
Rewriting Flash Memories by Message Passing
Eyal En Gad, Wentao Huang, Yue Li and Jehoshua Bruck

California Institute of Technology, Pasadena, CA 91125
{eengad,whuang,yli,bruck}@caltech.edu

Abstract—This paper constructs WOM codes that combine
rewriting and error correction for mitigating the reliability and
the endurance problems in flash memory. We consider a rewriting
model that is of practical interest to flash applications where only
the second write uses WOM codes. Our WOM code construction
is based on binary erasure quantization with LDGM codes, where
the rewriting uses message passing and has potential to share the
efficient hardware implementations with LDPC codes in practice.
We show that the coding scheme achieves the capacity of the
rewriting model. Extensive simulations show that the rewriting
performance of our scheme compares favorably with that of
polar WOM code in the rate region where high rewriting success
probability is desired. We further augment our coding schemes
with error correction capability. By drawing a connection to the
conjugate code pairs studied in the context of quantum error
correction, we develop a general framework for constructing
error-correction WOM codes. Under this framework, we give
an explicit construction of WOM codes whose codewords are
contained in BCH codes.

I. INTRODUCTION

Flash memory has become a leading storage media thanks
to its many excellent features such as random access and high
storage density. However, it also faces significant reliability
and endurance challenges. In flash memory, programming
cells with lower charge levels to higher levels can be done
efficiently, while the opposite requires erasing the whole
block containing millions of cells. Block erasure degrades
cell quality, and current flash memory can survive only a
small number of block erasures. To mitigate the reliability and
the endurance issues, this paper studies write-once memory
(WOM) codes that combine erasure-free information rewriting
and error correction.

WOM was first studied by Rivest and Shamir [18]. In the
model of WOM, new information is written by only increasing
cell levels. Compared to traditional flash, WOM-coded flash
achieves higher reliability when the same amonut of informa-
tion is written, or writes more information using the same
number of program/erase (P/E) cycles. We illustrate these
benefits using Fig. 1, where we show the bit error rates (BERs)
of the first write and the next rewrite measured for the scheme
of this paper in a 16nm flash chip. When using the standard
setting for error correcting codes (ECCs), flash memory can
survive 14000 P/E cycles without an ECC decoding failure.
Using a code constructed in this paper that allows user to
write 35% more information, we only need 10370 P/E cycles
to write the information. Notice that the raw BER at 10370
P/E cycles is much lower than that at 14000 P/E cycles, hence
ECC decoding will have much lower failure rate, which leads
to higher reliability. On the other hand, if we use WOM until
ECC fails at 14000 P/E cycles, the total amount information
that is written requires 18900 P/E cycles to write in traditional
flash. WOM codes can also be used for scrubbing the memory.
In this use, the memory is read periodically, to correct errors

10
-5

10
-4

10
-3

10
-2

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
a

w
 B

it
 E

rr
o

r
R

a
te

Program/Erase Cycle

First Write
Second Write

Fig. 1. The raw BERs when using the proposed rewriting scheme.

that were introduced over time. The errors are corrected using
an ECC, and the corrected data is written back using a WOM
code (see [13]). Many WOM constructions were proposed
recently. Codes with higher rates were discovered [12][20],
and codes that achieve capacity have also been found [1]. In
this paper, we propose an alternative construction of WOM
codes. Our scheme differs from the WOM codes mentioned
above mainly in two aspects. First, we focus on a specific
rewriting model with two writes, where only the second write
uses WOM codes. Such rewriting scheme has no code rate
loss in the first write, and recent experimental study has
demonstrated its effectiveness on improving the performance
of solid state drives [22]. Note that, the model of this rewriting
scheme is not only an instance of the general WOM model [8],
but also an instance of the model studied by Gelfand and
Pinsker [5]. Second, our construction is based on binary era-
sure quantization with low-density-generator-matrix (LDGM)
codes. The encoding is performed by iterative quantization
studied by Martinian and Yedidia [15], which is a message-
passing algorithm similar to the decoding of low-density-
parity-check (LDPC) codes. As LDPC codes have been widely
adopted by commercial flash memory controllers, the hardware
architectures of message-passing algorithms have been well
understood and highly optimized in practice. Therefore, our
codes are implementation-friendly for practitioners. Extensive
simulations show that the rewriting performance of our scheme
compares favorably with that of the capacity-achieving polar
WOM code [1] in the rate region where a low rewriting failure
rate is desired. For instance, we show that our code allows
user to write 40% more information by rewriting with very
high success probability. We note that the iterative quantization
algorithm of [15] was used in [2] in a different way for
the problem of information embedding, which share some
similarity with our model.

