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We present a method for calculating the continuum wave function in electron-molecule scattering for an
N X N discrete-basis-set representation of the potential. The method is based on the T-matrix method
introduced by Rescigno, McCurdy, and McKoy. In this work, the wave function is used in a prescription for
the variationally corrected partial-wave K matrix analogous to Kohn’s variational formula for the scattering
amplitude in three dimensions. Results presented for e ~-H, scattering in the static-exchange approximation

are in good agreement with other accurate calculations.

I. INTRODUCTION

There is currently a need for the development
of accurate ab initio methods for electron-mole-
cule scattering calculations. Discrete-basis-set
methods are of particular interest due to the suc-
cess of these methods in molecular-bound-state
calculations and in spherical potential scattering
calculations, Unfortunately, the standard varia-
tional methods for scattering introduced by
Hulthén,! Kohn,? and Rubinow® are not readily ap-
plied to nonspherical potential scattering. Re-
cently, several new basis-set methods have been
introduced which avoid the technical difficulties
encountered in the standard methods. Accurate
results for elastic electron-molecule scattering
have been obtained by Schneider and co-workers*+®
by applying the R-matrix method introduced by
Wigner and Eisenbud.® In this approach, configura-
tion space is divided into two regions and a set
of square-integrable basis functions is used to
describe the scattering wave function in the inner
region. Another approach is to represent the
potential by its projection onto a subspace of
square-integrable functions,

N
vt= 2 la)alulp)el, (1)
a,B=1

and solve the scattering problem exactly for U®.
This is the approach used in the J-matrix method
of Heller and Yamani’ and in the T-matrix method
for electron-molecule scattering introduced by
Rescigno, McCurdy, and McKoy.?

In the T-matrix method, the scattering problem
is expressed by the Lippmann-Schwinger equation
for the transition matrix,

T=U+UG,T . @)

In actual calculations it is more convenient to work
with the K matrix, which is obtained by using the
principal value free-particle Green’s function

GOP in Eq. (2). Inserting the separable potential

U? into Eq. (2) then leads to a finite matrix equa-
tion,

" (alK|BY=(alUIBY+ D (a|Uly) |GE|6) (5IK|B),
Y, 671
(3)

which has the solution
Ki=(1-U'GH)v®. (4)

The on-shell partial-wave K matrix is obtained by
the transformation

(Rlm K |R1'm'y =~k Z(kl m|a)(a|K|BY(BlRL'Mm").
aB
(5)

As discussed previously,? the truncated potential
U can be constructed for a multicenter Gaussian
basis set using standard molecular-bound-state
computer codes. Equation (3) involves Gaussian
matrix elements of the free-particle Green’s func-
tion. As shown by Ostlund® and by Levin et al,,'°
these matrix elements can be reduced to expres-
sions involving the complex error function for
which efficient algorithms exist.’? The Bessel-
Gaussian overlap-matrix elements occurring in
Eq. (5) can also be reduced analytically to closed-
form expressions.!? Thus all the matrix elements
needed to compute the partial-wave K matrix for
the truncated multicenter potential U*! can be ob-
tained without numerical quadrature, even for
polyatomic targets.

By solving Eq. (3), one obtains scattering in-
formation without calculating the scattering wave
function for the associated Schrodinger equation
(in a.u.)

(-v2+Ut -E*Wt=0. (6)

However, it is often desirable to have a represen-
tation of the wave function itself. An important
application is the correction of (klm |K|kl'm')'
through first order for errors due to the difference
U-U*®. This involves the following variational
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formula:
RIm|K|RUm ") = (kIm|K|RlI'm ")
+ @l U =U g my. (T)

Equation (7) for the variationally stable partial-
wave K matrix is analogous to Kohn’s formula for
the scattering amplitude in three dimensions.? A
representation of the wave function is also of
interest for the calculation of distorted-wave-
approximation matrix elements, which occur in
electronic excitation by electron impact and other -
electron-molecule continuum processes.

