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B IOLOGY HAS ALWAYS BEEN the inspiration for 
computational metaphor. In the mid-

1930s Alan Turing's original model for com
putation, which we call the sequential pro
cess, was based on the way mathematicians 
proved theorems. Because mathematicians 
are biological entities, we can say that even 
Turing's sequential process was inspired by 
the way biological systems work. But I will 
be discussing some biological systems that. are 
simpler than mathematicians, since nobody, 
including mathematicians, can understand 
the way mathematicians work. 

In the last decade or so the knowledge of 
what goes on in the brain has increased 
tremendously. When Max DelbrUck first 
interested me in biology 20 years ago, the pic
ture we had of the brain at that time was 
much more simplistic and much less analog 
in nature. At the time, neurobioIogists were 
completely preoccupied with nerve impulses 
and the way they were generated in neurons. 
Now they are looking more deeply at the 
principles on which neural computation is 
based. And there are some surprises here. 
Nerve impulses, which are quasi-digital, play 
a surprisingly small role in the actual compu
tation process. Most of the computation is 
analog, and it's done at the very tips of the 
dendritic tree of the neuron. Throughout the 
brain there is distributed feedback from these 
dendritic tips to the nerves that are driving 
them. 

These new discoveries prompted us to 
take a fresh look at neural computation to see 
whether we might be able to synthesize sys
tems that have some of the properties of real 
neural systems. It turns out that it's probably 
just the right time to be doing this. What's 
different today from attempts in the last 30 
years to build neurocircuits is that now we 
have a technology that makes it possible to 
put a billion transistors on a six-inch wafer 
and interconnect them all. Conventional 
digital technology has difficulty using a full 
wafer, since many transistors are inoperative. 
Re-creating the brain's distributed analog 
computation gives us inherent redundancy 
and robustness under failure. We can actu
ally use a substantial fraction of these billion 
transistors. So, the technology that was de
veloped for microprocessors and memories 
has provided us a base on which we can build 
neural computing systems. These computing 
systems fire based on very different principles 
from any of the conventional computing 



engines, analog or digital, that were built in 
the past. ' 

The particular system we have been work
ing on is a very simple model of the part of 
the brain wrapped up behind the eyeball. 
Although it's quite simple by brain standards, 
it does a level of computation that even our 
most powerful computers today can't handle. 
The lens of the eye focuses an image on the 
surface of the retina, where the first levels of 
visual processing occur. When we want to 
see details of shapes, such as letters, the image 
gets focused on the fovea, a small area of the 
retina with tightly packed photoreceptors. 
But the fovea is responsible for only a frac
tion of the retina's activity. Most of the 
action happens at the periphery, where move
ment of the image produces signals that are 
transformed into nerve pulses that are trans
mitted over the optic nerve "cable" to the 
higher centers in the brain. 

In a cross section through the retina one 
can see on the surface a layer of photorecep
tors, below which lie layers of three different 
kinds of cells- bipolar, horizontal, and ama
crine. Below these cells are the ganglion cells, 
whose axonS form the fibers of the optic 
nerve. The principal signal flow in the retina 
runs from the receptors down through the 
bipolar cells (the horizontal and amacrine 
cells spread across a large area of the retina in 
layers transverse to the signal flow) and into 
the ganglion cells, which turn the signal into 
nerve pulses. In engineering terms we can say 
that the process starts by transducing the light 
energy into an electrical signal. We send that 
signal on to an amplifier and then off through 
a cable. The signals in the retina are all ana
log until they go out the cable as nerve pulses, 
which are quasi-digital (digital in amplitude 
but analog in time). 

This basic structure (with some diversity 
in the details) is universal throughout the ver
tebrates. We can assume that the animals 
that evolved this eye structure ate any that 
did not. It is characteristic of biological sys
tems that they are here because they work. 
An animal didn't live long if it couldn't see 
the predators that were about to jump on it, 
and its genes did not have a chance to get 
represented in the next generation. Because 
evolution has such a ruthless way of dealing 
with bad designs, we can view surviving bio
logical structures as highly engineered 
systems. 

The visual system is there to see things 

about the world .. The scene coming into the 
eye, however, is not the world. It's a bunch 
of photons that arrive because there is some 
light somewhere that shines on objects in the 
world and gets reflected off them into the eye. 
The light that falls on the image surface is the 
product oran illumination function multi
plied by the reflectance of the object. But we 
don't want to see the illumination function; 
we want to see the object. Nobody ever got 
jumped on by an illumination function. So 
we take the logarithm of the intensity, and 
that factors the problem into the log of the 
illumination function, which is often a 
smooth function (except for shadows), plus 
the log of the reflectance of the object. The 
computation of the logarithm is done in the 
receptors or in their interactions with each 
other. 

