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The excitation of a many-body system by a time-dependent perturbation is considered within the
framework of functional integration. The stationary phase approximation to a functional-integral
representation of the final expectation values of many-body observables in the interaction picture
leads to a new time-dependent mean-field theory. The resulting equations of motion depend upon
the observable itself and consequently are nonlocal in time. The method is illustrated by an analyti-
cally soluble application to the forced harmonic oscillator.
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I. INTRODUCTION

Time-dependent mean-field approximations have re-
cently been proposed in the framework of the functional
integrals for the description of nuclear many-body scatter-
ing.!=3 In Ref. 1, a functional integral based on the
Hubbard-Stratonovich transformation®* was used to
represent many-body S-matrix elements for a system
under a time-dependent one-body perturbation. In the sta-
tionary phase approximation, this leads to very satisfacto-
ry results for the S matrix in a simple spin model' and in
more realistic atomic physics situations.® It is therefore a
promising starting point for the description of the full
many-body scattering. Indeed, any measurement involv-
ing several final and initial channels can be expressed for-
mally in terms of exclusive measurements which involve
specific outgoing and incoming channels. As was em-
phasized in Ref. 2, such a rough representation of in-
clusive measurements would imply, at the mean-field lev-
el, a very complicated average over a large number of ex-
clusive mean fields, each involving a well-defined exit
channel. To overcome this difficulty, the authors of Ref.
1 proposed to represent the expectation values of few-body
inclusive observables as functional integrals of the corre-
sponding few-body density correlation functions.? As a
result, the stationary phase approximation for the expecta-
tion value of one- and two-body operators’ led to an
averaging of the density and the density-density correla-
tion functions over all numerous exit channels through the
time dependent Hartree-Fock (TDHF) approximation.

The purpose of the present paper is to develop a formu-
lation of the full many-body scattering within a universal
functional integral representation. Apart from the fact
that this unifies the description of the various aspects of
many-body scattering and clarifies the structure of the re-
sulting mean field, our method also has several physical
advantages. First, the application of the stationary phase
approximation is unambiguous since it applies to the ef-
fective expectation values of both exclusive and inclusive
observables. In the latter case, the time-dependent mean-
field configuration depends self-consistently upon the ob-
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_servable itself. It means equivalently that the averaging

over a large number of exit channels is achieved coherent-
ly since each contributing inclusive transition amplitude is
weighted by the matrix elements of the observable within
the mean field itself. As a result of this additional self-
consistency, we will see that our mean-field equations are
nonlocal in time, in contrast to the TDHF equations. A
similar dependence of the mean field upon the observable
has also been obtained in Ref. 5 without resorting to func-
tional integrals methods.

To present our method, we have organized this paper as
follows. In Sec. II, we use the formalism of Ref. 7 to con-
struct a very general functional integral representation of
the many-body evolution operator. The nuclear scattering
is simulated by a time-dependent one-body potential. In
Sec. III, we use these functional integrals to calculate the
expectation values of many-body observables which are
constants of the unperturbed motion. In Sec. IV, we
derive the time-dependent mean-field equations from the
stationary phase approximation. Finally, we devote Sec.
V to an illustration of our method using the forced har-
monic oscillator, which has the advantage of being analyt-
ically soluble.

II. FUNCTIONAL INTEGRAL REPRESENTATIONS
OF THE TIME-EVOLUTION OPERATOR

In the absence of any external interaction, the nucleons
within a given nucleus are commonly taken to interact

through a static effective two-body interaction, 17, so that
their intrinsic motion is described by the effective Hamil-
tonian
HozzKaBalaB+%- 2 Vaﬂ&yalazaras ’ (D
aBf aPfyd

where we use the nonantisymmetrized form of the matrix
elements of the two-body interaction

Vah5=(a/3| vV | ’)/8)
in the single particle basis. Of course, the kinetic energy
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operator K represents the free motion of the nucleons. We
also assume that in the presence of an interacting target or
projectile the resulting modifications of the intrinsic
motion can be roughly described by an external time-
dependent one-body potential

W)= W,gthalag, (2a)
aB
with the boundary conditions
(2b)

lim W,g(2)=0.
|t]| >

The problem of finding the intrinsic nuclear excitations of
the various interacting systems is now reduced to solving
for the many-body evolution operator

J
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—i [ Ao
U(t],tz):Te 2 5 (3)

with the time-dependent Hamiltonian

Hty=Hy+ W) . (4)

We now employ a very general functional integral rep-
resentation for U (z,,t,) developed in Ref. 7. We simply
sketch the steps which are the most important for the
present work and we advise the interested reader to refer
to Ref. 7 for further details.

