtained. [ |

In the remainder of this section, we will discuss only the case
M = 2. Most of the results can be easily extendedXor> 2.
We next show, using the continuous-time formulation (52), th

the LMIin (50) becomes singular when adding (54) to the SDF. Even in this more simplified form, the existence of a strictly

We then derive a new formulation for which a strict feasiblf bl lution is still not teed for> 0. and an SDP
solution (primal or dual) always exists for the case of a sing gasible solution Is stilf not guaranteed for> ), and an

zero atr (1 = 0). software package (such as SDPT3 [42]) that does not require

Theorem 4—SDP Formulation with the Regularity Cons_trlctfeas|b|llty should be used. For= 0, however, we propose

straint: Assume that (54) is satisfied for any> 0. Then, the the followmg ?nmallzanon procedure.
LMIin (50) is always singular. Nevertheless, the primal problem ) Start with a vectoCy = [f(N)0 f(N —1)0 --- f(1)]

defined by (49) and (50) can be re-expressed as follows: . with 3, f(n) = 1/2'_ _ ) _ )
i) Assume that the matri®; is block diagonal with the first
maxTr(RT(Af + Py(Ag + _r)—le — WPy (56) block being a scalar (& x 1 block) and the remaining
Pa blocks of size2 x 2. SinceP,; must be positive definite,
whereRT = [(N)---r(1)]T, andW is a diagonal positive def- it follovys that all its diagonal glements, as.v.vell as the
inite weight matrix subject to the following constraints: _ determinants of the block matrices, are positive.
i) ChooseP; = P} - 0 such thatC; = B (AL +
Py— AjPiAa = 0 1)~ Py(Ag+1) andPy— AT Py A, » 0. It can be shown
Dy =BT (AT + I)"Y(AT + )Py(Aq+ 1)1 By (with a gopd amgunt of matrix alg.ebra) .that we can al-
QAT + I)Pa(Aa+ 1)~ Bq = 0 mzy;t?:\:glgriig;cstnly feasible starting point by following
N2 0 - 0 Compaction Gain Bounds in the Presence of Regularity Con-
0 (N-1)2> ... : straints: An upper bound for the compaction gain can be com-

Bi (A7 +D~ puted by running the SDP with= 0. A strictly feasible point

' always exists, and the SDP converges to a global optimum.

0 0 o] On the other hand, with all free zerosata lower bound is

“(Ad +DPy(Ag+1) 'Bs=0, 1<r<L-1 optained by solving the linear system of equations defined by
(57) (54)with L = N(N +1)/2. These bounds determine the range

0 L0

Py — AgPdAd (Pd — AgPdAd)(Ad + I)_le -0 (60)

My = =
B+ ATY="Y(Py— AT PyAg) BY(I+ ALY NPy — AT PyA)(Ag + 1)1 By
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Fig. 4. Compaction gain curves for an AR(1) process¥or= 2, 3 andco ©
with M = 2.

Fig. 5. Double roots on the unit circle, indicating the positivity of the product
filter F(z) (a) as the output of the program (b) as a result of convolking, (n)
. . . . with its flipped version.
of all possible compaction gains as we increase the regularity

degree.

VIIl. N UMERICAL RESULTS

The results described here are obtained using the MATLA : : » : :
LMI control toolbox. Due to space limitations, all the FIR 25 - O R RIERE || SR AR A
energy compaction filter design programs and correspondi : ' ' :
documentation can be found at http://www.Systems.c: : N\
tech.edu/tugan. For all the following examplé®, = dI, :
whered = 1076,

