
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 8, AUGUST 1998 813

Deterministic Voting in Distributed Systems
Using Error-Correcting Codes

Lihao Xu and Jehoshua Bruck, Senior Member, IEEE

Abstract—Distributed voting is an important problem in reliable computing. In an N Modular Redundant (NMR) system, the N
computational modules execute identical tasks and they need to periodically vote on their current states. In this paper, we propose a
deterministic majority voting algorithm for NMR systems. Our voting algorithm uses error-correcting codes to drastically reduce the
average case communication complexity. In particular, we show that the efficiency of our voting algorithm can be improved by
choosing the parameters of the error-correcting code to match the probability of the computational faults. For example, consider an
NMR system with 31 modules, each with a state of m bits, where each module has an independent computational error probability
of 10-3. In this NMR system, our algorithm can reduce the average case communication complexity to approximately 1.0825m
compared with the communication complexity of 31m of the naive algorithm in which every module broadcasts its local result to all
other modules. We have also implemented the voting algorithm over a network of workstations. The experimental performance
results match well the theoretical predictions.

Index Terms— NMR system, communication complexity, majority voting, error-correcting codes, MDS code.

——————————���F���——————————

1 INTRODUCTION

ISTRIBUTED voting is an important problem in the crea-
tion of fault-tolerant computing systems, e.g., it can be

used to keep distributed data consistent, to provide mutual
exclusion in distributed systems. In an N Modular Redun-
dant (NMR) system, when the N computational modules
execute identical tasks, they need to be synchronized peri-
odically by voting on the current computation state (or re-
sult, and they will be used interchangeably hereafter), and
then all modules set their current computation state to the
majority one. If there is no majority result, then other com-
putations are needed, e.g., all modules recompute from the
previous result. This technique is also an essential tool for
task-duplication-based checkpointing [12]. In distributed
storage systems, voting can also be used to keep replicated
data consistent.

Many aspects of voting algorithms have been studied,
e.g., data approximation, reconfigurable voting, and dy-
namic modification of vote weights, metadata-based dy-
namic voting [3], [5], [9]. In this paper, we focus on the
communication complexity of the voting problem. Several
voting algorithms have been proposed to reduce the com-
munication complexity [4], [7]. These algorithms are nonde-
terministic because they perform voting on signatures of
local computation results. Recently, Noubir and Nussbau-
mer [8] proposed a majority voting scheme based on error-
control codes: Each module first encodes its local result into
a codeword of a designed error-detecting code and sends
part of the codeword. By using the error-detecting code,
discrepancies of the local results can be detected with some

probability and, then, by a retransmission of full local results,
a majority voting decision can be made. Though the scheme
drastically reduces the average case communication complex-
ity, it can still fail to detect some discrepancies of the local
results and might reach a false voting result, i.e., the algo-
rithm is still a probabilistic one. In addition, this scheme only
uses the error-detecting capabilities of codes. As this paper
will show, in general, using only error-detecting codes (EDC)
does not help to reduce communication complexity of a de-
terministic voting algorithm. Though they have been used in
many applications such as reliable distributed data replica-
tion [1], error-correcting codes (ECC) have not been applied to
the voting problem.

For many applications [12], deterministic voting schemes
are needed to provide more accurate voting results. In this
paper, we propose a novel deterministic voting scheme that
uses error-correcting/detecting codes. The voting scheme
generalizes known simple deterministic voting algorithms.
Our main contributions related to the voting scheme include:

1)�using the correcting in addition to the detecting capa-
bility of codes (only the detection was used in known
schemes) to drastically reduce the chances of retrans-
mission of the whole local result of each node, thus
the communication complexity of the voting,

2)�a proof that our scheme provably reaches the same
voting result as the naive voting algorithm in which
every module broadcasts its local result to all other
modules, and

3)� the tuning of the scheme for optimal average case
communication complexity by choosing the parame-
ters of the error-correcting/detecting code, thus
making the voting scheme adaptive to various appli-
cation environments with different error rates.

The paper is organized as follows: In Section 2, we de-
scribe the majority voting problem in NMR systems. Our

1045-9219/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� The authors are with the Electrical Engineering Department, California
Institute of Technology, Mail Code 136-93, Pasadena, CA 91125.
�E-mail: {lihao, bruck}@paradise.caltech.edu.

Manuscript received 12 Jan. 1998; revised 30 June 1998.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 106146.

D

814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 8, AUGUST 1998

voting algorithm, together with its correctness proof, are
described in Section 3. Section 4 analyzes both the worst
case and the average case communication complexity of the
algorithm. Section 5 presents experimental results of per-
formances of the proposed voting algorithm, as well as two
other simple voting algorithms for comparison. Section 6
concludes the paper.

2 THE PROBLEM DEFINITION

In this section, we define the model of the NMR system and
its communication complexity. Then, we address the voting
problem in terms of the communication complexity.

2.1 NMR System Model
An NMR system consists of N computational modules
which are connected via a communication medium. For a
given computational task, each module executes a same set
of instructions with independent computational error prob-
ability p. The communication medium could be a bus, a
shared memory, a point-to-point network, or a broadcast
network. Here, we consider the communication medium as
a reliable broadcast network, i.e., each module can send its
computation result to all other modules with only one er-
ror-free communication operation. The system evolution is
considered to be synchronous, i.e., the voting process is
round-based.