Moreover, our code construction is extended with error
correction. The need for error correction is observed in our

experiments. As shown in Fig. 1, the BERs of both writes
increase rapidly with the number of block erasures. Con-
structions of error-correcting WOM codes have been studied
in recent literature. Error-correcting WOM codes have been
proposed in [3][4][11][21][23]. Different from the existing
constructions above, we use conjugate code pairs studied in
the context of quantum error correction [7]. As an example,
we construct LDGM WOM codes whose codewords also
belong to BCH codes. Therefore, our codes allows to use any
decoding algorithm of BCH codes. The latter have been im-
plemented in most commercial flash memory controllers. We
also present two additional approaches to add error correction,
and compare their performance.

II. REWRITING AND ERASURE QUANTIZATION

A. Rewriting Model

We consider a model that allows two writes on a block of
n cells. A cell has a binary state chosen from {0, 1}, with the
rewriting constraint that state 1 can be written to state 0, but
not vice versa. All cells are initially set to be in state 1, and
so there is no writing constraint for the first write. A vector
is denoted by a bold symbol, such as s = (s1, s2, . . . , sn).
The state of the n cells after the first write is denoted by the
vector s. We focus only on the second write, and we assume
that after the first write, the state of the cells is i.i.d., where
for each i, Pr{si = 1} = β. We note that the special case
of β = 1/2 is of practical importance, since it approximates
the state after a normal page programming in flash memory1.
The second write is concerned with how to store a message
m ∈ Fk

2 by changing s to a new state x such that 1) the
rewriting constraint is satisfied, and 2) x represents m. This
is achieved by the encoding operation of a rewriting code,
defined formally in the following.

Definition 1. A rewriting code CR is a collection of disjoint
subsets of Fn

2 .

Each element of CR corresponds to a different message.
Consider M ∈ CR that corresponds to a message m, then
for all x ∈ M, we say that x is labeled by m. The decoding
function maps the set of labeled vectors into their labels, which
are also the messages. To encode a message m given a state
s, the encoder needs to find a vector x with label m that can
be written over s. If the encoder does not find such vector x,
it declares a failure. The rewriting rate of CR is defined by
RWOM = k/n. The rewriting capacity, which characterizes
the maximum amount of information that can be stored per
cell in the second write, is known to be β bits [8].

We are interested in rewriting codes with rates close to
the capacity, together with efficient encoding algorithms with
low failure probability. The main observation in the design
of the proposed rewriting scheme of this paper is that the
rewriting problem is related to the problem of binary erasure
quantization (BEQ), introduced in the next subsection.

1In flash memory, the message to be written can be assumed to be random
due to data compression and data randomization used in memory controllers.

B. Binary Erasure Quantization

The BEQ problem is concerned with the quantization of a
binary source sequence s′, for which some bits are erased.
Formally, s′ ∈ {0, 1, ∗}n, where ∗ represents erasures. s′
needs to be quantized (compressed) such that every non-erased
symbol of s′ will maintain its value in the reconstructed vector.
A reconstructed vector with such property is said to have no
distortion from s′. In this paper we use linear BEQ codes,
defined as follows:

Definition 2. A linear BEQ code CQ is a subspace of Fn
2 . Each

c ∈ CQ is called a codeword of CQ. The dimension of CQ is
denoted by r.