In this paper we present an efficient technique
for generating the scattering wave function ¢, ,,
from the solution of Eq. (3). The method involves
the numerical solution of a set of uncoupled in-
homogeneous, one-dimensional ordinary differen-
tial equations, and does not require a single-cen-
ter expansion of the potential. To show the utility
of the method, variationally stable K-matrix ele-
ments are presented for e -H, scattering in the
static-exchange approximation. These results in-
clude Z,-symmetry K-matrix elements for incident
momenta from 0.1 to 1.0 a.u. Examples of Z, and
I, symmetry results are also given. These re-
sults are in good agreement with the results of
other accurate calculations.?

II. THEORY

In the fixed-nuclei approximation the Schro-
dinger equation for an elastically scattered elec-
tron is of the form

[-V2+U(R,T) - k*Jyi(F) =0, (8)

where U(R,T) is an optical potential for the ef-
fective interaction between the target and the
scattered electron. The potential depends para-
metrically on the relative coordinates of the tar-
get nuclei, denoted by R. The vector subscript

K indicates the dependence of the wave function on
the direction as well as the magnitude of the in-
cident momentum. Except as noted, atomic units
are assumed throughout. Imposing the standing-
wave boundary condition leads to the asymptotic
form

iy ] ( T o o kL coskr>
zpk(r)—» W e =274k lKlk) p (9)
as 7 - », where k’ =k# and we have chosen the
normalization

Wrlywy=0k -Kk"). (10)

The incident-direction dependence of the scat-
tering wave function may be expanded in the par-
tial-wave series

1/2 n
() = ( %) ; BV VE(R) . (11)
The function §,,,(T) is the scattering wave function
when a particular incident partial wave is speci-
fied. For a linear target molecule with internu-
clear axis along the z axis, ¥,;,(f) may in turn be
expanded in the partial-wave series

lpklm(-f)zz Z1rmlBy V)Y o (#) . (12)
1’

Equation (12) defines a set of radial continuum
functions with the asymptotic form

Si1rmBy¥) = 3,/ (RY)6,,0 = v, ()R I'm |K| R Im) (13)

as ¥ - «, where j,(k7), y,(k») are the regular and
irregular spherical Bessel functions. The partial-
wave K matrix is related to the plane-wave-rep-
resentation K matrix according to

' o\ = _1_ =1 1oyt )
&' KK = - Z IZ PV RUm K| RIm )

1'mm’
XYI 'm'(g')y?(m(ié) ) (14)
where the set |E> denotes the normalized plane-
wave state

Lo 1 kT
(;bk - (2,”)372 e

If the exact potential is replaced by the trun-
cated potential U¥, the scattering wave function

satisfies Eq. (6) and, equivalently, the Lippmann-
Schwinger equation for the wave function,

Bhim = Prim + G5 (VU Vprm (15)
where ¢4, =7,(k7)Y;,(¥). Substituting the identity
K'Opim=U Ypim (16)

into Eq. (15) yields an expression for ¢,, in terms
of the solution of Eq. (3):

Vpin=bpim+ Gl (RK Py - (7
Substituting the partial-wave expansion of the
principal-value free-particle Green’s function -

Gy (s 7, 1) =3 kjy(kr )y, (krs) Y1 (#) Yia(#) (18)
im

into Eq. (17) leads to the asymptotic form

wzlm(-f)" Z [jz'(k7)51 "

T
— y(kr)(RUm|K|RIm Y] Y, (7)  (19)

as r— ., Comparison of Egs. (12), (13), and (19)
shows that g}, satisfies the same asymptotic
boundary condition as the exact scattering func-
tion except for the replacement of (kI’m|K|klm)
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by (kl'm|K|kIm)*.
To calculate a numerical representation of
Ui ms Eq. (16) is substituted into Eq. (6) yielding
the inhomogeneous equation
("vz_kz)wltzlm:K’(Pklm' (20)

Substituting the single-center expansion

zl}ltelm: Z gk, 7) Yt'm(;’) (21)
ll

into Eq. (20), multiplying on the left by Y} ,(#),
and integrating with respect to # leads to a set of
‘uncoupled ordinary differential equations,

d? "(r+1)
(— Tt - kz) 78 110m(Rs )