We introduce two complex bidimensional fields o and ¢
as well as two arbitrary matrices # and v, and rewrite ex-
pression (3) as the following:

i€/2) 3 (10124191 2apk

Ut,1,)=lim [ Dlo,c*ID[p,g*le  #* Uselti ), (5)
where U, (#1,t,) is the effective evolution operator
N . ~ 2 A~
U,olty,t)=T [1 1—ieK—ieW(tk)—ig(a;uﬁ+aku*ﬁ*)—ie(q;ku*ﬁT+<p’;;uﬁ)-—i—az vio, | . 6)
k=1

The purpose of introducing additional degrees of freedom
with respect to Ref. 7 through a complex o field is to pro-
vide the Hermiticity of U, for any arbitrary value of the
o field and the matrix v. As we will see later on, such a
generalization is essential for the present work in order to
ensure the Hermiticity of the mean-field itself. (This gen-
eralization was made in collaboration with Kerman.) The
quantity € divides the time interval (¢,¢,) into N slices
which define a time lattice for the time-dependent fields
o(t;) and @(t;) as well as for w( t;). The normalization
constant in Eq. (5) has been absorbed in the two measures
D[o,0*] and D[@,9*], which are otherwise simple
Riemann differential elements in the complex plane. The
one-body operators which involve matrix products in Eq.
(6) are defined as

~ T
OkVP= 2, TapiVapysdyas » (7)
aPfyd

and %) T,ﬁ represent the creation or the annihilation of two
particles

(8a)
(8b)

P

Nap= aIza } ’

ﬁaﬁ=aﬁaa .
That term in the integrand (6) which is responsible for the
two-body interaction V¥ reads similarly

02 Vﬂ0k= 2 a}Y,kVBay,sa;aLasauapﬂ,k (9)

all
indices

and appears to be a second order in the time step. Since
the mean-field equations for functional integrals such as
(5) are exclusively governed by the terms of first order in

time, and since the two matrices » and v can be chosen ar-
bitrarily, it is clear that the stationary phase approxima-

tion for the many-body propagator (3) leads to a very gen-
eral time-dependent mean-field propagator.’

In Ref. 6, the two matrices ¥ and v are shown to be
relevant only through the combinations vTv and u'y,
which have the physical meaning of trial two-body in-
teractions. In particular, the “Hartree representation,”
where

(v TU )aﬂyﬁ = VBya&

and u'u=0, allows us to take the following continuous
limit® of the lattice functional integral (5):

t
i f Lo*()Valn)dt
2 Uy(t,8,):,

(10)

Ult,t)= [ Dla(1),0*(1)]e

where the normal ordering operator (::) takes into account
the self-energy of the two-body interaction ¥ which is due
to the term of order € in the expansion of the effective
evolution operator,

t P
Uo(tl,tz)::Texp[—i ftlh[a(t)]dt] . (11)
2
Since the matrix elements of ¥ can always be chosen to be
real, h[o(2)] is the o-dependent one-body Hamiltonian

Rlo()]=K+ W)+ Lc*0Vp+o)Vp'] . (12)

In expressions (10) and (12) the single particle indices of
the two matrixial products are implicit, i.e.,

a*(t)Vol(t)= 2 U;B(I)Vﬁyasays(t) , (13a)
aByd
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*(WVp= 3 otgt)Vp,asatas . (13b)
aPByd

From Eq. (12), it is clear that making the o field com-

plex provides the extra degrees of freedom needed to

render h[o(¢)] Hermitian for any arbitrary o(z). On the

other hand, a single real bidimensional field T(i,t) is suf-

U(ty,t)= [ D[r(X,0]e

¢ —_ =
W [ [ AR ovX, XX 0d X dX dr
2
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ficient enough to make the evolution operator U,(t,t,)
Hermitian when the functional integral is expressed in the
X representation. Indeed, when the effective two-body in-
teraction ¥ is local and when V(y(,f( ') has no derivatives
and also commutes with the field operators W(i() and
WX), U(ty,t,) can be written as:

:U‘}’(t,,tz):. (14)

The effective operator U S.SE )(t1,t,) is now Hermitian for any value of the field 7(X,?):

.f’l

U? (t1,2,)=T exp

L [ aX TN TeE)+ [ aX WX ow Zwx)
2m

+ ffdid}"{'T(T(,z)ff(i,i')w*(i')wi')]d:]. (15)

We will use the expressions above to construct a functional integral representation for the expectation values of
many-body constants of the unperturbed motion. For reasons of simplicity, we will use only the continuous limit of the
Hartree representation, as embodied in either (10) or (14), but will show how to generalize the results to the case of an ar-

bitrary representation.