Each codeword of CQ is labeled by a different r-bits sequence
u. Given a BEQ code CQ and a source sequence s′, a
quantization algorithm Q is invoked to find a label u whose
codeword c ∈ CQ has no distortion from s′. If such label
is found, it is denoted by u = Q(s′), and is considered as
the compressed vector. Otherwise, a quantization failure is
declared, and Q(s′) = Failure. The reconstruction uses a
generator matrix GQ of CQ to obtain the codeword c = uGQ.

C. Reduction from Rewriting to Erasure Quantization

In this subsection we show that the problem of rewriting
can be efficiently reduced to that of BEQ. Let CQ be a linear
quantization code, and let H be a parity-check matrix of CQ.

Construction 3. A rewriting code CR is constructed as the
collection of all cosets of CQ in Fn

2 . A decoding function for
CR is defined by a parity check matrix H of CQ, such that a
vector x ∈ Fn

2 is decoded into its syndrome

DECH(x) = xHT . (1)

Since the dimension of CQ is r, it has 2n−r cosets. Therefore
the rate of CR is RWOM = n−r

n , implying that k = n −
r. We define some notation before introducing the reduction
algorithm. Let (H−1)T be a left inverse for HT , meaning that
(H−1)T HT is the k × k identity matrix. Define a function
BEC : {0, 1}n × {0, 1}n → {0, 1, ∗}n as:

BEC(w, v)i =

{
wi if vi = 0
∗ if vi = 1 , ∀i = 1, ..., n

BEC(w, v) realizes a binary erasure channel that erases
entries in w whose corresponding entries in v equal 1. We
are now ready to introduce the encoding algorithm for the
rewriting problem.

Theorem 4. Algorithm 1 either declares a failure or returns a
vector x such that x is rewritable over s and xHT = m.

Proof: Suppose failure is not declared and x is returned
by Algorithm 1. We first prove that x is rewritable over s.
Consider i such that si = 0. Then it follows from the definition
of BEC that s′i = zi. Remember that Q(s′) returns a label
u such that c = uGQ has no-distortion from s′. Therefore,
ci = s′i = zi, and xi = ci + zi = zi + zi = 0 = s′i. So x

Algorithm 1 x = ENC(GQ, m, s): Encoding for Rewriting

1: z← m(H−1)T

2: s′ ← BEC(z, s)
3: u← Q(s′)
4: if u = FAILURE then
5: return FAILURE
6: else
7: return x← uGQ + z
8: end if

can be written over s. To prove the second statement of the
theorem, notice that

xHT = (uGQ + z)HT = uGQHT + m(H−1)T HT

= m(H−1)T HT = m.

III. REWRITING WITH MESSAGE PASSING

In this section we discuss how to choose a quantization code
CQ and quantization algorithm Q to obtain a rewriting scheme
of good performance. Our approach is to use the iterative
quantization scheme of Martinian and Yedidia [15], where CQ
is an LDGM code, and Q is a message-passing algorithm. This
approach is particularly relevant for flash memories, since the
hardware architecture of message-passing algorithms is well
understood and highly optimized in flash controllers.

The algorithm Q can be implemented by a sequential or
parallel scheduling, as described in [15, Section 3.4.2]. For
concreteness, we consider the sequential algorithm denoted
by ERASURE-QUANTIZE in [15]. Since the performance of
ERASURE-QUANTIZE depends on the chosen generator ma-
trix, we abuse notation and denote it by Q(GQ, s′). Algorithm
Q(GQ, s′) is presented in Appendix A, for completeness.

Finally, we need to describe how to choose a generator
matrix GQ that work well together with Algorithm Q. We
show next that a matrix GQ with good rewriting performance
can be chosen to be a parity-check matrix that performs
well in message-passing decoding of erasure channels. This
connection follows from the connection between rewriting and
quantization, together with a connection between quantization
and erasure decoding, shown in [15]. These connections imply
that we can use the rich theory and understanding of the
design of parity-check matrices in iterative erasure decoding,
to construct good generating matrices for rewriting schemes.
To make the statement precise, we consider the standard
iterative erasure-decoding algorithm denoted by ERASURE-
DECODE(H, y) in [15], where H is an LDPC matrix and y
is the output of a binary erasure channel.