=y (Y, |KtRIm),  (22)
where

(VynlKE RImy =" (V@) (a|KIBY B, V1 -
B
: (29)

A prescription for obtaining a numerical solution
of Eq. (22) subject to the boundary conditions

limrgt, .(k,7)=0, (24a)
r—>0
and
ghiimRy¥) = 3, (B¥) 6,0 — v, (kY )R Um|K | RLm)*
(24b)

as -, is given in the Appendix. As discussed
previously,’?+!* the matrix elements (Y;,|a) and

(@]j,Y;m) can be evaluated analytically for arbi-
trary Guassians.

This technique for calculating electron-mole-
cule continuum functions involves considerably
less computational effort than direct numerical
integration of the Schrodinger equation [Eq. (8)]
for the exact potential U, particularly when ex-
change is included. Moreover, it avoids the
severe convergence problem which occurs when
the dynamical solution is obtained via a single-
center expansion of U. In the T-matrix method
the dynamical solution is obtained in terms of
multicenter Gaussian functions. The price for
computational simplicity relative to an exact
numerical solution of the Schrédinger equation
is the lack of point-by-point variational stability
in the functions g!,,,.(k,7). However, the function
g1,/m and the K-matrix element (klm|K|kl'm)*
should converge uniformly to the exact results as
the basis set is increased. One does not expect
to find pseudoresonances in the behavior of the
approximate K-matrix elements (kim|K|kI'm)t of
the type which occur in the standard variational
methods for scattering of Hulthén, Kohn, and

Rubinow.'® This feature of our approach is dis-
cussed by Heller and Yamani’ in the context of
the J-matrix method. For an extensive discus-
sion of algebraic variational methods, see Truhlar
et al.*®

To verify the variational formula [Eq. (7)] for
the partial-wave K matrix we follow Mott and
Massey!” and define the functional

I= f ¥, L, dT , (25)

where ‘1’1 = llbkllm! wz = lp;:lzm’ L=v 2+ R? - U} and 1p1,l!)2
are solutions of Eq. (8) subject to the boundary
condition given in Eqs. (12) and (13). Consider
the variation of I due to variations in ¥, and ¢,
which preserve their asymptotic form, i.e.,

Sy~ - 8klm|K|klym) y, Y ;1 (26)
’I
as v—-o, Since Ly, =Ly, =0, we have

of= [ [, V*(o9,) - 69,724, ] 27)

through first order in 6. Using Green’s theorem
gives

) 9
o= f (zpz = (89) = By (¢z>) as, (28)

where S is the surface of a sphere centered at the
origin and of such large radius that ¥, and y, have
taken up their asymptotic forms. Using the as-
ymptotic forms of the Bessel functions

4, (kr)~ sin(ky - 5 In)/kr, (29a)
y,(kr)~ — cos(kr — 5 In)/kr (29b)

as - o, we substitute the asymptotic forms of
69, and ¥, into Eq. (28). Then we integrate over
angles and, neglecting terms of order 1/», we
obtain :

oI =—(1/R)o¢kl ,m|K |kl ym) . (30)
Since I vanisheé if , is an exact solution of Eq.
(8) and
8¢kl m|K |kl my= (kl,m|K|kl,m) - (kl,m|K|k]l,m),

(31)

it follows that the variationally corrected K ma-
trix is given by

(kl,m|K |kl m)* = (kl,m|K |kl m) +FI. (32)

The distorted-wave-approximation form of Eq.
(32) given in Eq. (7) follows from the exact
treatment of the free-particle Hamiltonian in Eq.
(8).% ,

For a closed-shell diatomic molecule the static-
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exchange potential is of the form

N
2Z 27
U=-— — - — +2 (27,-K,), (33)
|F-&| |F+A] ?—; o e
where the Coulomb operator
o()= [ o3 ‘q (34)

and K, is the COrrespondmg exchange operator.
The nuclear charge is denoted by Z, the nuclear
centers are located at i:K, and N is the number

of occupied orbitals ¢,. Equation (7) involves the
matrix elements <¢’I€lm| Ulwlil’m> and <¢£IM{U'|¢;I'M> .
The latter is given by