III. FUNCTIONAL INTEGRAL REPRESENTATIONS OF MANY-BODY EXPECTATION VALUES

If the nucleus is prepared in the state |i) at time ¢,, and if we measure at time ¢, the expectation value of any many-
body observable O which is a constant of the unperturbed motion, the result in the interaction picture is

O(t))={(i | UT(tl,tz)Uo(tl,tz)éUg(tl,tz)U(tl,tz)|i> ,

(16)

where U (¢),1,) is the full evolution operator introduced in (3) and Uy(t,,¢,) effects the unperturbed time evolution,

—ifl (8, —ty)
Uo(tl,t2)=e o .

(17a)

Although this operator appears to be irrelevant in Eq. (16) for O (t,) since

Uo(tl,tz)é\U(";(tl,tz)zé\ )

(17b)

we will see in Secs. III and IV that the interaction picture is essential to the functional integral representation of O (¢,)
since it removes the spurious dispersion due to the time evolution of the mean-field itself.

To obtain such a functional representation for the expectation value (16) of O in the interaction picture, we simply in-
troduce four complex bidimensional fields o4, o, 0;, and 05 and write, with the help of (10):

O(t))= [ D[0,0}1D[0,051D[0},0:*1D[0%,05* ]

t
. 1
W72) [ (ot Vo, —a4 Vo, +a3*Vay —ot Vo) Nt
2

X | UL (11,0, (81,6)0U L (81,6)U, (11,12):| 1) (18)

where the evolution operator U,, has been already intro-
duced in (11) and (12), and U 2,2 represents the time evolu-

tion

(19a)

t
0 . I~ '
UQ, (t1,6)=Texp | —i f,2 holoy(t)]dt

for the “unperturbed” time-dependent one-body Hamil-
tonian:

holosy(0]1=K + L3 (OVp+ay () Vp D1 . (19b)

The operator U, 2’; represents the backward propagation in
time through the unperturbed one-body Hamiltonian

RiloyA]=K +L1o5Vp+a(Vp', (20)

since the matrix elements of ¥ can always be chosen to be
real. Similarly, U Z, propagates backward in time through
1

the one-body Hamiltonian:
Rilo1(0]=K + W) + Lo *)Vp+ai(Vp '] .
(21)



1468

It should be noted that the introduction of the four dif-
ferent fields o;’s and o} ’s on the rhs of (18) generally
breaks locally the time reversal symmetry of the many-
body propagation represented in (16). However, as we will
see in the following section, this symmetry is entirely re-
stored in the stationary phase approximation to the func-
tional integral (18).

!

0(t))= [ D[0,011D[03,03]D[a1,
X | (i|:U§,lUg£OU2*2U,1:|i>| )
where the argument @ reads

1
Peff= 7

Due to the rapid oscillations of the integrand (22), the

classical values of the fields o; and o; which contribute
most to O (¢;) are solutions of the coupled equations

O@ett  Oesr
doi*

a%ff 3<Peff

(24)
d0; 3ot 3o}

=0; i=12.

To simplify the notation, we henceforth write U instead of
U(t,,t,) when there is no ambiguity about the time inter-
val of the propagation as in (22) and (23).

We now introduce the particle-hole operator in the in-
teraction picture

Po.apl)=U,(t2,)akagUs,(1,12) , (25a)
as well as its Hermitian conjugate
Pl g =Ulttr)ala Ulty0), (25b)

in order to define a generalized density operator in the in-
teraction picture

Alt)= ll[

Similarly we introduce a real superfield, 2(¢), which takes
into account the degrees of freedom of the complex field
o(t):

ot
(1) +p(t)
P ] (26a)

t)—p(t)]

*(t)+a(t)
i[o*(t)—o(1)]
With these definitions, the solutions of Eq. (24) can be

represented by the following expectation values of the
Hermitian operator 7(t):

l

2(t)= (26b)

G UT e, OUO*U,, £ (t)]i)
1 1 .

3,(t)=Re (272)

(| UZ;UO ouslu, |i)

(i|Uj,,lU° OUSF, (©U,, lz)

2,(t)=Re (27b)

(i]UZ;UO oudlu, i)

ip,
01*1D[03,05" ] ™"

t ~
Re Lz‘ (Vo — 0 Vo, +05* Vos —o* Vo )()dt +Imlog(i |:ij,I UgéougZUal: li) .
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IV. STATIONARY PHASE APPROXIMATION:
TIME-DEPENDENT
MEAN-FIELD APPROXIMATION

In order to obtain the stationary phase approximation
to O(t,), one usually separates the imaginary and the real
part of the action, so that

t
—/im [ (o} Vo~ 0% Vay+05* Voy —oi* Vol Nndr
2

22)
(23)
|
(i |7, (0U, UG 0UG U, 1)
oy o, !
i(=Re T @7¢)
(i | UL, Uq 0UG Uy, |i)
(i | UL, ULR, (00U, |i)
S5()=Re 27

ot A 70t .
(i | u, U?‘;OUSZUUI |i)

where the Wick ordering has been taken out of the expec-
tation values (27) since there is no longer any integration
over the fields o; and o} and the terms like €%a'aa’a in
the expansion of U or U, have become irrelevant in the
limit where e—0.