2.2 Communication Complexity
The communication complexity of a task in an NMR system is
defined as the total number of bits that are sent through the
communication medium in the whole execution procedure

of the task. In a broadcast network, let mij be the number of
the bits that the ith module sends at the jth round of the
execution of a task, then the communication complexity of

the task is mijj

K

i

N

== ∑∑ 11
, where N is the number of the

modules in the system and K is the number of rounds
needed to complete the task.

2.3 The Voting Problem
Now, consider the voting function in an NMR system. In an
NMR system, in order to get a final result for a given task,
after each module completes its own computation sepa-
rately, it needs to be synchronized with other modules by
voting on the result. Denote Xi as the local computational
result of the ith module, the majority function is defined as
follows:

Majority X X

X if i i X X

otherwise

N

i i iN N

1

1 11
2

1
2

1

, , :

, , :

,

K

K L

2 7 =

∃ = =%
&K
'K

+ +

φ

where in general, N is an odd natural number and f is any
predefined value different from all possible computing results.

EXAMPLE 1. If X1 = 0000, X2 = 0001, X3 = 0100, X4 = 0000, X5
= 0000, then Majority(X1, X2, X3, X4, X5) = 0000; if X5
changes to 0010 and other Xis remain unchanged,
then Majority(X1, X2, X3, X4, X5) = f.

The result of voting in an NMR system is that each module
gets Majority(X1, L, XN) as its final result, where Xi (i = 1,
L, N) is the local computation result of the ith module.

One obvious algorithm for the voting problem is that,
after each module computes the task, it broadcasts its own
result to all the other modules. When a module receives all
other modules’ results, it simply performs the majority
voting locally to get the result. The algorithm can be de-
scribed as follows:

Algorithm 1 Send-All Voting
For Module Pi, i ¶ [1 : N]:

Broadcast(Xi);
Wait Until Receive all Xj, j ¶ [1 : N]\i;
X := Majority(X1, L, XN);
Return(X);

This algorithm is simple: Each module only needs one
communication (i.e., broadcast) operation but, apparently,
its communication complexity is too high. If the result for
the task has m bits, then the communication complexity of
the algorithm is Nm bits. In most cases, the probability of a
module having a computational error is rather low, namely,
at most times all modules shall have the same result, thus,
each module only needs to broadcast part of its result. If all
the results are identical, then each module shall agree with
that result. If not, then modules can use Algorithm 1.
Namely, we can get another simple improved voting algo-
rithm as follows:

Algorithm 2 Simple Send-Part Voting
For Module Pi, i ¶ [1 : N]:

Partition the local result Xi into N symbols: Xi[1 : N];
Broadcast(Xi[i]);
Wait Until Receive all Xj[j], j ¶ [1 : N]\i;
X := X1[1] * L * XN[N];
Fi := (X = Xi);
Broadcast(Fi);
If Majority(F1, L, FN) = TRUE

Return(X);
Else

Broadcast(Xi[j]), j ¶ [1 : N]\i;
Wait Until Receive all Xj, j ¶ [1 : N]\i;
Return(Majority(X1, L, XN));

In the above algorithm, * is a concatenation operation of
strings, e.g., 000*100 = 000100,and = is an equality evaluation:

X Y
TRUE
FALSE= = %&'0 5 :

if X equals to Y
otherwise.

Some padding may be needed if the local result is not an
exact multiple of N. The following example demonstrates a
rough comparison of the two algorithms.

EXAMPLE 2. X1 = X2 = X3 = X4 = 00000, X5 = 10000, with Algo-
rithm 1, one round of communication is needed and, in
total, 25 bits are transmitted. On the other hand, with
Algorithm 2, Pis (i = 1, L, 5) all broadcast 0, and X =
00000, thus (F1, L, F5) = 11110 , so Majority(F1, L, F5) = 1,
and X is the majority voting result. In this case, two
rounds of communication are done, and 10 bits (5 bits
for X and 5 bits for F) are transmitted.

XU AND BRUCK: DETERMINISTIC VOTING IN DISTRIBUTED SYSTEMS USING ERROR-CORRECTING CODES 815

If X5 = 00001, and all other Xis remain the same,
then, with Algorithm 2, X = 00001, which results in (F1,
L, F5) = 00001 , thus Majority(F1, L, F5) = 0 , and the
Else part of the algorithm is executed; finally, the ma-
jority voting result is obtained by voting on all the Xis,
i.e., X = Majority(X1, L, X5) = 00000. Now three
rounds of communication are needed and, in total, 30
bits (25 bits for Xis and 5 bits for F) are transmitted.

From the above example it can be observed:

1)�Algorithm 1 always requires only one round of com-
munication and Algorithm 2 requires two or three
rounds of communication;

2)�The Else part of Algorithm 2 is actually Algorithm 1;
3)�The communication complexity of Algorithm 1 is al-

ways Nm, but the communication complexity of Algo-
rithm 2 may be m + N or Nm + N, depending on the Xis;

4)� In Algorithm 2, by broadcasting and voting on the
voting flags, i.e., Fis, the chance for getting a false vot-
ing result is eliminated.