Theorem 5. For all m ∈ Fk
2 and z′, s ∈ Fn

2 , ENC(GQ, m, s)
fails if and only if ERASURE-DECODE(GQ, BEC(z′, s +
1n)) fails, where 1n is the all-one vector of length n.

The proof of Theorem 5 is available in Appendix B. The
running time of the encoding algorithm ENC is analyzed
formally in the following theorem.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.36 0.38 0.4 0.42 0.44 0.46

R
e

w
ri
ti
n

g
 F

a
ilu

re
 R

a
te

Code Rate

Polar Code n = 8192
Polar Code n = 16384
LDGM Code n = 8000

LDGM Code n = 16000

Fig. 2. Rewriting failure rates of polar and LDGM WOM codes.

Theorem 6. The algorithm ENC(GQ, m, s) runs in timeO(nd)
where n is the length of s and d is the maximum degree of the
Tanner graph of GQ.

The proof of Theorem 6 is available in Appendix C. Theo-
rems 5 and 6, together with the analysis and design of irregular
LDPC codes that achieve the capacity of the binary erasure
channel [17], imply the following capacity-achieving results.

Corollary 7. There exists a sequence of rewriting codes which
can be efficiently encoded by Algorithm 1 and efficiently
decoded by Equation (1) that achieves the capacity of the
rewriting model β.

The proof of Corollary 7 is available in Appendix D.
The finite-length performance of our rewriting scheme

is evaluated using extensive simulation with the choice of
β = 0.5 and GQ to be the parity-check matrix of a Mackay
code [14]. The rewriting failure rates of our codes with lengths
n = 8000 and 16000 that are relevant to flash applications are
compared with those of the polar WOM codes of lengths 213

and 214 [1]. Fig. 2 shows the rewriting failure rates of both
codes at different rewriting rate, where each point is calculated
from 105 experiments. Remember that the capacity of the
model is 0.5. The results suggest that our scheme achieves
a decent rewriting rate (e.g. 0.39) with low failure rate (e.g.
< 10−4). Moreover, our codes provide significantly lower
failure rates than polar WOM codes when the rewriting rate
is smaller, because of the good performance in the waterfall
region of message-passing algorithm.

IV. ERROR-CORRECTING REWRITING CODES

The construction of error-correcting rewriting codes is based
on a pair of linear codes (C1, CQ), that satisfies the condition
C1 ⊇ CQ, meaning that each codeword of CQ is also a
codeword of C1. Define C2 to be the dual of CQ, denoted
by C2 = C⊥Q . A pair of linear codes (C1, C2), that satisfies
C1 ⊇ C⊥2 is called a conjugate code pair, and it is useful
in quantum error correction and cryptography [7]. For the
flash memory application, we let C1 be an error-correction
code, while C⊥2 = CQ is a BEQ code. The main idea in the
construction of error-correcting rewriting codes is to label only
the codewords of C1, according to their membership in the
cosets of CQ. The construction is defined formally as follows:

Construction 8. For c ∈ C1, let c + CQ be the coset of CQ in
C1 that contains c. Then the error-correcting rewriting code is
constructed to be the collection of cosets of CQ in C1.

Next we define the matrices (H−1)T and HT to be used in
encoding and decoding. Let G1 and GQ be generator matrices
of the codes C1 and CQ, respectively, such that each row of
GQ is also a row of G1. Since C1 contains CQ, such matrix
pair always exists. Define (H−1)T to be constructed by the
rows of G1 that are not rows of GQ. Let HT be a right inverse
of (H−1)T .

The encoding is performed according to Algorithm 1, with
the matrix (H−1)T defined above. Note that in Step 1, z is a
codeword of C1, since each row of (H−1)T is also a row of G1.
In addition, in Step 7, uGQ is also a codeword of C1 (unless
Q(GQ, s′) fails), since CQ is contained in C1. Therefore, x =
uGQ + z is a codeword of C1. The decoding can begin by the
recovery of x from its noisy version, using the decoder of C1.
The message m can then be recovered by the product xHT .