Since all of the = fields are real, it is clear that the set
of Egs. (27) has the particular solutions

(28a)
(28b)

o(t)=01(t);
o,(t)=05(1) ,

as well as their complex conjugates. This restores the bro-
ken time reversal symmetry discussed previously and leads
to the two coupled equations,

s _r (i |U} US O6UlU, 7, (1]i)
1 =RC ’
(i fUT us oudu, |i)

(29a)

(i | Ul US OUYR, (DU, |i)

2,(t)=Re , (29b)

(i U}”,]U220U‘3,*2U,,l i)

where the explicit dependence of X; upon o; has been de-
fined in (26b). As before, U, (#,,t,) propagates between

t, and ¢; with the Hamiltonian fz\,,l( t), which has matrix

elements
hal,aﬁ(t):Kaﬂ+ Waﬂ(l‘)-}— '%’ 2 [0"1‘,78“)1/&178
v8
+Ul,76(t)V58-ra] .

(30a)
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The effect of the unperturbed motion is cancelled by the
backward propagation between ¢; and ¢, with the Hamil-
tonian A 22(t), which has matrix elements

ho,ap()=Kag+7 3,105 16()Vsays+02,48(1) Vepyal -
vd

(30b)

From the equations of motion (29), we see that the
mean-ﬁeld/\conﬁgurations o,(2) and o0,(¢) depend upon the
operator O, whose expectation is the very thing being
sought. This is the major issue of this new time-
dependent mean-field theory. Since most of the sym-
metries of the unperturbed Hamiltonian are expected to be
broken by the mean field itself,

[0,U5[U,, 10, (31)
the dependence upon the observable O is in general re-
sponsible for a time nonlocality in Egs. (29). Indeed, in
order to determine the fields o(¢) and o,(¢) at any given
time ¢, we need to know their values between the boun-
daries ¢, and #;. We recall that a similar time nonlocality
has already been obtained in Ref. 1 and has led to a very
satisfactory mean-field description of S-matrix elements
of a schematic nuclear model.! Through the present func-
tional integral representation, we now extend these nonlo-
cal equations of motion to the mean-field description of
inclusive expectation values of few-body observables. This
does not mean that the mean field has the same structure,
independent of the physical quantity which is being mea-
sured. Rather, it is obtained in a universal way for each
particular observable.

The solutions o,(¢) and o,(¢) to Egs. (29) are highly
nonlinear in most cases. However, when o slightly
violates the corresponding symmetry of the mean field,
the fields o(¢) and o,(¢t) represent an approximate averag-
ing of the one-body density matrix #(z), (26a), over all the
possible exit channels, weighted by the corresponding ma-
trix elements of O. On the other hand, it is well known?
that in the TDHF approximation the one-body density
correlation function is approximated by an equally
weighted average over the numerous exit channels. As we
will see in more detail at the end of this section, it is there-
fore not surprising that the TDHF equations are formally
recovered from the present theory only for the trivial case
where O =1. However, since the TDHF approximation
has been found? to be successful for the description of the
expectation values of few-body observables, it is expected

ho, (V=K +W(t)—pp()d+ 5[0} (V4

and

~ A -~ A
ho (=K —pp(d+ 3030V +0(0V4p *]+¢2<t)VTﬁ t

A
+al(t)V”AT]+<p1(t)——n +<P1(t)—‘;—’ﬁ
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to be in good agreement with the present approximations
in such cases.