If the Else part of Algorithm 2, i.e., Algorithm 1, is not exe-
cuted too often, then the communication complexity can be
reduced to m + N from Nm and, in most cases, m @ N, thus
m + N < m. So, the key idea used to reduce the communi-
cation complexity is to reduce the chance to execute Algo-
rithm 1. In most computing environments, each module has
low computational error probability p, thus, most probably
all modules either

1)�get the same result or
2)�only few of them get different results from others.

In Case 1, Algorithm 2 has low communication complexity,
but, in Case 2, Algorithm 1 is actually used and the commu-
nication complexity is high (i.e., Nm + N), but if we can de-
tect and correct these discrepancies of the minor modules’
results, then the Else part of the Algorithm 2 does not need
to be executed, the communication complexity can still be
low. This detecting and correcting capability can be
achieved by using error-correcting codes.

3 A SOLUTION BASED ON ERROR-CORRECTING
CODES

Error-correcting codes (ECC) can be used in the voting
problem to reduce the communication complexity. The ba-
sic idea is that instead of broadcasting its own computation

result Xi directly, Pi, the ith module, first encodes its result

Xi into a codeword Yi of some code and, then, broadcasts
one symbol of the codeword to all other modules. After re-
ceiving all other symbols of the codeword, it reassembles
them into a vector again. If all modules have the same re-

sult, i.e., all Xis are equal, then the received vector is the
codeword of the result, thus it can be decoded to the result

again. If the majority result exists, i.e., Majority(X1, L, XN) ¡ f,

and there are t (t N≤ 2) modules whose results are differ-

ent from the majority result X, then the symbols from all these
modules can be regarded as error symbols with respect to
the majority result. As long as the code is designed to correct

up to t errors, these error symbols can be corrected to get
the codeword corresponding to the majority result, thus
Algorithm 1 does not need to be executed. When the code
length is less than Nm, the communication complexity is
reduced compared to Algorithm 1. On the other hand, if
only error-detecting codes are used, once error results are de-
tected, Algorithm 1 still needs to be executed and, thus, in-
creases the whole communication complexity of the voting.
Thus, error-correcting codes are preferable to error-
detecting codes for voting. By properly choosing the error-
correcting codes, the communication complexity can always
be lowered than that of Algorithm 1.

But, it is possible that the majority result does not exist,
i.e., Majority(X1, L, XN) = f, yet the vector that each module
gets can still be decoded to a result. As observed from the
above example, introduction of the voting flags can avoid
this false result.

3.1 A Voting Algorithm with ECC
With a properly designed error-correcting code which can
detect up to d and correct up to t error symbols (0 � t � d), a
complete voting algorithm using this code is as follows:

Algorithm 3 ECC Voting
For Module Pi, i ¶ [1 : N]:

Yi := Encode(Xi), partition Yi into N symbols: Yi[1 : N];
Broadcast(Yi[i]);
Wait Until Receive all Yj[j], j ¶ [1 : N]\i;
Y := Y1[1] * L * YN[N];
If Y is undecodable

Execute Algorithm 1 ;
Else

X := Decode(Y);
Fi := (X = Xi);
Broadcast(Fi);
If Majority(F1, L, FN) = TRUE(1)

Return(X);
Else

Execute Algorithm 1;

Notice that to execute Algorithm 1, each module Pi does
not need to send its whole result Xi. It only needs to send
additional N - (d + t) - 1 symbols of its codeword Yi.
Since the code is designed to detect up to d and correct
up to t symbols, it can correct up to d + t erasures, thus the
unsent d + t symbols of Yi can be regarded as erasures and
recovered, hence, the original Xi can be decoded from Yi.

To see the algorithm more clearly, the flow chart of the
algorithm is given in Fig. 1, and the following example
shows how the algorithm works:

EXAMPLE 3. There are five modules in an NMR system, and
the task result has 6 bits, i.e., N = 5 and m = 6. Here,
the EVENODD code [2] is used, which divides 6-bit
information into three symbols and encodes informa-
tion symbols into a five-symbol codeword. This code
can correct one error symbol, i.e., d = t = 1.

Now, if Xi = 000000, i = 1, 2, 3, 4, and X5 = 000011,
then, with the EVENODD code, Yi = 0000000000, i =
1, 2, 3, 4, and Y5 = 0000111101; after each module broad-
casts one symbol (i.e., 2 bits) of the codewords, the re-
assembled vector is Y = 0000000001. Since Y has only

816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 8, AUGUST 1998

one error symbol, it can be decoded into X = 000000.
From the flow chart of the algorithm, we can see that
Fi = 1, i = 1, 2, 3, 4, and F5 = 0, thus, Majority(F1, L, F5)
= 1, so X = 000000 is the majority voting result.

In this case, there are two rounds of communica-
tion, and the communication complexity is 15 bits. As
a comparison, Algorithm 1 needs one round of com-
munication and its communication complexity is 30
bits; on the other hand, Algorithm 2 needs three
rounds of communication and the communication
complexity in this case is 35 bits. In this example, the
EVENODD code is used but, actually, the code itself
does not affect the communication complexity as long
as it has same properties as the EVENODD code,
namely, an MDS code with d = t = 1.