Example 1—AR(1) ProcessAssume that the inpuk(n)
is a zero-mean AR(1) process with an autocorrelation
guence in the formR,. (k) = ¥ where0 < p < 1. Let
M = 2. The optimum compaction gain curves fof = 2 .
and 3 as a function of are shown in Fig. 4. The curve for & | ... flfr. ...}
N = 3 coincides with the theoretical compaction gain formul ] ‘ PN
Geomp(2, 3) = 1+ (2p/+/3 + p?) derived in [33]. The precise ol f : -
difference is actually on the order a0—>. The last curve g5} ...{ g CDDUURS A |} RN ST
denotes the compaction gain whéh = oo (ideal lowpass ' :
filter case). A closed-form expression for the compaction ga
can be obtained by evaluating the integral in (1) since tt ¢ i : i ; i i ; ;
integrand is a Poisson kernel [43, p. 308]. The final rest ~ © ®' 0% 03 O o eamny . 0% %%
IS Gegmp(2, 20) = (4/m)arctan((1 + p)/(1 — p)). From
Fig. 4, it is therefore very clear that for an AR(1) proces%’ig. 6. Magnitude squared responses of the optimum compaction filters

the margin of gain versus filter length is very small. Assum@rresponding to the multiband AR(5) process (dashed curve) of oider7,
now thatp = 0.9, N = 3, andM = 2. The theoretical 17, and 27 with\/ = 2.

optimum filter Fy,(z), which is obtained from [33], is the

same as the SDP one (the difference in the numerical accuracy

of the coefficients is in the order dfo—®) and is given by is demonstrated by the double roots in tieplane plot
Fop(z) = —0.067233(273 + 23) + 0.566 774(2~* + 2) + 1. of Fig. 5(a). The compaction gain 0 uin(2)Hmin(z71)
The compaction gain in both cases is equal to 1.922mains equal to 1.922, and the positivity property of
The minimum-phase filter in this case i#,in(?) = Huin(?)Hmin(271) is not lost, as we can clearly see in
0.4939 + 0.82792 ! + 0.2282272 — 0.1361z 2. Note Fig. 5(b).

that Hpin(2) Huin(z71) = opt(#) = Fiu(z), indicating a Example 2—Multiband AR(5) Proces#&ssume that the
numerically accurate spectral factor. The positivitylQf.(z) input x(n) is a zero-mean multiband AR(5) process (dashed

n
T
-

tn
gnitude squared response

15F- - J ..... \
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25 ’ ! ? : ? ; ! g ; behavior. When\/ > N + 1, the Nyquist constraint reduces

‘ _ , : : : : to a unit energy constraint, and the optimum compaction
oo : : 5_ : f, : filter is the eigenvector corresponding to the largest eigen
" : : : " : : value of the Toeplitz symmetric autocorrelation matrix with
first row [R(0)R(1)---R(17)]. The maximum eigenvalue
of the 17 x 17 Toeplitz symmetric autocorrelation matrix
is therefore an upper bound on the compaction gaimas
increases from 2 to 17. The overall incremental behavior of
the compaction gain should be intuitively acceptable because
as M increases with\V fixed, the constraints on the filter
coefficients become less stringent. In fact, we can easily prove
that Geomp((k + 1M, N) > Geomp(kM, N).
Example 3—Regularity versus Compaction Gatonsider
: : v : _ _ again the AR(5) process of Example 2 with = 2, N = 3.
o5k - N 5 AU . . The compaction gain is 1.387 with no zerosmatnd 1.374
: ‘ : : ‘ : : : : with one or two zeros at. The compaction filter converges to
the same solutiorf(1) = 9/16, f(3) = —1/16 in the latter
two cases. FotN = 5, the compaction gain is 1.453 with
i i i ‘ i i i ‘ no regularity constraints and drops to 1.384 when forcing a
0 01 02 03 04 05 06 07 08 09 . . .
normalized frequency single zero atr. However, it (almost) remains constant, even
when forcing all three zeros at. In general, we have found
Fig. 7. Magnitude squared responses of the optimum compaction filtetrgat the compaction gain can dI.’Op substantially Wh,en forcing a
corresponding to the multiband AR(5) process (dashed curve) of dfder7,  Z€r0 atr but then usually remains constant as we increase the
17, and 27 with\f = 3. smoothness degree.