A similar framework was described in [10], which proposed
a construction of a repetition code contained in a Hamming
code, with a Viterbi encoding algorithm. In this paper we make
the connection to the quantum coding literature, which allows
us to construct stronger codes.

A. Conjugate Codes Construction

We look for a conjugate pair (C1, C2) such that C1 is
a good error-correcting code, while C⊥2 is a good LDGM
quantization code. Theorem 5 implies that C2 needs to be an
LDPC code with a good performance over a binary erasure
channel (under message passing decoding). Constructions of
conjugate code pairs in which C2 is an LDPC code are studied
in [6][9][19]. Sarvepalli et al. [19] construct a pair of codes
such that C1 is a BCH code and C2 is a Euclidean geometry
LDPC code, which is particularly useful for our purpose.
This is because BCH codes are used extensively for error
correction in flash memories. Below we first briefly review
the construction of Euclidean geometry LDPC codes and then
discuss the application of the results in [19] to our settings.

Denote by EG(m, ps) the Euclidean finite geometry over
Fps consisting of pms points. Note that this geometry is equiv-
alent to the vector space Fm

ps . A µ-dimensional subspace of
Fm

ps or its coset is called a µ-flat. Let J be the number of µ-flats
that do not contain the origin, and let α1, ...αpsm−1 be the points
of EG(m, ps) excluding the origin. Construct a J × psm − 1
matrix HEG in the way that its (i, j)-th entry equals 1 if the
i-th µ-flat contains αj, and equals 0 otherwise. HEG is the
parity check matrix of the (Type-I) Euclidean geometry LDPC
code CEG(m, µ, s, p). CEG(m, µ, s, p) is a cyclic code and by
analyzing the roots of its generator polynomial, the following
result is obtained [19].

Proposition 9 C⊥EG(m, µ, s, p) is contained in a BCH code of
design distance δ = pµs − 1.

Hence we may choose C2 to be CEG(m, µ, s, p) and C1 to
be a BCH code with distance equal to or smaller than δ.
Some possible code constructions are shown in Table I. Their

TABLE I
ERROR-CORRECTING REWRITING CODES CONSTRUCTED FROM PAIRS OF

CONJUGATE BCH AND EG-LDPC CODES.

(m, µ, s, p) C1[n, k, δ] C2[n, k] Rewriting Rate
(4,1,2,2) [255,247,3] [255,21] 0.0510
(3,1,2,2) [65,57,3] [65,13] 0.1111
(3,1,3,2) [511,484,7] [511,139] 0.2192
(3,1,4,2) [4095,4011,15] [4095,1377] 0.3158

encoding performance, with respect to the probability β that a
cell in the state is writable, is shown in Fig. 3. Note from
Fig. 3 that a code with smaller rewriting rate achieves a
fixed failure rate at a smaller value of β. In particular, the
codes corresponding to the top three rows of Table I achieve
very small failure rate at β = 0.5, the point of practical
interest. These results also show that the slope of the figures
becomes sharper when the length of the codes increases,
as expected. Out of the three codes that can be rewritten
with β = 0.5, CEG(3, 1, 3, 2) poses the best rate and error-
correction capability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

R
e

w
ri
ti
n

g
 F

a
ilu

re
 R

a
te

β

(3, 1, 2, 2)
(4, 1, 2, 2)

(3, 1, 3, 2)
(3, 1, 4, 2)

Fig. 3. Encoding performance of the codes in Table I.

V. ALTERNATIVE APPROACHES FOR ERROR CORRECTION

In this section we present two alternative approaches to
combine rewriting codes with error correction.

A. Concatenated Codes

In this scheme, we concatenate an LDGM rewriting code
with a systematic error-correcting code. The outer code is an
LDGM rewriting code without error-correction capability, as
in Section III. The systematic ECC is used as the inner code.
The concatenated scheme is used in the second write. The
scheme requires the first write to reserve some bits to store
the redundancy of the ECC in the second write.

In the second write, the encoder begins by finding a vector
x that can be written over the current state. After x is written,
the systematic ECC calculates the redundancy bits required to
protect x from errors. The redundancy bits are then written into
the reserved cells. The decoding of the second write begins
by recovering x using the systematic ECC and its redundancy
bits. After x is recovered, the decoder of the rewriting code
recovers the stored message from x.