From the flow chart of the algorithm, the introduction of
voting on Fis ensures not reaching a false voting result, and
going to the Send-All Voting in worst case guarantees not
failing to reach the majority result if it exists. Thus, the al-
gorithm can give a correct majority voting result. A rigor-
ous correctness proof of the algorithm is as follows.

3.2 Correctness of the Algorithm
THEOREM 1. Algorithm 3 gives Majority(X1, L, XN) for a given

set of local computational results Xis (i = 1, L, N).

PROOF. From the flow chart of the algorithm, it is easy to see
that the algorithm terminates in the following two
cases:

1)�Executing the Send-All Voting algorithm: The correct
majority voting result is certainly reached;

2)�Returning an X: In this case, since Majority(F1, L,
FN) = TRUE, i.e., majority of Xis are equal to X, X is
the majority result. o

To see how the algorithm works with various cases of
the local results Xis (i = 1, L, N), we give two stronger ob-
servations about the algorithm which also help to analyze
the communication complexity of the algorithm.

OBSERVATION 1. If Majority(X1, L, XN) = f, then Algorithm 3
outputs f, i.e., Algorithm 3 never gives a false voting result.

PROOF. It is easy to see from the flow chart that, after the
first round of communication, each module gets a
same vote vector Y. According to the decodability of Y,
there are two cases:

1)� If Y is undecodable, then the Send-All Voting algo-
rithm is executed, and the output will be f;

2)� If Y is decodable, the decoded result X now can be
used as a reference result. But, since there does not
exist a majority voting result, the majority of the
Xis are not equal to the X, i.e., Majority(F1, L, FN) =

Fig. 1. Flow chart of Algorithm 3.

XU AND BRUCK: DETERMINISTIC VOTING IN DISTRIBUTED SYSTEMS USING ERROR-CORRECTING CODES 817

FALSE(0), so the Send-All Voting algorithm is exe-
cuted, and the output again will be f. o

OBSERVATION 2. If Majority(X1, L, XN) = X (¡ f), then Algo-
rithm 3’s output is exactly the X, i.e., Algorithm 3 will not
miss the majority voting result.

PROOF. Suppose there are e modules whose local results are
different from the majority result X, then e N≤ −1

2 .

1)� If e � t, then there are e error symbols in the vote vec-
tor Y with respect to the corresponding codeword
of the majority result X, so Y can be correctly de-
coded into X, and the majority of Xis is equal to X,
i.e., the majority of Fis is TRUE(1), hence, the cor-
rect majority result X is output.

2)� If e > t, then Y is either undecodable or incorrectly
decoded into another X�, where X� ¡ X. In either
case, the Send-All voting algorithm is executed and
the correct majority result X is reached. o

3.3 Proper Code Design
In order to reduce the communication complexity, we need
an error-correcting code which can be used in practice for
Algorithm 3. Consider a block code with length M. Because of
the symmetry among the N modules, M needs to be a multi-
ple of N, i.e., each codeword consists of N symbols and each
symbol has k bits, thus M = Nk. If the minimum distance of the

code is dmin, then dmin � (d + t)k + 1, where 0 2≤ ≤ ≤t d N ,

since the code should be able to detect up to d error symbols
and correct up to t error symbols [6]. Recall that the final voting
result has m bits, the code to design is an (Nk, m, (d + t)k + 1)
block code.

To get the smallest value for k, by the Singleton Bound in
coding theory [6],

Nk - m + 1 � (d + t)k + 1, (1)

we get

k
m

N d t
≥

− +1 6 . (2)

Equality holds for all MDS Codes [6].
So, given a designed (d, t), the smallest value for k is

m
N d t− +() . If m

N d t− +() is an integer, all MDS Codes can achieve

this lower bound of k. One class of commonly used MDS
codes for arbitrary distances is the Reed-Solomon code [6]. If

m
N d t− +() is not an integer, then any (Nk, m, (d + t)k + 1) block

code can be used, where k m
N d t= − +() ; one of the examples is

the BCH code, which can also have arbitrary distances [6].
The exact parameters of (k, d, t) can be obtained by shortening
(i.e., setting some information symbols to zeros) or punctur-
ing (deleting some parity symbols) proper codes [6].

Notice that 0 1
2≤ ≤ ≤ −t d N , thus m

N k m≤ ≤ . In most ap-

plications, N ! m, thus the N bits of Fis can be neglected,
and k is approximately the number of the bits that each
module needs to send to get final voting result, so the
communication complexity of Algorithm 3 is always lower
than that of Algorithm 1.

In this paper, only the communication complexity of
voting is considered since, in many systems, computations
for encoding and decoding on individual nodes are much
faster than reliable communications among these nodes,
which need rather complicated data management in differ-
ent communication stacks, retransmission of packets be-
tween distributed nodes when packet loss happens. How-
ever, in real applications, design of proper codes should
also make the encoding and decoding of the codes as com-
putationally efficient as possible. When the distances of
codes are relatively small, which is the case for most appli-
cations when the error probability p is relatively low, more
computation-efficient MDS codes exist, such as codes in [2],
[10], and [11], all of which require only bitwise exclusive
OR operations.