—
[l

magnitude squared response

0a IX. CONCLUDING REMARKS
8 T T

I Using state-space theory, we have proposed a new approach
for designing globally optimal FIR energy compaction filters.
The design of such filters is important because they are the basic
building blocks of anA/-channel FIR orthonormal PCFB. In
particular, for the two-channel case/(= 2), the optimum com-
paction filter determines the optimum orthonormal filterbank.
Therefore, by using any of the proposed formulations in this
paper,the optimal two-channel FIR PCFRB found [24]. The
issue regarding which spectral factor to choose is, however, un-
clear. Different spectral factors exhibit different subband decor-
relation properties. For th&/-channel case, some progress re-
garding the design of the filterbank has been reported in [18],
but the problem, in its full generality, remains open at the mo-
ment of this writing.
2 4 6 8 10 12 14 16 18 The tradeoff between any global optimum algorithm and a
suboptimal one is typically complex. In general, SDP’s im-
Fig. 8. Nonmonotone behavior of the compaction gain as a function of tlﬁgemented usm.g Interior point method; are more computa-
number of channel37 with a filter of fixed orderN = 17. tionally expensive than (for example) linear programs. One
way to see this is to note that a linear program is a spe-
cial case of an SDP, where the matrices defining the LMI
curve in Figs. 6 and 7). The magnitude squared responses diagonal. The added structure produces more efficient al-
of the resulting optimum compaction filters are shown igorithms. Nevertheless, SDP’s come in all sorts of different
Fig. 6 forN =7, 17, and 27 and/ = 2. The corresponding forms and implementations. We have already displayed several
compaction gains are 1.5243, 1.5633, and 1.5748. Similaflgrmulations of the same problem in a single paper, and we
the magnitude squared responses of the resulting optimaertainly have not tried all of them in our simulations (see,
compaction filters withv =7, 17, 27, and\/ = 3 are shown however, additional documentation at http://www.systems.cal-
in Fig. 7. In this case, the compaction gains are 1.866, 2.0@&ch.edu/tugan/). Since the main goal was to validate our new
and 2.045. With a fixed filter ordeV = 17, a plot ofG..,p, @s approach, we felt that finding more efficient semidefinite pro-
a function of M is shown in Fig. 8, indicating a nonmonotonicgrams, although important, plays a secondary role with respect

compaction gain
© o ~
R @ o« w

I
o
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to the other results of the paper. Indeed, changing the form

2835

APPENDIX B

of an SDP to another is usually not that difficult. Moreover, PROOF OF THEDISCRETETIME MINIMUM PHASE SPECTRAL

there is a whole community of numerical analysis researchers
looking for faster implementations of SDPs, and substantial

speedups are expected in the future.

APPENDIX A
PrROOF OFTHEOREM 1

Substituting (14)—(16) in the expression BYz), we can

write the following sequence of equations:

F(2) =D(2)+D(=™1)
=Dy+DE+Cy(zI-Ay) ™' By
+BY (1 -ADH " oF
=WiWa+Bi PyBy+ (W] L+ B3 PyAy)
(2I—Ay) ' Bg+BY
(2 =AY Y LyWy+- ALY Py By)
=WIWy+BiPiByA+ Wi LY (21— Ag) "' By
+BY (T T =AY LW+ BEPyAg (21— Ag)™*
-By+BY(z ' 1-ATY LAY PyB,
=WiWa+WILY (21 — Ag)™ By
+BY (" - AT L W+ BY
NPut PuAa(zI—Ag) (2 HI- ALY T AT P By
=WiWa+WI LY (2I—-A4)" By
+BY (z7 = AT LgWy4-BY (27T — AT) 7!
(T I =AY Py (2T — Ag)+ (2 T - AP, Ay
+ AL Py(2I - Ap)|(2] — Ag) "' By.