From Sec. II and Ref. 7, it is clear that the structure of
the equations of motion does not change when we vary the
representatlon defined by the trial two-body interactions
vTv and uTu introduced in Sec. II. Recall that the pres-
ence of the nonantisymmetrized matrix elements Vg4, g in
Egs. (30) and (31) is characteristic of the Hartree represen-
tation where (v v)aﬂ,,s— Vgyas and u'u=0. Since the HF
solution is the normal phase of the superconducting HFB
solution, it is natural to treat simultaneously the special
cases of the “Hartree-Fock” and “Hartree-Fock-
Bogolyubov representations.” Indeed, for the Hartree-
Fock-Bogolyubov representation where (vTv)aB.,s— VB,,,,S
and u'u =V1/8, the equations of motion for the mean
field are easily derived by introducing the generalized Her-
mitian density operator:

a;r,aa+a:r,aﬁ
R._1 Afer | |itapaa—alap)
M i((zrtn)) T2 | awaptapea |’ (32)
=0 Jap i(alaz—aﬁaa)
as well as two superfields ®(¢) and P,(2):
o*+o
on=1 "% = | 33
t)=— .
2 ¢7*+(P t (33)
i(@p*—@)

These two real fields ®; and P, are dynamically coupled
through the equations of motion analogous to (29):

(l | Uq;. U¢20U Uq)qu;](tHl)
®,(1)=Re H
<l |U¢1U¢20U Uq,‘ll)

(34a)

(l |U¢1U¢20U Roz(t)Uq; 11)
®,(t)=Re

(34b)
(i | UL US0US Uy |i)

The corresponding one-body Hamiltonians for the evolu-
tion operators Ug, and Uy, now include pairing correla-
tions and violate partlcle number conservation throu%h the
pair creation and annihilation operators % t=a'a’ and
7 =aa:

(35a)

* VA o~
T2 -7 (35b)
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As mentioned earlier, the equations of motion for the
Hartree-Fock representation follow naturally as the nonsu-
perconducting solutions of Egs. (34) and (35), where
@(t)=0. As before, the Hamiltonian h 2,2 cancels the con-
tribution of the unperturbed motion to (34); we emphasize
that this is done self-consistently through the coupling of
(34a) and (34b). The quantity pr(¢) is the time-dependent
chemical potential, which ensures the correct number of
particles at each time ¢:

(AY)=AA))=4 ,

where we approximate the exact many-body value on the
Ihs of (36) by its mean-field expectation value

(36)

(A= | Uf,,l(t,tz)U%,z(t,tz),‘TUE},E(r,tZ)U¢I(t,t2) li) .
(37)

Since ®;(¢) and P,(¢) are themselves functions of py(t),
the inclusion of pairing correlations within the mean field
introduces an additional self-consistency through Eq. (37).
The reader who is interested in a further treatment of

J

O (1)) =i | U (t1,1,)U% (11,1)0U (11,0,)Us (t1,1) | i},
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mean-field dynamics in the presence of pairing correla-
tions using functional integrals is referred to Ref. 7.

So far, we have kept totally arbitrary the representa-
tions defined from the trial two-body interactions v v and
uTu, and have not chosen between TDH, TDHF, TDHFB,
or any other which would be the optimal representation
for this time-dependent mean field. In Ref. 7, by varying
the trial two-body interaction v’y while uTu=0, it was
shown that, among the large variety of possible static
mean fields which do not take into account pairing corre-
lations, HF is the optimal static mean-field approximation
to the exact nuclear grand potential. Similarly, when we
allow the mean field to include pairing correlations and
vary the two trial interactions v'v and uTu, the HFB ap-
proximation is optimal for the mean-field grand potential.
Since these HF and HFB mean fields are optimal for the
description of time-independent phenomena, it is natural
to consider similarly TDHF and TDHFB as special con-
figurations for the description of time-dependent process-
es.

As a result, we end up at the stationary phase approxi-

mation for (5)(t1 ):

(38)

where o(¢) and o,(¢) are solutions of Egs. (29)—(31) within the TDHF representation, namely when the two-body in-
teraction ¥ enters the equations of motion (29) through its antisymmetrized matrix elements Vgﬂ,,s. If we decide to in-
clude the pairing in the mean field, the stationary phase approximation then leads to

O(t1) =i | U (81,6) U (11,6)0U (11,6)Ug (21,8 |1},

where ®,(z) and P,(¢) are solutions of Egs. (34)—(36)
within the TDHFB representation. This last approxima-
tion might be particularly relevant when the nucleus ex-
hibits strongly correlated nucleonic pairs that are suscepti-
ble of being excited during the nuclear scattering.

We briefly sketch the result when we choose coordinate
space (X) to construct our functional integral. As expect-
ed, the equations of motion can then be expressed in terms
of the density operator p(X)=¥"(X)W(X):

(i |ul us oudlu, pX,n|i)

(X,t)=Re , (40a)

(i |ul us oudtu, |i)

(i |U} US OUSTpX,nU,, |i)

o4(X,t)=Re , (40b)

(i |Ul US OUty, |i)

with the corresponding Hamiltonians expressed in coordi-
nate space. Since these equations of motion have the same
character as the more abstract ones above, we will not re-
peat our previous discussion. Rather, we simply mention
the two continuity equations satisfied by the average den-
sities:

(p(X)) (1)

4
3 (41a)

+div{ 7(X))(£)=0;

(39

I
(P(X)),(2)
ot

where the expectation values { ); and { ), are defined in
analogy with Eqgs. (40) and j (X) is the current operator:

1
2im

+div{ J(X))(1)=0, (41b)

JX)==—— (¥ X)V¥X) - [V¥(X) W)} .