4 COMMUNICATION COMPLEXITY ANALYSIS

4.1 Main Results
From the flow chart of Algorithm 3, we can see if the algo-
rithm terminates in branch 1, i.e., the algorithm gets a ma-
jority result, then the communication complexity is N(k + 1);
if it terminates in branch 2, then the communication com-
plexity is N(m + 1); finally, if the algorithm terminates in
branch 3, the communication complexity is Nm, thus the
worst case communication complexity Cw is N(m + 1). When
m @ 1, Cw < Nm.

Denote Ca as the average case communication complexity
of Algorithm 3, and define the average reduction factor a as

the ratio of Ca over the communication complexity of the

Send-All Voting algorithm (i.e., Nm), namely α = C
Nm

a , then,

the following theorem gives the relation between a and the
parameters of an NMR system and the corresponding code:

THEOREM 2. For an NMR system with N modules, each of which
executes an identical task of m-bit result and has computa-
tional error with probability p independent of other mod-
ules’ activities, if Algorithm 3 uses an ECC which can de-
tect up to d and correct up to t error symbols, and m @ N > 1,
then the following relation holds for the average reduction
factor of Algorithm 3:

α <
− +

+ − +
P

N d t
P m

1
11

1

1 6 2 7 , (3)

where

P N
i p pi N i

i

t

1
0

1= �� �� − −

=
∑ 1 6 . (4)

PROOF. To get the average case communication complexity Ca
of Algorithm 3, we need to analyze the probability Pi of
the algorithm terminating in the branch i, i = 1, 2, 3.
First, assume that if a module has an erroneous result
Xi, then it contributes an error symbol to the voting
vector Y. From the proof of Observation 2, if the algo-
rithm terminates in the branch 1, then at most t modules
have computational errors, thus, the probability of this
event is exactly P1. The event that the algorithm reaches
the branch 2 corresponds to the decoder error event of a
code with minimum distance of d + t + 1, thus [6]

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 8, AUGUST 1998

P A Pi
i d t

N

ik
k

d t

2
1 0

2

=
= + + =
∑ ∑

+

, (5)

where {Ai} is the weight distribution of the code being
used and Pik is the probability that a received vector Y
is exactly Hamming distance k from a weight-i (binary)
codeword of the code. More precisely,

P i
k j

N i
j p pik

i k j N i k j

j

k

= −
�� ��

−�� �� −− + − + −

=
∑ 2 2

0

11 6 . (6)

If the weight distribution of the code is unknown, P2
can be approximately bounded by

P N
i p pi N i

i

d t

2
0

1 1
2

≤ − �� �� − −

=

+

∑ 1 6 , (7)

since the second term in the right side of the inequal-
ity above is just the probability of event that correctable
errors happen. Finally, P3 is the probability of the de-
coder failure event,

P3 = 1 - P1 - P2. (8)

Now, notice the fact that a module has an erroneous
result can also contribute a correct symbol to the vot-
ing vector, the average case communication complex-
ity is

Ca � P1N(k + 1) + P2N(m + 1) + P3Nm (9)

and the average reduction factor is

α ≤ + − +
+k

m P P
P P

m1 1
1 212 7 . (10)

Notice that k m
N d t= − +() and P1 + P2 < 1, we get the

result of a as in (3). o

REMARKS ON THE THEOREM. From (3), we can see the relation
between the average reduction factor a and each
branch of Algorithm 3. The first term relates to the first
branch whose reduction factor is k

m or 1
N d t− +() when m

is large enough relative to N, the round-off error of
partition can be neglected, and P1 is the probability of
that branch. One would expect this term to be the
dominant one for the a, since, with a properly de-
signed code tuned to the system, the algorithm is
supposed to terminate at Branch 1 in most cases. The
second term is simply the probability that the algo-
rithm terminates at either Branch 2 or Branch 3, where
the reduction factor is 1 (i.e., there is no communica-
tion reduction since all the local results are transmit-

ted), without considering the 1 bit for Fis in Branch 2.

The last term is due to the 1 bit for voting on Fis.
When the local result size is large enough, i.e., m @ 1,
this 1 bit can be neglected in our model. Thus, in most
applications, the result in the theorem can be simpli-
fied as

α ≈
− +

+ −
P

N d t
P1

111 6 2 7, (11)

since the assumption that m @ 1 is quite reasonable.

From the above theorem and its proof, it can be seen that
for a given NMR system (i.e., N and p), P1 is only a function
of t, so, if t is chosen, from (3) or (11), it is easy to see that a
monotonically decreases as d decreases. Recall that 0 � t � d,
thus, for a chosen t, setting d = t can make a minimum when
m @ 1. Even though it is not straightforward to get a closed
form of t which minimizes a, it is almost trivial to get such
an optimal t by numerical calculation.

Fig. 2 shows relations between a and (t, p, N). Fig. 2a and
Fig. 2b show how a (using (11)) changes with t for some
setup of (N, p) when d = t. It is easy to see that, for small p
and reasonable N, a small t (e.g., t � 2, for N � 51 with p =
0.01) can achieve minimal a. These results show that, for a
quite good NMR system (e.g., p � 0.01), only by putting a
small amount of redundancy of the local results and ap-
plying error-correcting codes on them, the communication
complexity of the majority voting can be drastically re-
duced. Since the majority result is of m bits and each mod-
ule shall get an identical result after the voting, the com-
munication complexity of the voting problem is at least m
bits, thus α ≥ 1

N , i.e., 1
N is the lower bound of a. Fig. 2c

shows the closeness of the theoretical lower bound of a and
the minimum a that Algorithm 3 can achieve for some setup
of NMR systems.