We note that reserving bits for the second write have a
negative effect on the performance of the system, since it
reduces the total amount of information that could be stored
in the memory on a given time. Therefore, the next subsection
extends the concatenation scheme using a chaining technique,
with the aim of reducing the number of bits required to be
reserved for the second write.

B. Code Chaining
The chaining approach is inspired by a similar construction

in polar coding [16]. The idea is to chain several code blocks
of short length. In the following we use a specific example to
demonstrate the idea. We use a BCH code for error correction,
since its performance can be easily calculated. We note,
however, that LDPC codes may be used in practice, such that
the circuit modules may be shared with the rewriting code, to
reduce the required area. The performance of LDPC code in
the considered parameters is similar to that of BCH codes.

A typical BCH code used in flash memory has the parame-
ters [8191, 7671, 81], where the length is 8191, the dimension
is 7671, and the minimum distance is 81. If this code is used
in a concatenated scheme for the second write, the first write
needs to reserve 8191− 7671 = 520 bits for redundancy.

To reduce the amount of required reserved bits, we consider
the chaining of 8 systematic BCH codes with the parameters
[1023, 863, 33]. The encoding is performed sequentially, be-
ginning with the rewriting encoding that finds a vector x1 of
863 bits. The vector x1 represents a message m1 of 310 bits,
according to an [863, 310]-LDGM rewriting code. Once x1 is
found, the BCH encoder finds 1023− 863 = 160 redundancy
bits to protect x1, as in the concatenated scheme. The encoder
then “chains” the redundancy bits forward, by encoding them,
together with 150 new information bits, into another block of
863 bits, using the [863, 310]-LDGM code. Let m2 denote
the vector of 310 bits encoded into the second block. m2
contains the 160 redundancy bits of x1, together with the
additional 150 information bits. Note that once m2 is decoded,
the redundancy bit of x1 are available, allowing the recovery
x1, and then m1. The encoding continues in this fashion 8
times, to write over a total of 8 blocks, each containing 863
cells. The 160 redundant bits used to protect x8 are stored in
the reserved cells. The decoding is done in the reverse order,
where each decoded vector contains the redundancy bits of
the previous block.

C. Comparison
We compare the different error-correction approaches, and

discuss their trade-offs. The first code in the comparison is a
conjugate code pair, described in Section IV. We use a con-
jugation of a [511, 484, 7]-BCH code containing a [511, 372]-
LDGM code, dual to the (3, 1, 3, 2)-Euclidean geometry LDPC
code in Table I. The second code in the comparison is a
concatenation of an outer [7671, 2915]-LDGM Mackay rewrit-
ing code with an inner [8191, 7671, 81]-BCH code. The third
code is a chaining of 8 blocks of [863, 310]-LDGM Mackay
codes, each concatenated with a [1023, 863, 33]-BCH code.
We compare the decoding BER PD, the fraction α of bits
required to be reserved, and the rewriting rate RWOM of the

TABLE II
ERROR-CORRECTING REWRITING CODES OF LENGTH ≈ 8200.

Code PD α RWOM
Conjugated 10−5 0% 0.21
Concatenated 10−16 6.3% 0.35
Chained 10−16 2% 0.19

codes. The encoding failure rate of each of the three codes
for β = 0.5 is below 10−3. PD is estimated with a standard
flash memory assumption of a raw BER of 1.3× 10−3. To
achieve a comparable code length, the conjugated code is
assumed to be used 16 times in parallel, with a total length of
511× 16 = 8176. The comparison is summarized in Table II.

Flash systems require PD below 10−15. We see in Table II
that conjugated code still do not satisfy the reliability require-
ment. We also see that concatenated codes that satisfy the
reliability requirement need a large fraction of reserved space.
The chained code reduces the fraction of reserved space to
2%, with a rate penalty in the second write.

REFERENCES

[1] D. Burshtein and A. Strugatski, “Polar write once memory codes,” IEEE
Trans. Inf. Theor., vol. 59, no. 8, pp. 5088–5101, Aug. 2013.