Now, note that

(274 — ADYPy(2] — Ag) + (271 — AY)PyAy
+ AgPd(zI - Ad)]

=P, — AY P A, (61)

FACTOR FORM

Substitutings = (1 —2z71)/(1+271) into Hyin(s) = W+
L.(sI — A.)~'B. and simplifying, we obtain

Hmin(z)
=Wt L1+ 29— 241 — A)™ (I + A)) !
(I —A)7!B.. (62)

Now, the expressiof i, (2) = Wy+Lgz =t (I—271A4) 1 By
implies the power series

Hyin(2) = Wa+ > La(»* Ag)" Ba.

n=1

(63)

Equating the constant terms in the above expressions, we obtain
Wa = W. + L.(I — A.)~'B,. The coefficient of:~* in (62)

can be simplified t@QL.(I — A.)?B. sothatLy B, = 2L.(I —
A.)?B.. Finally, since thexth term in the power series (62) has
the formS[(1 — A.)~1(I + A.)]"@ for constantS and @, the
choicedy = (I-A.) Y (I+A.), Ly = L., By = 2(I-A.)*B.
yields a realization off i, (2).

APPENDIX C
PROOF OFMINIMALITY

A state-space realization is minimal if and only if it is jointly
observable and controllable. Assuming the minimality of the
triple { A., B., C.}, we use the (PBH) test [44, pp. 135-136] to
prove the minimality of the tripld A4, B, Cy} given by (28).

In particular, sincé A, B.) is controllable, then there does not
existarow vectog # 0 such thay B, = 0 andqA,. = ug. Now,
assume thatA,, By) is not controllable. Then, there exists a
row vectorz # 0 such thattBy = (I — A.)7?B. = 0 and
(I — A)7YI + A) = M. Lety = x(I — A.)~2. Then,
yB. = 0andy(I — A.)(I+ A.) = \y(I — A.)?. By observing
that the matrice§l — A.)(I + A.) commute, the last expression
therefore simplifies tay(7 + A.) = Ay(I — A.). This in turn
impliesthatyA = (A—1)/(A+1))y. If A= —1,theny =z =
0, which is a contradiction. IA # —1, then the assumption that

This result is obtained by simply multiplying out the matrices 4, 1,) is not controllable implies thatA., B.) is also not

on the left in (61). By using (61) and (14)

F(z) =D(z) + D(z™1)

=WIW,+WILY (2l — Ay)~'By
+ BT (27 — ALY LWy 4 BEY (271 — AT) !
[Py — AT Py A (2] — Ag) By

=WIiWy+WILY(2I — Ay)™'By
+ BT (27 — ALY LWy 4 BEY (271 — AT) !
cLyLY (21 — Ay) 1By

=(WF + BY (=71 — A})™ La)
c(Wa+ LE(zI — Ag)™'By).

controllable, which is again a contradiction. The observability
of (A4, Cy) can be established in a similar way.

APPENDIX D
SIMPLIFYING (33)

It is not difficult to see that by multiplying the matrices in
(33), we get the LMI as shown at the bottom of the next page,
where

X =(C.-BYP)I + Ay) 'By+ BY¥(1+ A1)
(CI —P.B.)+Bj(I+A])™"
Py — AT Py AT + Ag) ™! By.
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Making the substitutions (34) and (35), the first term in th&he identity is obtained by applying twice the matrix inversion