4.2 More Observations
From the above results, we can see that the communication
complexity of the Algorithm 3 is determined by the code
design parameters (d, t). In an NMR system with N mod-
ules, we only need to consider the case where at most N

2

modules have different local results with the majority re-
sult, thus the only constraint of (d, t) is 0 2≤ ≤ ≤t d N . For

some specific values of (d, t), the algorithm reduces to the
following cases:

1)�When d t N= = −1
2 , i.e., a repetition code is used, the

algorithm becomes Algorithm 1. Since a repetition
code is always the worst code in terms of redundancy,
it should always be avoided for reducing the commu-
nication complexity of voting. On the other hand,
when d = t = 0, the algorithm becomes Algorithm 2
and, from Fig. 2, we can see that, for a small enough p

and reasonable N, e.g., p = 10-5 with N = 31, Algorithm 2
actually is a best solution of the majority voting
problem in terms of the communication complexity.
Besides, Algorithm 2 has low computational complex-
ity since it does not need any encoding and decoding
operations. Thus, the ECC voting algorithm is a gen-
eralized voting algorithm and its communication
complexity is determined by the code chosen.

2)� t = 0, then the code only has detecting capability but,
if m @ N, then from the analysis above, increasing d
actually makes a increasing. Thus, it is not good to
put some redundancy to the local results only for de-
tecting capability when m @ N, i.e., using only EDC
(error-detecting code) does not help to reduce the com-
munication complexity of voting. The scheme pro-
posed in [8] is in this class with d N= 2 .

XU AND BRUCK: DETERMINISTIC VOTING IN DISTRIBUTED SYSTEMS USING ERROR-CORRECTING CODES 819

3)� d N= 2 : As analyzed above, in general it is not good

to have d > t in terms of a since increase of d will in-
crease a when t is fixed. But, in this case, Algorithm 3
has a special property: Branch 2 of the algorithm can di-
rectly come to declare there is no majority result without
executing the Send-All Voting algorithm, simply be-
cause the code now can detect up to N

2 errors, so, if

there was a majority result, then Y (refer to Fig. 1) can
have at most N

2 erroneous modules and, since Y is

decodable, the majority of the local results should agree

with the decoded result X, i.e., Majority(F1, L, FN) =

TRUE; this contradicts with the actual Majority(F1, L,

FN), so there is no majority result. By setting d to N
2 ,

Algorithm 3 always has two rounds of communication
and the worst case communication complexity is, thus,

Nm, instead of N(m + 1), for the general case, and this
achieves the lower bound of the worst case communi-
cation complexity of the distributed majority voting
problem [8].

5 EXPERIMENTAL RESULTS

In this section, we show some experimental results of the
three voting algorithms discussed above. The experiments
are performed over a cluster of Intel Pentium/Linux-2.0.7
nodes connected via a 100 Mbps Ethernet. Reliable com-
munication is implemented by a simple improved UDP
scheme: Whenever there is a packet loss, the voting opera-
tion is considered as a failure and redone from beginning.
By choosing suitable packet size, there is virtually no packet
loss using UDP.

To examine real performances of the above three voting
algorithms, N nodes vote on a result of length m using all

(a)� (b)

(c)

Fig. 2. Relations between a and (t, p, N). (a) a vs. t for different p with fixed N = 31. (b) a vs. t for different N with fixed p = 0.01. (c) Minimum a vs. N.

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 8, AUGUST 1998

the three voting algorithms. For the ECC Voting algorithm, an
EVENODD Code is used, which corrects 1 error symbol, i.e., d
= t = 1 for the ECC Voting algorithm. Random errors are
added to local computing results with a preassigned error
probability p, independent of results at other nodes in the
NMR system. Performances are evaluated by two parameters
for each algorithm: the total time to complete the voting op-
eration T and the communication time for the voting opera-
tion C. Among all the local Ts and Cs, the maximum T and C
are chosen to be the T and C of the whole NMR system,
since, if the voting operation is considered as a collective op-
eration, the system’s performance is determined by the worst
local performance in the system. For each set of the NMR
system parameters (N nodes and error probability p), each
voting operation is done 200 times and random computation
errors in each run are independent of those in other runs, and
the arithmetic average of Cs and Ts are regarded as the per-
formance parameters for the tested NMR system.

Experimental results are shown in Figs. 3, 4, and 5. Fig. 3
compares the experimental average reduction factors of the
voting algorithms with the theoretical results as analyzed in
the previous section, when they are applied in an NMR
system of five nodes. Fig. 4 shows the performances (T and
C) of the voting algorithms. Detailed communication pat-
terns of the voting algorithms are shown in Fig. 5 to pro-
vide some deeper insight into the voting algorithms.