(41c)

It is interesting to note the apparent time locality and
decoupling of these continuity equations. These are
indeed only apparent since the initial conditions for (41)
embody both the time nonlocality and the original dynam-
ical coupling of the equations of motion (40). Indeed, in
order to know the initial values of the various fields, we
need to know them at any later time.

Finally, we consider the trivial case where Ois simply
the unit operator, 1. Since the normalization of the state
of the system is conserved by unitarity during the entire
evolution, we have the identity

(D)= | UT(6,0)U(1,1,) | iy =i | i) .

For this trivial example, the two equations of motion (40a)
and (40b) reduce simply to the decoupled set,

(42a)

o(X,0)={(i | Uj,l(t,tz)W*(S’()W(X)Ual(t,tz) i),  (42b)
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o X,)=(i | UL () W' XWX)U, (61,) 1), (420
which are nothing else but the TDHF (or correspondingly,
TDHFB) equations of motion in the interaction picture.
Of course, the stationary phase approximation to {1)(z)
leads to the exact value since it represents the conserved
norm of the TDHF wave function in the interaction pic-
ture:

(D)= (i | U} (,1)U8 (1,1,)
XU (4,1,)U, (6,85) ] i)

=i |i)=()@). 42d)
We can also represent the resolution of unity 1 as the
complete sum of projectors 3, _, |m){m |, so that the
inclusive expectation value (42a) can also be regarded as a
linear superposition of equally weighted exclusive expecta-
tion values. For this extreme case, the averaging over the
numerous exit channels leads to an averaging of the one-
body density matrix in the TDHF approximation.?

V. ILLUSTRATIVE EXAMPLE:
THE FORCED HARMONIC OSCILLATOR

In this section, we illustrate our method with the exam-
ple of the forced harmonic oscillator. Since it is analyti-
cally soluble, it appropriately demonstrates how self-
consistency operates in this time-dependent mean-field
theory. In addition, this example also justifies the choice
of the interaction picture, which has been introduced in a
somewhat ad hoc manner in (16).

The unperturbed Hamiltonian is chosen to be that of a
single harmonic oscillator

a2 A2

24 p q
B,=2-4+4 | 43
0 2+2 (43)

J

O0(T)= [ D[0,1D[0,]D[0}]1D[0}]e

X{n | UL (10U, (T00UL(T,00U,,(T,0) | n) ,

where these evolution operators are defined as in Sec. IV
[see Egs. (19)—(21)] with the obvious modifications

Pa A2

holo()]=£-+0()§ (49)
for the unperturbed “effective one-body” motion and

2 A2

Rlo(0]=E-+o0g+s (07 (50)

for the overall “effective one-body”” motion.

When applying the stationary phase approximation to
Eq. (48) we can, as above, look for time-reversal invariant
solutions which satisfy
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where § and p are canonically conjugate variables satisfy-
ing the usual commutation relation [§,p]=i. The exter-
nal time-dependent potential is defined as

Wt)=£()§, (44)

so that the time-dependent Hamiltonian which describes
the entire evolution of the system reads
2 A2

ﬁ(t)=£-2-+-qi—+f(t)t’1\. 45)
In contrast to the previous sections, where the initial time
t, and the final time ¢, were arbitrary, we choose in this
section #, =0, but still keep the final time ¢, =T arbitrary.
This choice has the advantage of simplifying the search
for the mean-field configuration and obviously does not
affect the physics itself.

The system is initially prepared in an eigenstate |n ) of
ﬁo and the expectation value at time T of any operator o
which is a constant of the unperturbed motion is given by
the expression

O(T)=(n | UNT,00Uy(T,000UL(T,0)0U(T,0)|n), (46)

where
Uy(T,0)=e o7 (47a)
and
T A
U(T,0)=Texp|~i [, Aot . (47b)

There is an analogy between the operator 42 and the effec-
tive static two-body interaction f}, Eq. (1), as well as one
between the time-dependent operator f(¢)§ and the time-
dependent external one-body potential, Vf’(t), introduced
in (2a). Therefore, without any additional justification, we
employ the Gaussian transformation used in (18) and
linearize the operator § 2 which appears in (4.6) to obtain

(i/2>for[o%(r)—ag(:)+a'22(z)—o'lZ(z)]dz

(48)
I
o(t)=01(t) (51a)
and
oy(t)=05(1) , (51b)

so that the mean-field configuration satisfies the equations
(T>t>0)

DR (n| U US OUNU, 4(1)|n)
(o8] t)=Re

t 770 Ays0t (52a)
(n | U01U020U02U01 |n)

and
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(n | UL U2 0UYNG(U, |n)
oy(t)=Re ‘T N ZT : ,
(n|U; USOUJU, |n)

(52b)

where all the evolution operators run from O to 7.