[2] V. Chandar, E. Martinian, and G. W. Wornell, “Information embedding
codes on graphs with iterative encoding and decoding,” in Proc. ISIT,
July 2006, pp. 866–870.

[3] E. En Gad et al., “Polar coding for noisy write-once memories,” in Proc.
ISIT, June 2014, pp. 1638–1642.

[4] A. Gabizon and R. Shaltiel, “Invertible zero-error dispersers and de-
fective memory with stuck-at errors,” in APPROX-RANDOM, 2012, pp.
553–564.

[5] S. Gel’fand and M. Pinsker, “Coding for channel with random parame-
ters,” Problems of Control Theory, vol. 9, no. 1, pp. 19–31, 1980.

[6] M. Hagiwara and H. Imai, “Quantum quasi-cyclic ldpc codes,” in Proc.
ISIT, June 2007, pp. 806–810.

[7] M. Hamada, “Conjugate codes for secure and reliable information
transmission,” in Proc. ITW, Oct 2006, pp. 149–153.

[8] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.
Theor., vol. 31, no. 1, pp. 34–42, January 1985.

[9] L. Ioffe and M. Mézard, “Asymmetric quantum error-correcting codes,”
Phys. Rev. A, vol. 75, p. 032345, Mar 2007.

[10] A. Jacobvitz, R. Calderbank, and D. Sorin, “Writing cosets of a
convolutional code to increase the lifetime of flash memory,” in Proc.
Allerton, Oct 2012, pp. 308–318.

[11] A. Jiang et al., “Joint rewriting and error correction in write-once
memories,” in Proc. ISIT, 2013, pp. 1067–1071.

[12] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Trajectory codes for
flash memory,” IEEE Trans. Inf. Theor., vol. 59, no. 7, pp. 4530–4541,
July 2013.

[13] Y. Li, A. Jiang, and J. Bruck, “Error correction and partial information
rewriting for flash memories,” in Proc. ISIT, June 2014, pp. 2087–2091.

[14] D. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” IEEE Trans. Inf. Theor., vol. 45, no. 2, pp. 399–431, Mar 1999.

[15] E. Martinian and J. S. Yedidia, “Iterative quantization using codes on
graphs,” in Proc. Allerton, 2003.

[16] M. Mondelli, S. Hassani, R. Urbanke, and I. Sason, “Achieving Marton’s
region for broadcast channels using polar codes,” in Proc. ISIT, June
2014, pp. 306–310.

[17] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the
erasure channel,” IEEE Trans. Inf. Theor., vol. 48, no. 12, pp. 3017–
3028, Dec 2002.

[18] R. Rivest and A. Shamir, “How to reuse a write-once memory,”
Information and Control, vol. 55, no. 1-3, pp. 1–19, 1982.

[19] P. K. Sarvepalli, A. Klappenecker, and M. Rötteler, “Asymmetric quan-
tum codes: constructions, bounds and performance,” Proc. Roy. Soc. of
Lond. A Mat., vol. 465, no. 2105, pp. 1645–1672, 2009.

[20] E. Yaakobi et al., “Codes for write-once memories,” IEEE Trans. Inf.
Theor., vol. 58, no. 9, pp. 5985–5999, September 2012.

[21] E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, “Multiple error-correcting
wom-codes,” IEEE Trans. Inf. Theor., vol. 58, no. 4, pp. 2220–2230,
April 2012.

[22] G. Yadgar, E. Yaakobi, and A. Schuster, “Write once, get 50% free:
Saving ssd erase costs using wom codes,” in USENIX FAST, 2015.

[23] G. Zemor and G. D. Cohen, “Error-correcting wom-codes,” IEEE Trans.
Inf. Theor., vol. 37, no. 3, pp. 730–734, May 1991.

APPENDIX A
ITERATIVE QUANTIZATION ALGORITHM

We denote GQ = (g1, . . . , gn) such that gj is the j-th
column of GQ.

Algorithm 2 u = Q(GQ, s′).

