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Abstract—One-dimensional analysis is used to find an upper and lower bound to the drain current of
MOS transistors. The drain and source depletion regions and charge carrier velocity saturation are taken
into account. These considerations are important in small devices.

As the channel length of a MOS transistor is made smaller, two corrections to the standard theory [1]
should be considered. First, the drain and source regions are no longer negligible compared to the channel
length. Second, charge carrier velocity saturation becomes important. One-dimensional analysis, including
these two corrections, is used to find an upper and lower bound to the drain current.

1 One-Dimensional Analysis

The metal-oxide-semiconductor (MOS) transistor is essentially a two-dimensional device. It can, however,
be analyzed approximately as a one-dimensional device, provided that 1) the channel plus substrate
charge per unit area is determined exclusively by the gate voltage and not by the source or drain voltages
(all voltages are referred to the substrate), and 2) the electric field component along the channel should
be small compared to the normal component in the silicon surface. Both conditions are satisfied in the
central region of the channel defined by WS < x < (L−WD). L is the channel length, and WS and WD

are the source and drain depletion region thicknesses in absence of the gate, as shown in Fig. 1. Thus, the
one-dimensional analysis can be applied only to the central region of the channel. The problem is then to
determine the boundary conditions, i.e., the channel voltages at x = WS and x = (L−WD). This is a
difficult problem because two-dimensional analysis cannot be avoided.

Figure 1: Cross-section of an n-channel MOS transistor. Drain and source depletion regions in absence of
the gate extend to the dashed lines. The x, y coordinates used in the analysis are shown.
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We shall consider an n-channel device. The charge per unit area induced in the silicon by the gate voltage
is the sum of the channel charge per unit area −Q, and the depletion region space charge per unit area
−
√

2εqCBV . V is the substrate band bending, CB is the substrate doping concentration, ε is the silicon
permittivity, and q is the electronic charge. The electric field in the gate oxide is (VG − VFB − V )/x0,
where VFB is the flat-band voltage and x0 is the oxide layer thickness. Thus

Q+
√

2εqCBV = C0(VG − VFB − V ) (1)

where C0 ≡ εox/x0 is the oxide capacitance per unit area. εox is the oxide permittivity.

The drain current ID can be obtained by solving the differential equation

ID = Z

∫ w

0

qn(x, y)v(x, y)dy ≡ ZQveff (2)

where n and v are the charge carrier concentration and velocity, Z is the channel width, Q ≡
∫ w

0
qn dy is

the channel charge per unit area given by Eq. 1, and veff is the effective carrier velocity. We approximate
the effective carrier velocity by

veff = v0 ·
dV

dx
/

(
dV

dx
+

v0

µeff

)
. (3)

This expression has the correct behavior at the two asymptotes. For low electric fields in the x direction
veff ≈ µeff(dV/dx), where µeff is the effective mobility. For high electric fields in the x direction veff ≈ v0,
where v0 = 1× 107cm/s is the saturation velocity of electrons in silicon.

The solution of Eq. 2 with the boundary conditions V = V1 at x = x1, and V = V2 at x = x2 is

ID =
ZC0µeff[

L′ + µeff

v0
(V2 − V1)

] {(VG − VFB)(V2 − V1)− 1

2
[V 2

2 − V 2
1 ]− 2

3C0

√
2εqCB[V

3/2
2 − V 3/2

1 ]

}
(4)

where L′ ≡ x2 − x1. Notice that the effect of charge carrier velocity saturation is to replace the length L′

by [(L′ + (µeff/v0))(V2 − V1)]. Eq. 4 is only valid for V1 ≤ V2 < V2sat where V2sat is the channel saturation
voltage defined by

∂aID
∂aV2

∣∣∣
V2=V2sat

= 0. (5)

It can be shown that when V2 = V2sat, the charge carriers at x = x2 have the saturation velocity v0, so
that the channel charge per unit area at x = x2 is

Q(V2sat) =
ID
Zv0

. (6)

In addition, if V2 = V2sat, the electric field along the channel dV/dx is infinite at x = x2. Since the electric
field cannot be infinite, we conclude that the channel voltage at x = (L −WD) is always smaller than
V2sat.