above matrix becomes lemma [44, p. 656]. Starting with (38)
_ PcAc _ ATP Pd = (Ad — BdR_IOd)TPd(Ad — BdR_IOd)
er e T -1 —1N\T
= P(Aa+ D) NI = Ag)+ (I = AD)(AT + D P, TOR Cat(da=BaR™Ca) Faba
— (AT + D)(AT + 1) P Ag + DM - A 8 Db
+ (I — ATYAT + 1)L P(1 + Ag) NI + Ag) BaFulda = Bl "Ca) 1
= ${(AT + DPUI - Ag) + (I - A)PA(I + AD)} =Cafl Cat Calt " BylaBult “Cu
=P, — A(J;PdAd + (;d R Bd .llDdBd(R — Bd PdBd)
- B PyByR™*Cy + other terms
Similarly, the second term simplifies as follows: =C¥(R - BYP,B;)"*C,4 + other terms
CT — P.B, — (P, Ac+ ATP)(I + Ag) ™' By where the last equation follows from (64). Substituting now the
= OT — 2P(I + Ay)~2By other terms, we get
— (Py— ATPyANI + Ag) "By Py = A} PyAq+CJ (R — B] PyBg)~'Cy
=CF — (I+ AT)Py(I + Ag)~'By +A% PiBy(R — B} PyBa)"'Bj PyAq
— (Py— AF PyAg)(I + Ag) ™ By — AG PyByR™'Cy—Aj PaBy
= CF — {(I+ AD)Py— Py + AT Py A + Ag) 1By “(R—Bj PyBa)™'Bj PaB4R™'Cy
= Cg — {AgPd + A;PdAd}(I + Ad)_le _CgR_lBgPdAd_CgR_lngdBd
— T — ATPyB,. “(R—BJPyBy)™'B] PyAq

. o - = AjPyAq+Cf (R—Bj PuBg) 'Cy
The third term is simply the transpose of the second term. Fi- + AT PyBy(R—BYPB,) " BTP Ay
nally, the fourth term reduces to T 1 T 1T 1
—AYP,By{R™*+(R—-BYP,B,)*BY PyB,R)C,
T _ _ _
D.+D; +X —~CMR'+R™'BYP,By(R—-BYP,B,) " }BYT Py Aq.
=Bj (I+A) " (Pa— AF PiAa)(I+Aq) "By (65)

—-1p _opT T\—2 -1
+C‘;(I+AdT) 7?‘; Qi‘i (I—H;d )71 PC(I+Ad)72Bd We only simplify one of the cross terms [last two lines of (65)]
+By(I+Ay) 02B3 (I+A5) " P(I+A4) "Ba  since they are the transpose of each other. Recallingihat

+Dg+ DY —Cy(I+Ay)"'By—BI (I+A™1CY (by assumption), we can then write
_ v T Ty—1 T
=Da+Dy +B; (I +AdT) {Pa—Ay deld CT{R"+R'BYPyBy(R - BTP,B,) '} BT P A,
_Pd(I;—Ad)T—(Iﬂ—x;{d )fd}(l—f—x;{d) Bd :OZ“Rfl/Q{I_'_Rfl/QBgPdBd(R_BgPdBd)flRl/Q}
=Dag+Dg =By (I+A4,) {{I+Ag) Pa(I+Aa)} -R7Y2BTPp, 4,
-1
I+ A)T By — CYR™V*{I + R*BYPyB,R™/>
:Dd+Dd —BdeBd. '(I_R_l/QBgPdBdR_l/Q)_l}
-R7Y2BYp,A,
APPENDIX E =CYR™Y2{(I - R7?BTP,B,R™Y/?)
PROOF OFCONDITION (38) + R™Y2BT pyB,R™Y?)
Since P; and R are positive definite, the following identity (I -RYV?2BYPByRYHIR™V2BT P Ay
can be established: _ C(?Rflm(] _ Rfl/QBg“PdBdel/Q)fl
(R— BYP,;By)™* -R™Y2BYPA,
=R '+ R'BY(P;' — B4RT'BY) ' B4R} = Cj (R — By P4By)™ ' B] P, Aq. (66)
=R '+ R 'BjPsB4R™" + R'B] P4By By substituting (66) and its transpose into (65), (37) is easily
(R- BYPyB,)™'BY P;ByR™. (64) obtained, and the result follows.
—-P.A, — flfPC CZ — P.B.— (P.A. + AZPC)(I + Ad)_le

C.— BTP. - BT(I + AY) Y (P.A.+ ATP.) X+D.+DT
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