Wriml U H|0k1rm) = (RIm|(K*GE + 1)U H(1 + GEK?) |k U'm)
(35)
and involves only components of K, Gf;, and U

within the subspace {|a)}. To evaluate the ma-
trix element

Whiml Ul m)= 3 (& hpm Yol U =T )]
ba

X g:’quqm> ’ (36)

we use the single-center expansion method for-
mulated by Faisal'® for the static potential U (*,
and by Burke and Sinfailam?® for the exchange
part U, Expressions for the matrix ele-
ments <g§pm YMIU(:') l g?’quqm>’ U= U(s), U
are given in Ref. 14, These expressions involve
a multipole expansion of the static potential

Ul =23 vyiP\(#), (37)
I

where P, is a Legendre polynomial, and a single-
center expansion of each occupied orbital:

9olF)= T Gomo#) o P) (38)

In this work we use Cartesian Gaussian func-

tions of the form
- a2
Pas(x A )P(y y)q(Z —AZ)S e'o"r'AI

(39)

I“qus (r)

where N,,, is a normalization coefficient.

III. CALCULATIONS AND RESULTS

To determine the state-exchange potential for
H,, we carried out a self-consistent-field (SCF)
calculation for the o, occupied orbital at an inter-
nuclear separation of 1.4006 a.u. The SCF basis
consists of a (10s5p,) set of primitive Gaussians
on each nucleus contracted to [7s5p,]. The
Huzinaga®! exponents and contraction coefficients
for this basis are given in Ref. 14. The quadru-

pole moment of the H, ground state in this basis
is 0.478 a.u.

For a closed-shell homonuclear diatomic, the
static-exchange potential is diagonal in m;, the
projection of the scattered-electron orbital angu-
lar momentum along the internuclear axis, and the
inversion symmetry of the scattering wave func-
tion. The truncated potential U°® is constructed for
each irreducible symmetry by projecting the
exact static-exchange potential, defined in Eq.
(33), onto a subspace of Gaussian functions. These
functions approximate the Hilbert space of the
scattering potential, When the scattering sym-
metry is the same as the symmetry of an occupied
orbital, the scattering basis includes the primi-
tive basis used to represent the occupied orbital.
The scattering subspace also includes basis func-
tions not normally used in bound-state calculations
such as very diffuse functions. A discussion of
scattering basis sets is given in the recent R-ma-
trix calculation by Morrison and Schneider.® The
scattering basis sets used in this work are listed
in Table I.

Our prescription for the matrix element
@ty m|U|0E, ) involves single-center expansions
for the o, occupied orbital, Eq. (38), and the
static potential, Eq. (37). In this calculation we
obtained adequate convergence by including
=0,2,...,10 in Eq. (38) and 1=0,2,...,10 in
Eq. (37). Similarly, we included six partial waves
in the expansion of the scattering wave function:
'=0,2,...,10 for the T, symmetry and I’
=1,3,...,11 for the £, and II, symmetries. The
one- and two-dimensional radial integrals occur-
ring in the expansions for (f,,|U|¢t, ) are
evaluated by Simpson’s-rule quadrature. The ex-
pansions are converged to three significant fig-
ures.

Our results for zero order and variationally
corrected K-matrix elements are shown in Table
II. Theagreementbetweencorrectedanduncor-
rected s-wave (I =1’=0) matrix elements is good
but some of the higher partial-wave matrix elements
differ by more than a factor of 2 at low incident
momenta. The ¥, ,-symmetry K-matrix results in
Table IT were obtained using basis set A, Table
I; the Z, and II, results were obtained using basis
sets B and C, Table I, respectively. Table III
compares variationally corrected and uncorrected
results of this calculation with previously ob-
tained!* approximately corrected and uncorrected
results. The present results were calculated
using basis set B, Table I. The basis set used
to obtain the results from Ref. 14 is similar to
set B so that most of the difference between the
present corrected results and the corrected re-
sults from Ref. 14 is attributable to the neglect
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TABLE 1. Scattering basis sets. A denotes the coordinates of the centers and (p, g, s) the

symmetry type of the basis function uﬁﬁ.