1

The dependence of the effective mobility on the electric field component normal to the silicon surface was
not taken into account when integrating Eq. 2. This effect can be approximated by an empirical relation
[1] between µeff and the “average” electric field component normal to the silicon surface, defined by

ES = [VG − VFB −
1

2
(V1 + V2)]

C0

ε
. (7)

1This statement is also confirmed by a first-order two-dimensional analysis of the fields near the drain [2].
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2 Upper Bound

At the source, the substrate band bending V at onset of strong inversion is V = VS + 2φ. At the drain, it
is V = VD + 2φ. φ is the difference between the Fermi level and the intrinsic Fermi level in the bulk of
the substrate. An upper bound to the drain current can be obtained from Eq. 4 by setting L′ equal to
(L−WS −WD), V1 = VS + 2φ, and V2 = VD + 2φ or V2 = V2sat, whichever is smaller. This is equivalent to
applying the one-dimensional analysis from x1 = WS to x2 = (L−WD), but instead of using the correct
(but unknown) boundary conditions V1 and V2, we use a lower bound for V1 and an upper bound for V2.
As a result, the drain current obtained by this approximation is an upper bound to the actual current.
Standard theory [1] and this upper bound are compared with experiment, for a particular MOS transistor,
in Fig. 2(a) and (b).

Figure 2: (a) Standard theory, (b) upper bound, and (c) lower bound are compared with the experimental
drain characteristics of a particular MOS transistor. The transistor characteristics are L = 3.4 µm,
Z = 51 µm, VFB = −1.0 V, x0 = 1100 Å, CB = 2.8 × 1015 cm−3, and µeff = 0.0770 − 1.25 × 10−9 · ES
(m2/Vs). The source voltage is VS = 0 V. All voltages are referred to the substrate.

3 Lower Bound

A lower bound to the drain current is obtained from Eq. 4 by setting L′ equal to the source-drain spacing
L, V1 = VS + 2φ, and V2 = VD + 2φ or V2 = V2sat, whichever is smaller. This is equivalent to assuming
that the one-dimensional analysis is valid from source to drain. This approximation underestimates the
channel charge per unit area near the drain and near the source, because even without the gate, the
substrate is already depleted near the drain or the source. Thus, we conclude that this approximation is a
lower bound to the drain current. This lower bound is compared with experiment in Fig. 2(c).

4 Summary and Conclusions

The gate turn-on voltage VGT is obtained from Eq. 1 by setting V = VS + 2φ and Q = 0. The result
is

VGT = VFB + VS + 2φ+
1

C0

√
2εqCB(VS + 2φ). (8)
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If VG ≤ VGT , ID = 0. If VG > VGT ,

ID =
ZC0µeff

[L− α(WS +WD) + (µeff/v0)(VD′ − VS)]

·
{

(VG − VFB − 2φ− 1

2
VD′)VD′ − (VG − VFB − 2φ− 1

2
VS)VS

− 2

3C0

√
2εqCB[(VD′ + 2φ)3/2 − (VS + 2φ)3/2]

} (9)

where VD′ = VD or VD′ = VDsat, whichever is smaller.

The drain saturation voltage VDsat is defined by

∂ID
∂VD

∣∣∣
VD=VDsat

= 0. (10)

(The drain depletion region WD is kept constant during the differentiation.) In Eq. 9, it is understood that
VD ≥ VS, and that neither the source nor the drain junctions are in forward conduction. An upper bound
to the drain current is obtained from Eq. 9 by setting α = 1. A lower bound is obtained with α = 0. The
correct value of the factor (or function) α can only be obtained from a two-dimensional analysis, or from
experiment. The present analysis guarantees that 0 < α < 1.

Eq. 9 is the same as the standard expression except for two additional terms in the denominator:
−α(WS +WD), which takes into account the depletion regions and (µeff/v0(VD′ − VS), which is due to
velocity saturation of the charge carriers.

The standard expression is quite good even for channel lengths as small as 4µm because the two corrective
terms are of similar magnitude and opposite sign. The upper and lower bounds do not differ by more
than a factor of 2, even for the smallest MOS transistor determined by fundamental physical limitations
[3].
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