1: v← s′

2: while ∃j such that vj 6= ∗ do
3: if ∃i such that ∃!j for which GQ(i, j) = 1 and vj 6= ∗

then
4: Push (i, j) into the Stack.
5: vj ← ∗.
6: else
7: return FAILURE
8: end if
9: end while

10: u← 0n−k
11: while Stack is not empty do
12: Pop (i, j) from the Stack.
13: ui ← u · gj + s′j
14: end while
15: return u

APPENDIX B
PROOF OF THEOREM 5

Proof: As in Algorithm 1, let z = m(H−1)T

and s′ = BEC(z, s). Now according to Algorithm 1,
ENC(GQ, m, s) fails if and only if Q(GQ, s′) fails. Ac-
cording to [15, Theorem 4], Q(GQ, s′) fails if and only if
ERASURE-DECODE(GQ, BEC(z′, s + 1n)) fails. This com-
pletes the proof.

APPENDIX C
PROOF OF THEOREM 6

Proof: We first show that Step 1 of Algorithm 1 runs in
time O(n) if (H−1)T is chosen in the following way. For any
CQ, its parity check matrix H can be made in to systematic
form, i.e., H = (P I), by row operations and permutation of
columns. Then (H−1)T can be chosen as (0k×n−k Ik), and so
z = m(H−1)T = (0n−k m).

By [15, Theorem 5], Step 3 of Algorithm 1 runs in time
O(nd). By the definition of d, the complexity of Step 7 is
also O(nd). Therefore O(nd) dominates the computational
cost of the algorithm.

APPENDIX D
PROOF OF COROLLARY 7

Proof: Let s̄ = s + 1n. Then it follows from Theorem 5
that for all GQ, m ∈ Fk

2, z′ ∈ Fn
2 ,

Pr{ENC(GQ, m, s) = Failure} =
Pr{ERASURE-DECODE(GQ, BEC(z′, s̄)) = Failure},

where s is distributed i.i.d. with Pr{si =} = β. The right-hand
side is the decoding-failure probability of an LDPC code with
parity-check matrix GQ over a binary erasure channel, using
message-passing decoding. The erasure probability of the
channel is 1− β, because Pr{s̄i = 1} = 1− Pr{si = 1}. The
capacity of a binary erasure channel with erasure probability
1− β is β. This is also the capacity of the rewriting model. In
addition, the rate of an LDPC code with parity-check matrix
GQ is equal to the rate of a rewriting code constructed by
the cosets of CQ. It is shown in [17] how to construct a
sequence of irregular LDPC codes that achieves the capacity of
the binary erasure channel. Such sequence, used for rewriting
codes, achieves the rewriting capacity.

APPENDIX E
HANDLING ENCODING FAILURES

The encoding failure event could be dealt with in several
ways. A simple solution is to try writing on different invalid
pages, if available, or to simply write into a fresh page, as
current flash systems do. If the failure rate is small enough,
say below 10−3, the time penalty of rewriting failures would
be small. For an alternative solution, we state a reformulation
of [15, Theorem 3].

Proposition 10. For all m, m′ ∈ Fk
2 and s ∈ Fn

2 ,
ENC(GQ, m, s) fails if and only if ENC(GQ, m′, s) fails.

Proof: As in Algorithm 1, let z = m(H−1)T and
s′ = BEC(z, s). Note that ENC(GQ, m, s) fails if and only if
Q(GQ, s′) fails. By Algorithm 2, the failure of Q(GQ, s′) is
determined only according to the locations of erasures in s′,
and does not depend on the values of the non-erased entries
of s′. Since s′ = BEC(z, s), the locations of erasures in s′
are only determined by the state s. This completes the proof.

Proposition 10 implies that whether a page is rewritable
does not depend on the message to be written. This property
suggests that the flash controller can check whether a page is
rewritable right after it is being invalidated, without waiting
for a message to arrive. An invalid page could be marked
as ‘unrewritable’, such that data would be rewritten only
into rewritable pages. This policy would guarantee that the
rewriting of a new message always succeed. However, this
policy also implies that the message passing algorithm would
run more than once for the rewriting of a page.