Fig. 3a and Fig. 3b show the experimental average reduc-
tion factors of the voting communication time (C) for the

Simple Send-Part Voting algorithm and the ECC Voting algo-
rithm. Fig. 3a and Fig. 3b also show the theoretical average
reduction factors of Algorithms 2 and 3 as computed from
(11). Notice that the average communication time reduction
factors a of both Algorithm 2 and Algorithm 3 are below 1
and, as the computing result size increases, the reduction
factor approaches the theoretical bound, with the exception
of the smallest computing result size of 1 Kbyte.

Fig. 4 shows the performances of each voting algorithm
applied in an NMR system of five nodes. Figs. 4a and 4b
show the total voting time T and Figs. 4c and 4d show the
communication time C for voting. The only different pa-
rameter of the NMR systems related to Figs. 4a and 4b
(symmetrically, Figs. 4c and 4d) is the error probability p: p
= 0.1 in Figs. 4a and 4c, while p = 0.01 in Figs. 4b and 4d. It
is easy to see from the figures that, for the voting Algorithm
1 (Send-All Voting), T and C are the same since, besides com-
munication, there is no additional local computation. Figs. 4a
and 4b show that Algorithms 2 (Simple Send-Part Voting)
and 3 (ECC Voting) perform better than Algorithm 1 (Send-
All Voting) in terms of the total voting time T. On the other
hand, Figs. 4c and 4d show, in terms of C, i.e., the commu-
nication complexity, the ECC Voting algorithm is better
than the Simple Send-Part Voting algorithm when the error
probability is relatively large (Fig. 4c) and worse than the
Simple Send-Part Voting algorithm when the error probabil-
ity is relatively small (Fig. 4d), which is consistent with the
analysis results in the previous section.

 (a) (b)

Fig. 3. Average reduction factors (C(i) is the experimental average reduction factor of communication time for voting using Algorithm i, and a(i) is
the theoretical bound of the average communication reduction factor using Algorithm i, i = 2, 3). (a) Error probability p = 0.01. (b) Error probability
p = 0.1.

XU AND BRUCK: DETERMINISTIC VOTING IN DISTRIBUTED SYSTEMS USING ERROR-CORRECTING CODES 821

 (a) (b)

 (c) (d)

Fig. 4. Experimental voting performances of five-node NMR system (T(i) and C(i) are the total and communication time for voting using algorithm
i, respectively, i = 1, 2, 3). (a) error probability p = 0.1., (b) error probability p = 0.01, (c) error probability p = 0.1, (d) error probability p = 0.01.

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 8, AUGUST 1998

 (a) (b)

 (c) (d)

Fig. 5. Detailed communication time pattern of voting (Ri(k) is the communication time in round i using the voting algorithm k, i = 1, 2, 3, and k = 2, 3).
a) error probability p = 0.01., (b) error probability p = 0.1, (c) error probability p = 0.01, (d) error probability p = 0.1.

XU AND BRUCK: DETERMINISTIC VOTING IN DISTRIBUTED SYSTEMS USING ERROR-CORRECTING CODES 823

In the analysis in the previous section, the size of local
computing result m does not show up as a variable in the
average reduction factor function a, since the communica-
tion complexity is only considered as proportional to the
size of the messages that need to be broadcast. But, practi-
cally, communication time is not proportional to the mes-
sage size, since startup time of communication also needs
to be included. More especially, in the Ethernet environ-
ment, since the maximum packet size of each physical send
(broadcast) operation is also limited by the physical
ethernet, communication completion time becomes a more
complicated function of the message size. Thus, from the
experimental results, it can be seen that, for a computing
result of small size, e.g., 1 Kbyte, the Send-All Voting algo-
rithm actually performs best in terms of both C and T, since
the startup time dominates the performance of communi-
cation. Also, the communication time for broadcasting the
1-bit voting flags cannot be neglected, as analyzed in the
previous section, particularly for a small size computing
result. This can also be seen from the detailed voting com-
munication time pattern in Figs. 5a and 5b: Round 2 of the
communication is for the 1-bit voting flag, even though it
finishes in a much more shorter time than round 1, but is
still not negligibly small. This explains the fact that, for
small size computing results, the average communication
time reduction factors of Algorithm 2 and Algorithm 3 are
quite apart from their theoretical bound.

Further examination of the detailed communication time
pattern of voting provides a deeper insight into Algorithm 3.
From Figs. 5c and 5d, it is easy to see that, in the first round
of communication, Algorithm 2 needs less time than Algo-
rithm 3 since the size of the message to be broadcast is
smaller for Algorithm 2. Besides, the first round of commu-
nication time does not vary as the error probability p varies
for both algorithms. The real difference between the two
algorithms lies in the third round of communication. From
Fig. 5c, this time is small for the both algorithms since the
error probability p is small (0.01). But, as the error probabil-
ity p increases to 0.1, as shown in Fig. 5d, for Algorithm 2,
this time also increases to be bigger than the first round
time, since it has no error-correcting capability and, once full
message needs to be broadcast, its size is much bigger than
in the first round. On the other hand, for Algorithm 3,
though it also increases, the communication time for the
third round is still much smaller than in the first round; this
comes from the error-correcting codes that Algorithm 3 uses,
since the code can correct errors at one computing node,
which is the most frequent error pattern that happens. Thus,
even though the error probability is high, in most cases, the
most expensive third round of communication can still be
avoided, and Algorithm 3 performs better (in terms of com-
munication complexity or time) than Algorithm 2 in high
error probability systems, just as the predicted analysis in
the previous section.