Due to the simple structure of the harmonic oscillator,
oi(t) and o0,(¢) obey the two equations of motion
(T>t>0)

o(t)=—o(t)—f(2), (53a)
oy(t)=—0,(t) . (53b)
These can be directly integrated to give
o(t)=0,(0)cost +c,(0)sint
- fotf(T)sin(t -7y, (54a)
o,(t)=0,(0)cost +0,(0)sint , (54b)

where 0;(0) and 0;(0) remain to be defined self-
consistently from (52a) and (52b). To do so, we reexpress
all the evolution operators which appear in (52) in the in-
teraction picture defined by 52,

ﬁa(tl,t2)=exp(iﬁ2t1 /2)U,(ty,t;)exp(—ip %, /2) .
(55)

This transformation leaves both o0;(0) and &;(0) invariant
and greatly simplifies their evaluation since, for any func-
tion @(t), we have the parametrization (see Refs. 1 and 8)

J
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T | $2 . -
Texpi—i fo %+<P(t)t’1\ dt t=e*DA[a(T)],
(56a)
with
Ala()]=eDa’~a*Da" (56b)

The value u(T) is real in order to ensure the unitarity of
(56a),

T
w(T)= fo Im(aa*)(t)dt , (57)

and a(?) is a complex function of time defined between 0O
and 7,

i t .
a)=——= [ @r)1+indr. (58)

It is then a matter of simple algebra to evaluate the sta-
tionary phase approximation to (48),

O(T=0%T)=(n |A[—B(T)IOA[B(D]|n) ,
(59a)

in terms of the complex parameter B(7) which can be ex-
panded in the following form:

- : r
BI)=——5 [ (1+ilf ()+0,(0—ot)ldt = —=[01(0)—03(0)] [ (1+it)cost dt

The initial values o;(0) and ¢;(0) are simple linear func-
tions of B(T),

01(0)—0’2(0)=\/§RCB( T) )
61(0)—0,(0)= —V2ImB(T) .

(60a)
(60b)

The choice of this forced harmonic oscillator is now clear
since its analytical simplicity reduces the self-consistency
of the time-dependent mean-field configuration to a linear
two-dimensional system. Indeed, this leads after integra-
tion by parts to the compact form,

{ r it
BT)=——= [ fnetdr . (61)
For some particular choices of O, we have taken the un-
perturbed Hamiltonian ﬁo, as well as the projector
|m){m | for any eigenstate |m) of H,. These particu-
lar values of O obviously satisfy the required commuta-
tion relation

[0,H,]=0. (62)

i .. . T L.
—~5161(0~52(0)] fo (1+it)sint dt

——= [ i [fw— [ 7 sinte —rdr |d .

(59b)

By substituting the value (61) of B(T) into Eq. (59a), the
total unperturbed energy at time T,

(AN (T)=(n |UNT,0H,U(T,0)|n), (63a)

is approximated at the mean-field level by the energy

(A)AT)=n+++|BD|*. (63b)

The time of measurement T has been kept arbitrary for
the sake of comparison with the exact value, although in
most of the physical applications, the limit T— o, for
which | f(T)| —0, is the only one relevant.

The expectation value of the projector |m ){m | is the
probability

Ppn(T)= | {m |U(T,0)|n)|? (64a)

that the system, initially in the unperturbed state |n), is
excited (or deexcited) to the unperturbed state |m ), by
the external potential acting during the time 7. It is simi-
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larly approximated with the stationary phase level by the
quantity

n;! _ .
Pon(T)=——re 7 x" ™" ; (64b)

s

(L, ]2,

where L¥ is a Laguerre polynomial and x = | B(T) |2 The
integers n; and ng are related to the initial and final quan-
tum numbers z# and m by the relations:

(65a)
(65b)

n;=inf(n,m) ,
ng=sup(n,m) :

We would like to emphasize that although the probabil-
ity P2, (T) obtained in Eq. (64b) is identical to the one de-
rived in Ref. 1, the fields o,(¢) and o,(¢) are entirely dif-
ferent since they are self-consistently defined by the opera-
tor |m){m | through the set of Egs. (52).