(0,0, 0) (0,0, 0)

A. A=(0,0,%0.7003) (0, 0, £0.7003)
(»,4,s)=(0,0,0) (0,0,1) (0,0,0) (0,0, 2)
1685.517 4.8 1.0 1.0
249.958 4 2.53 0.5 0.5
55.658 34 1.33 0.25 0.25
15.274 3 0.701 0.15 0.15
4.86228 0.369 0.09 0.09
1.7316 0.054 0.054
0.668 05 0.03 0.03
0.274 37 0.02 0.02
0.116 98 0.01 0.01
0.041133 0.005
0.002
0.0006

\

B. A=(0,0,+0.7003)

(0,0,£0.7003)

c. £=(0,0,+0.7003)

(»,4,s)=(0,0,0) (0,0,1) (9,4, s)=(1,0,0)
1685.517 4.8 15.274 3
249.9584 2.563 4,862 8
55.658 34 1.33 1.7316
15.274 3 0.701 0.668 05
4.86228 0.369 0.274 37
1.7316 0.2 0.116 98
0.668 05 0.1 0.041133
0.274 37 0.027
0.116 98 0.0169
0.041133 0.0106
0.018 0.006 63
0.008 3 0.004 14
0.0038 0.002 58
0.0017 0.00161
0.0008 0.001 01
TABLE II. K-matrix results. >
k (a.u.) Ko Ko Ky Ky Ky Ky
0.1 -0.2165 —-0.2160 3.30(—3) 4.,44(-3) 1.67(—-2) 8.1 (—4)
0.2 —0.4391 —0.4537 4.30(-3) 7.64(-3) 2.04(-2) 4.15(-3)
0.3 —-0.7146 -0.7207 1.14(=2) 1.02(~2) 2.54(=2) 6.27(—3)
0.4 -1.063 —-1.066 1.42(-2) 1.31(=2) 1.14(-2) 1.14(-2)
0.5 -1.522 -1.549 9.23(-3) 1.52(~-2) 3.67(—2) 1.67(=2)
0.6 -2.290 -2.313 1.31(-2) 1.46(-2) 2.71(=2) 2.65(—2)
0.7 -3.765 -3.824 1.07(~2) 8.37(-3) 5.85(—2) 3.78(-2)
1.0 8.26 8.13 0.142 0.116 0.103 9.27(-2)
Ky Ko Ky Ky
0.6 0.652 0.589 0.164 0.162

aZig—symmetry results are for basis set A, Table I; po and p7 results are for basis sets B

and C, Table I, respectively.
Y Ky = (| Kke1'm).

2111



2112 ARNE W. FLIFLET AND VINCENT McKOY 18

TABLE III. K-matrix results.

This calculation ? Ref. 14°
k Ko Koo Ky, Koo
0.5 -1.433 —1.555 —-1.540 ~1.512
0.7 -3.803 -3.823 -3.531 —~3.646
Kiy Ko Ky Ko
0.5 1.95(=2) 1.55(~2) 2.32(-2) 1.36(~2)
0.7 1.30(-2) 8.29(~3) 9.59(-3) 6.77(—3)
Ky K3 Ky Ky
0.5 5.98(—-2) 1.50(=2) 6.02(-2) 1.54(-2)
0.7 4.60(—2) 3.83(=2) 4.,64(—-2) 3.83(~2)

? Basis set B, Table I
b Basis set C, Table II

of the matrix element (klm|K!GE(U - U *)GEK*|kl'm)
in the latter. The accuracy of the corrected re-
sults depends on the agreement between the un-
corrected and corrected matrix elements. The
best agreement and hence most accurate results
are obtained for diagonal s-wave matrix ele-
ments. We estimate that the s-wave results are
accurate to 0.1%, and that the other results given
in Table II are accurate to 5%.

