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We derive a resolution of unity over real Slater determinants using simple symmetry arguments. The
resulting simplification of the measure with respect to the previous representations makes it a good candi-

date for stochastic evaluations.

There has been recent interest in functional and path-
integral representations of many-fermion systems. These
provide a natural framework for semiclassical approxima-
tions and have already proven useful for emphasizing the
role of static and dynamic mean-field theories in the nuclear
many-body problem. A recent review of the subject can be
found in Ref. 1.

The Monte-Carlo evaluation of fermion path integrals is
therefore a natural issue in connection with nuclear struc-
ture physics,? and so it is of interest to consider compact
path-integral representations with as few redundant degrees
of freedom as possible. One step in this direction was re-
cently taken® with the coherent state representation by in-
tegrating out the imaginary part of the complex variables of
the resolution of unity proposed in Ref. 4. The purpose of
this note is to propose an alternative to ‘the real coherent
state resolution of unity using a simple real Slater deter-
minant (RSD) representation.

One advantage of this new resolution of unity is its
straightforward construction through elementary symmetry
arguments; complex and real parametrizations appear on
equal footing. This is of some pedagogical interest. In addi-
tion, the RSD resolution of unity has a trivial measure on a
domain of integration which is the surface of a many-
dimensional hypersphere. The sampling of paths in numeri-
cal simulations is thus greatly simplified.

We introduce A arbitrary single-particle wave functions
|p;) that we expand in the truncated single-particle basis
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where D [k] is the simple measure
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and we sum over all possible sets of configurations {n;} and
{n/}. Because of the Pauli principle, the contribution of
each separate set {n;} and {n/} to Eq. (4) is nontrivial only
when their elements are distinct within each set. In addi-
tion, two sets {n;} and {n/} contribute only when they are
globally identical. To prove this last point, change all the
variables ¢;(n;) of the integrand (4) into — ¢,(n;). Under
this transformation, the sign of the whole integrand is given
by the sign of the product P(n;)P(n;/) where P(n;) is de-
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where the coefficients ¢;(n;) = (n;|$;) are arbitrary real
numbers. Upon defining |CIJ) as a Slater determinant of the
A orbitals |¢;):
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we can introduce the operator
A
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where the measure D[¢] is a simple product of Riemann
differential elements
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Equation (3a) shows that f’N is a linear superposition of
Slater determinants, the only constraint being that the
single-particle orbitals are orthonormal. We now show that
P ~ is proportional to the identity operator in the subspace
of A -particle antisymmetric wave functions generated by
By. To do so, we expand Eq. (3a) in the basis of Slater
determinants |n,n,, . . ., ny) and express the & function in
terms of a multidimensional Fourier transform on the vari-
ables kj:
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fined as
P(nl)=d>1(n1) vt ¢A(n,4) (6)

Since n, can occur only once in the set {n;}, P(n;) changes
into —P(n;) and consequently n; must appear once in
P(n/) in order to leave the integrand invariant. Applying
successively the same transformation to nj,ns3, ... ,ngs we
conclude for a nonzero contribution to Eq. (4), only when
the two sets {ny, . ..,n4} and {n{, ..., ns} are identical.

If we take into account all the possible permutations of
both sets {ny, ...,nys} and {n{,...,ns}, we can choose
some particular lexicographic ordering and rewrite 13N as

I3N= |n1,...,nA)(nl,...,nAlllni] (78.)
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and /[n;], defined for the set {n,, . .
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., n4}, is the integral
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where M (n;) is the square 4 X A matrix
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From Eq. (7b) it is straightforward to see that I[n;] is in-
dependent of the choice of the set {#;} and is identical to a

positive definite constant Iy:
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where M (¢) is an arbitrary 4 X 4 matrix of the type (7c).

We have thus proved that the operator 13N introduced in
(3a) is directly proportional to the projector on the subspace
of antisymmetric many-body wave functions built from By.
It is therefore a resolution of unity constructed from real
Slater determinants. A numerical simulation using Eq. (3a)
is conveniently accomplished by sampling randomly A4
orthonormal vectors |¢;) on the N-dimensional unit hyper-
sphere.®

In order to calculate the normalization constant Iy de-
fined in Eq. (8), it is advantageous to express the trace of
the operator Py in both representations (3a) and (7a),
which leads to
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The latter integral is simply the volume of the manifold
O,4~ which consists of the 4 XN rectangular matrices O

satisfying the relation
00T=1") | (10)

This manifold O,y coincides with the set of the cosets of
the orthogonal group Oy with respect to its subgroup Oy — 4
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consisting of matrices of the form
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where Ony_,4 is any real orthogonal matrix of dimension
N — A. Therefore, the integral (9) is the ratio of the
volumes of the orthogonal groups On and Oyn-4. These
volumes have been computed in Ref. 6 by direct integration

of the matrix elements of the real orthogonal matrices.
This leads to

an
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It is obvious that the symmetry arguments we have used
also can be applied to a complex parametrization of the
wave functions. This leads to a resolution of unity of the
form (3a) where the measure D[¢] is
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and the integration over the variables ¢;(n;) would cover
the entire complex plane.” As before, the volume of the
manifold which consists of 4 X N matrices U satisfying the
relation

uut=1 (14)
is the ratio of the volumes of the corresponding unitary
groups Uy and Upy-,4, so that for the complex
parametrization®

A! _
Iv= . 2 (A4/D)(AN -4 +1) .
NMN-A+DIN—A+2)! - N (2m)
15)

13. W. Negele, Rev. Mod. Phys. 54, 913 (1982).

2S. E. Koonin, in Proceedings of the Nuclear Theory Workshop, Santa
Barbara, 1981, edited by G. F. Bertsch (World Scientific, Singa-
pore, 1982), p. 184.

3J. Dobaczewski and S. E. Koonin, Cal. Tech. Report 1983 (unpub-
lished).

4J. P. Blaizot and H. Orland, Phys. Rev. C 24, 1740 (1981).

5T. Troudet and S. E. Koonin, Phys. Rev. Lett. 51, 1103 (1983).

SL. K. Hua, Harmonic Analysis of Functions of Several Variables in the
Classical Domains (Americal Mathematical Society, Providence,
RI, 1983), Vol. 6.

7A. K. Kerman, S. Levit, and T. Troudet (unpublished).