6 CONCLUSIONS

We have proposed a deterministic distributed voting al-
gorithm using error-correcting codes to reduce the commu-
nication complexity of the voting problem in NMR systems.
We also have given a detailed theoretical analysis of the
algorithm. By choosing the design parameters of the error-
correcting code, i.e., (d, t), the algorithm can achieve a low
communication complexity which is quite close to its theo-
retical lower bound. We have also implemented the voting
algorithm over a network of workstations, and the experi-
mental performance results match the theoretical analysis
well. The algorithm proposed here needs two or three
rounds of communication. It is left as an open problem
whether there is an algorithm for the distributed majority
voting problem with its average case communication com-
plexity less than Nm using only 1 round of communication.

ACKNOWLEDGMENTS

This work was supported in part by U.S. National Science
Foundation Young Investigator Award CCR-9457811, by the
Sloan Research Fellowship, and by DARPA through an
agreement with NASA/OSAT.

REFERENCES

[1]� K.A.S. Abdel-Ghaffar and A. El Abbadi, “An Optimal Strategy for
Computing File Copies,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 5, no. 1, Jan. 1994.

[2]� M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Effi-
cient Scheme for Tolerating Double Disk Failures in RAID Archi-
tectures,” IEEE Trans. Computers, vol. 44, no. 2, pp. 192-202, Feb.
1995.

[3]� D.M. Blough and G.F. Sullivan, “Voting Using Predispositions,”
IEEE Trans. on Reliability, vol. 43, no. 4, pp. 604-616, 1994.

[4]� K. Echtle, “Fault-Masking with Reduced Redundant Communi-
cation,” Proc. 16th Ann. Int’l Symp. Fault-Tolerant Computing Sys-
tems, vol.16, pp. 178-183, 1986.

[5]� D.D.E. Long and J.-F. Pâris, “Voting Without Version Numbers,”
Proc. Int’l Conf. Performance, Computing, and Comm., pp. 139-145,
Feb. 1997.

[6]� F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting
Codes. Amsterdam: North-Holland, 1977

[7]� J.F. Nebus, “Parallel Data Compression for Fault Tolerance,” Com-
puter Design, pp. 127-134, Apr. 1983.

[8]� G. Noubir and H.J. Nussbaumer, “Using Error Control Codes to
Reduce the Communication Complexity of Voting in NMR Sys-
tems,” technical report, Dept. of Computer Science, Swiss Federal
Inst. of Technology in Lausanne (EPFL), 1995.

[9]� B. Parhami, “Voting Algorithms,” IEEE Trans. Reliability, vol. 43,
no. 4, pp. 617-629, 1994.

[10]� L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Trans. Information Theory, to appear, 1998.

[11]� L. Xu, V. Bohossian, J. Bruck, and D. Wagner, “Low Density MDS
Codes and Factors of Complete Graphs,” Proc. 1998 IEEE Symp.
Information Theory, Aug. 1998

[12]� A. Ziv and J. Bruck, “Checkpointing in Parallel and Distributed
Systems,” Parallel and Distributed Computing Handbook, pp. 274-
302. McGraw-Hill, 1996.

824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 8, AUGUST 1998

Lihao Xu received the BSc and MSc degrees in
electrical engineering from the Shanghai Jiao
Tong University, China, in 1988 and 1991, re-
spectively. From 1991 to 1994, he was a lecturer
in the Electrical Engineering Department of the
Shanghai Jiao Tong University. He is currently a
PhD candidate in the Electrical Engineering
Department of the California Institute of Technol-
ogy. His current research interests include parallel
and distributed computing, fault-tolerant comput-
ing, error-correcting codes, and server systems.

 He holds one pending patent.

Jehoshua Bruck received the BSc and MSc
degrees in electrical engineering from the Tech-
nion, Israel Institute of Technology, in 1982 and
1985, respectively, and the PhD degree in elec-
trical engineering from Stanford University in
1989.

He is a professor of computation and neural
systems and electrical engineering at the Cali-
fornia Institute of Technology. His research inter-
ests include parallel and distributed computing,
fault-tolerant computing, error-correcting codes,

computation theory, and biological systems. Dr. Bruck has extensive
industrial experience, including serving as manager of the Foundations
of Massively Parallel Computing Group at the IBM Almaden Research
Center from 1990 to 1994, a research staff member at the IBM Alma-
den Research Center from 1989 to 1990, and as a researcher at the
IBM Haifa Science center from 1982 to 1985.

Dr. Bruck is the recipient of a 1997 IBM Partnership Award, a 1995
Sloan Research Fellowship, a 1994 U.S. National Science Foundation
Young Investigator Award, a 1992 IBM Outstanding Innovation Award
for his work on “Harmonic Analysis of Neural Networks,” and a 1994
IBM Outstanding Technical Achievement Award for his contributions to
the design and implementation of the SP-1, the first IBM scalable par-
allel computer. He has published more than 130 journal and confer-
ence papers in his areas of interests and he holds 21 patents. Dr.
Bruck is a senior member of the IEEE and a member of the editorial
board of the IEEE Transactions on Parallel and Distributed Systems.