In order to compute the exact values (63a) and (64a), we
use the interaction picture defined by A o for the evolution
operator,

—iflyt,

A~ il oA
U(t[,t2)=e‘H°‘1Texp [——i ft 1H(t)dt]e (66)
2

We then find the remarkable result that the mean-field ex-
pectation value of any observable which satisfies (62) coin-
cides with the exact corresponding expectation value. In
particular, for any arbitrary f(z), we have the identities

(Ho)(T)=(H,)T),
P (T)=PS(T) .

(67a)
(67b)

We close this section with a justification of the use of
the interaction picture by pointing out the deficiencies en-
countered in the direct Schrodinger picture. To do so, we
rewrite the functional integral (48) in the Schrédinger pic-
ture by only introducing two real bidimensional fields o,
and o}

. T 20?2
O(t;)= fD[a,]D[a'l]e('/Z)fo [o}—a)An)]ar

x{n | Uj;,l (T,000U, (T,0)|n) . (68)

The derivation of the equations of motion for the re-
sulting mean field proceeds formally as before and we will
not repeat it. The associated self-consistent equations are,
however, in the general case, more difficult to solve
analytically. This is why at the end of this section we
choose to test the time-dependent mean-field theory fol-
lowing from (68) through its asymptotic static limit by
taking f(¢)=0. For a further simplification, we assume
the system to be initially in the ground state |0) of the
harmonic oscillator.

Since there is no external potential, the system will al-
ways remain in its ground state |0) so that at any time T,

1
[(14+T%/4)]'72
(69)

P80(T)= | <ole—i32T/2|0> |2=

A quick look at Egs. (68) and (69) shows that the failure
of the mean field, maximal at T— « where P80( 0 )—0,
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results from the dispersion of the “mean-field” wave func-
tion. This dispersion comes from the free (kinetic) propa-
gation, which should clearly be removed as in (48) in order
to give a sensible mean-field description.

A similar deficiency occurs when we look for a mean-
field approximation to the constant energy of the system

iH,T A —if,T
0 Hoe 0

(HoX(T)=(0]e [0)=+ . (70)

The free propagation then delocalizes the mean-field
wave function from the center of the harmonic oscillator
where it is initially peaked. Equivalently, this propagation
excites the system to higher quantum numbers and, in any
event, leads to the approximation

2
1+~

» (71)

which diverges as T— o0. This dramatically illustrates
how, in the general case, the interaction picture removes
the dispersion due to the free propagation in the mean
field itself.

VI. CONCLUSION

We have proposed a time dependent mean-field theory
for the expectation values of many-body observables
which are constants of the unperturbed motion. Although
we have treated the case of a static two-body interaction
in a one-body external potential, Sec. I is easily general-
ized to the case of any static effective interaction which
includes many-body forces in the presence of any time-
dependent many-body external potential.

We have shown that the mean-field configuration de-
pends upon the measured observable itself and that the
stationarity equations are highly nonlocal in time, in con-
trast to the TDHF equations. Namely, the determination
of the various fields at any time requires their determina-
tion at any arbitrary time between the initial and final
times. We have also proposed a way of including the pair-
ing correlations within the time dependent mean-field ap-
proximation.

As an application, we have tested our method on the
analytically soluble model of the forced harmonic oscilla-
tor. The mean-field expectation values of the constants of
the unperturbed motion are identical with the exact
values. We have also demonstrated that the functional in-
tegral should be formulated in the interaction picture in
order to eliminate the spurious mean-field dispersion.

Finally, we emphasize once more that the present
scheme allows the treatment of any many-body observable
which is a constant of the unperturbed motion. As a ma-
jor consequence, we are able to describe, within the same
functional integral formulation, exclusive measurements
which involve many-body observables (such as any eigen-
state projector), as well as inclusive measurements involv-
ing few-body observables (such as the Hamiltonian itself).
It is evident that our description of exclusive measure-
ments is not complete since only moduli of the S-matrix
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elements emerge from our theory. This is in contrast to
Ref. 1, where the S-matrix elements were directly approxi-
mated through a path integral formulation which has a
structure similar to that used in this work.

The present time-dependent mean-field theory is a good
candidate to unify and describe the various aspects of the
many-body scattering problem. In particular, it is of in-
terest in future work to correlate the degree of time nonlo-
cality in the determination of the mean-field configura-
tions o0(¢) and o,(¢) with the nature of the observable it-
self and to establish a closer comparison with the TDHF
approximation. The next step in this direction would be

T. TROUDET AND S. E. KOONIN 28

to make quantitative evaluations on more realistic models
of scattering.
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