A Caltech Library Service

A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea

Sarpeshkar, Rahul and Lyon, Richard F. and Mead, Carver (1998) A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea. Analog Integrated Circuits and Signal Processing, 16 (3). pp. 245-274. ISSN 0925-1030. doi:10.1023/A:1008218308069.

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item:


Low-power wide-dynamic-range systems are extremely hard to build. The biological cochlea is one of the most awesome examples of such a system: It can sense sounds over 12 orders of magnitude in intensity, with an estimated power dissipation of only a few tens of microwatts. In this paper, we describe an analog electronic cochlea that processes sounds over 6 orders of magnitude in intensity, and that dissipates 0.5mW. This 117-stage, 100 Hz to 10 KHz cochlea has the widest dynamic range of any artificial cochlea built to date. The wide dynamic range is attained through the use of a wide-linear-range transconductance amplifier, of a low-noise filter topology, of dynamic gain control (AGC) at each cochlear stage, and of an architecture that we refer to as overlapping cochlear cascades. The operation of the cochlea is made robust through the use of automatic offset-compensation circuitry. A BiCMOS circuit approach helps us to attain nearly scale-invariant behavior and good matching at all frequencies. The synthesis and analysis of our artificial cochlea yields insight into why the human cochlea uses an active traveling-wave mechanism to sense sounds, instead of using bandpass filters. The low power, wide dynamic range, and biological realism make our cochlea well suited as a front end for cochlear implants.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:© 1998 Kluwer Academic Publishers. Received May 9, 1997; Accepted November 19, 1997.
Subject Keywords:cochlea, wide-dynamic-range, cochlear implants, low-power, automatic gain control, traveling wave
Issue or Number:3
Record Number:CaltechAUTHORS:20150127-164613163
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:54158
Deposited On:28 Jan 2015 00:51
Last Modified:10 Nov 2021 20:29

Repository Staff Only: item control page