Table IV compares our “s” and “do” variation-
ally corrected eigenphase results with R-matrix
static-exchange eigenphases calculated by
Schneider? and with the static-exchange diagonal

phase shifts of Tully and Berry.”® The off-diagonal

K -matrix elements for the cases considered here
are small enough that our eigenphases are essen-
tially equal to our diagonal phase shifts. Our s

FIG. 1. Solid lines: radial comporents ggr, 2’ =0, 2,
4 of s wave function for 2 =0.4 and basis setA, Table I;
dashed lines: radial components gy, Z=0, 2 com-
ponents of do wave function for # =0.4 and basis set A
multiplied by 5.

TABLE 1V. Eigenphase results.

k Calc. s do
0.1 M2 2.929 9.0 (—4)
sb 2.931
TB® 2.939
0.2 FM 2.716 4,28(—3)
s 2.721
TB 2.737
0.3 FM 2.517 6.41(-3)
s 2.513 2.2 (-3)
TB 2.541 3 (=3)
0.4 FM 2.324 1.16(=2)
s 2.312 5.7 (—=3)
TB 2.352 7 (=3)
0.5 FM 2.144 1.68(—2)
S 2.122 1.01(-2)
TB 2.174 1.2 (-=2)
0.6 FM 1.949 1.83(=2)
S 1.949 1.83(=2)
TB 2.006 2.0 (=2)
0.7 M 1.827 3.78(—2)
S 1.797 3.33(=2)
1.0 FM 1.45 9.10(-2)
S 1.418 7.29(-2)
k Cale. po T
0.6 FM 0.532 0.161
s 0.561 0.1628
TB 0.537 0.162
2 This work.

b Schneider, Ref. 4.
¢ Tully and Berry, Ref. 13.

eigenphases agree very well with the other calcula-
tions. The agreement of our do eigenphases with
the other results is not as good, but the agreement
improves as k increases and the do eigenphases
become larger. The differences in the calculated
results may be due to the use of slightly different
target wave functions in the calculations. How-
ever, we expect that our SCF result for the H, o,
occupied orbital is close to the Hartree-Fock limit.
Figure 1 shows the first three components
ghiro, 1'=0,2,4 of the s-wave scattering function
$t00 at incident momentum k=0.4 calculated using
basis set A, Table I. The components g{,, and
g 120 Of the do wave function yf,, at k=0.4 and the
same basis are also shown in Fig. 1 scaled by a
factor of 5. Figure 2 shows the components
gii0, '=1,3,5 of the po wave function ¢,,, £=0.6,
for basis set B, Table I, and the components
gty and gy, of the pm wave function ¢t ,,, £=0.6,
for basis set C.
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FIG. 2. Solid lines: radial componeﬁts &h, 1'=1, 3,
5, of po wave function for 2 =0.6 and basis set B, Table
I; dashed lines: radial components gy, I'=1, 3 of pm
wave function for £ =0.6 and basis set C.

When the total scattering wave function can be
expressed as a single Slater determinant, the
continuum function may be chosen orthogonal to
occupied orbitals of the same symmetry without
introducing additional constraints. In the present
approach this choice is implied by the form of the
static-exchange potential given in Eq. (33) but
is not otherwise imposed during the calculation.
Thus the deviation from zero of the overlap-ma-
trix element {(¢4|L;,), Where ¢ is the H, oc-
cupied orbital, is another measure of the accu-
racy of I, continuum functions. Our results for
this matrix element are given in Table V.

IV. DISCUSSION AND CONCLUSIONS

We have presented an efficient method for com-
puting electron-molecule continuum wave func-
tions. Two advantages of this method are (a) the
nonspherical character of the scattering potential
is accounted for in a natural way by means of
multicenter basis functions, and (b) the impor-
tant exchange effect is treated on an equal footing
with the direct interaction. We have compared
the s and do continuum wave functions shown in

TABLE V. Orthogonality overlap matrix (¢ 4¥%;o
results for basis set A, Table I.

k 1=0 1=2
0.1 —2.06(-2) —1.42(-1)
0.2 -1.55(—1) —5.07(=2)
0.3 -3.58(—2) 6.46(—2)
0.4 -2.16(-3) 4.00(—2)
0.5 —8.24(-3) 2.11(-2)
0.6 -4.23(=2) 5.68(-2)
0.7 —1.66(=2) 7.01(=2)
1.0 -1.25(-2) 1.95(=2)
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Fig..1 and the pm wave function shown in Fig. 2
with the tabulated results of Tully and Berry.!?
We find good agreement for diagonal components
and qualitative agreement for off-diagonal com-
ponents. However, our wave functions are not
directly comparable with those of Tully and Berry
who use a Weinbaum function® for the H, target in-
stead of a Hartree-Fock wave function. Applica-
tion of this method to the calculation of electronic
excitation cross sections for H, in the distorted-
wave approximation will be treated in a forthcom-
ing paper.

We have demonstrated an effective method for
calculating variationally stable K-matrix elements
for elastic scattering. The results presented here -
for e™-H, scattering in the static-exchange approx-
imation are in good agreement with other calcula-
tions for s-wave eigenphases. Our results for
do-wave eigenphases appear to be more accurate
than other published results. In addition, our
reported results for off-diagonal K -matrix ele-
ments are of interest because they significantly
affect rotational excitation cross sections.?® The
variationally corrected results presented here
are more accurate than the results obtained by our
recently proposed approximate variational correc-
tion method.!* Of perhaps greater importance is
that the present method is more straightforward
and much less time consuming to apply.

An important physical effect not treated in this
work is the polarization of the target by the scat-
tered election. Several calculations have shown
that an approximate treatment of long-range po-
larization and exchange effects qualitatively ac-
counts for many features observed in low-energy
electron-molecule scattering.?*'?® Unfortunately,
these calculations have led to confusion con-
cerning the relative importance of exchange and
polarization effects. Therefore, accurate static-
exchange results are of interest as a preliminary
toward a from-first-principles treatment of po-
larization. Moreover, the static-exchange approx-
imation is itself a useful ab initio method which
accounts; at least qualitatively, for many pro-
cesses in electron-molecule scattering.

The approach to scattering described here is
valid when long-range potential effects are small.
This is clearly not the case for scattering from
ions and strongly polar molecules. The general-
ization of our techniques to treat these systems
is in progress.
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APPENDIX

To apply the Numerov finite-difference method,*®
we write Eq. (23) in the form

gf‘ u(r)=F@)+G(r), (A1)

where u(r)=rgt, . .(k,7),

(I +1)
2

F@r)= -k, (A2)

and

G(r) = =v (Y1 a|Kt | RIm) (A3)
Let # be the constant step size of 7,

ry=nh, n=0,1,2,...

and define u, =u(r,), F,=F(»,), and G,=G(r,). Then
the Numerov formula may be written in the form
(1 - le’thn-l)un-l + ("'2

B F)u,+(1 - 5 1°F, )y,

=5h* (G, +10G,+Gpyy) - (A4)

For sufficiently large », say, »y, G(r) vanishes
and u#(r) is determined by Eq. (24b). From Eq.
(24a), u(r,)=0; in addition, G(»,)=0. Thus we
obtain a finite, tridiagonal matrix equation

AP=B (A5)
for the vector P,
P,=u,, n=1,...,N-1, (AB)
where
Ay,=-2-8n*F,, (ATa)
A, =1-3%h’F,, (ATb)
B, =&K2(10G, +G,) (ATc)
App-1=1- le‘thn-x ’ (ATd)
Ay n==2-17F,, (A7e)
Appir=1=5Fp.y, (A1)
=&1%(G,-, +10G, +G,,,) (ATg)
for n=2,...,N~2; and
Ay zsy-1=1=51*Fy s, (ATh)
Ay, y-1=—2—-13h°Fy 4, ‘ ) (A7)
By 1 =51 Gy, +10G, ) - (1 = &n%Fyuy .
(AT))

Equations (A7a)-(A7j) are readily generalized
for multiple step sizes.
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