The visual system also has to make sure 
that the signals are within range. If they're 
not, you get blanked out. You have probably 
noticed this phenomenon, say, watching a 
baseball game on television. When someone 
hits a ball up into the stands, the television 
camera pans from the brightly lit field over to 
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In this cross section of a ver
tebrate retina. the main signal 
flow travels downward from 
the photoreceptors through the 
bipolar cells to the ganglion 
cells. Which connect to the 
optic nerve. The layers of hor
izontal cells and amacrine 
cells lie transverse to the sig
nal path. (From ''The Control 
of Sensitivity in the Retina" by 
Frank S. Werblin. © January 
1973 Scientific American. Inc. 
All rights reserved) 
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the stands in the shade. The camera has an 
elaborate automatic gain control system, but 
in such a mixed scene you see a pure white 
field and pure black stands; one signal is 
above range, and the other is below range, so 
you don't see anything at all. If an animal 
did that, its visual system would not be 
around in the next generation because the 
predators would simply jump from places 
that were half in the shade and half in 
sunlight. 

But in the visual system, unlike the televi
sion camera, there is a measure of the local 
average intensity of the light; this value is 
used as the midpoint for the acceptable range 
of input levels. Basically this is a mechanism 
for deciding whether the pixel we are looking 
at is sufficiently different from the pixels 
around it to be reported. This level
normalization computation is performed by 
the horizontal cells. The horizontal cells look 
at the potentials on a bunch of photorecep
tors and then take a spatial average. Then 
the difference between that spatial average 
and the local receptor is computed in the 
synaptic complex in the foot of the receptor. 
The resulting spatial derivative gets shipped 
on to the bipolar cells. 

The outputs of the bipolar cells feed the 
amacrine layer, which is responsible for com
puting the time derivative of the signal. Ris
ing edges of the bipolar waveform are turned 
into peaks, which in turn cause ganglion cells 
to fire. In rough terms, the amacrine layer is 
extracting motion information from the 
incoming retinal image. In some animals, 
like the frog, very elaborate motion computa
tions are performed. A visual scene of the 
frog's natural habitat moving as a whole eli
cits no response. When a small, dark spot is 
moved relative to the background, however, a 
large response results. In higher vertebrates, 
much of this kind of complex motion calcula
tion has migrated to visual cortex, and the 
retina computes a simple time derivative. 

How much does something have to be 
moving for us to see it? The answer depends 
on how much the rest of the image is movIng. 
Another level of gain control mechanism 
makes sure that, if we are going to report a 
derivative event, that event is significant rela
tive to the rest of the scene. If we are looking 
at a tree, and the leaves are all blowing in the 
wind, something has to move significantly 
before we will report it. Otherwise, our 
higher levels of information processing would 
get overloaded by reports about all those little 
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fluttering leaves. For a primate it usually 
takes something bigger than a leaf to jump on 
you and hurt you very much. 

A derivative signal with respect to time is 
taken by the interaction of the bipolar, ama
crine, and ganglion cells. Exactly how bio
logical systems do this is not known. The 
local derivative with respect to time is com
pared to the derivatives that are being taken 
in the surrounding area. If the local signal is 
significantly larger, it gets reported. 

We might wonder why so much of the 
information in the optic nerve is derivative. 
After all, we could just ship all the intensity 
information about the scene up the optic 
nerve. The optic nerve has a bandwidth 
approaching that of a television signal. People 
who design machine vision systems usually 
start with a television signal; they take one 
frame and compare it with the succeeding 
frame, and so on. Motion is characterized as 
something in one position in the first frame 
that is in a different position in the second 
frame. 

It would be easy for a living system to do 
gain control in the camera, like television 
does, and then send the intensity information 
up to the brain to extract the motion infor
mation where there is a lot more horsepower 
to do so. So why go to all the trouble of 
building this elaborate derivative processing 
machinery down at the camera level? The 
answer is a straightforward one: A television 
camera samples every point on the image 
once every 1/30 of a second. But a predator 
in the visual field can move a distance of 
many pixels in 1/30 of a second. So what we 
have done is to take a simple problem -
taking a directional derivative with respect to 
time - and transformed it into a compli
cated one. Now we have an image at time t 
and an image at t + 1/30, and we have to 
decide what point in the first image corre
sponds to what point in the succeeding image. 
So sampling transforms the processing task 
into the extremely difficult correspondence 
problem. People use supercomputers to try to 
solve that problem. Living systems didn't 
have supercomputers; they solved the prob
lem the easy way and just took the derivative. 

So when we built our rudimentary elec
tronic retina, we built it tojust take the 
derivative also. We based our system on the 
following four insights from biology: 

1. It's important to take a logarithm of the 
signal, because logarithms factor the scene 
into the illumination function and the prop-



erties of the objects. 
2. It's important to keep the signals in 

range. 
3. Normalization should be done on a 

local basis; there is information in the shade 
and in the sunlight. 

4. It's important to take time derivatives 
before we have sampled the image with 
respect to time. Otherwise, we would be 
throwing away the single most important 
piece of information in the image. 

We have designed a simple retina and 
have implemented it on silicon in a standard, 
off-the-shelf CMOS (complementary metal
oxide semiconductor) process. The basic 
component is a photoreceptor, for which we 
use a bipolar transistor. In a CMOS process 
this is a parasitic device, that is, it's responsi
ble for some problems in conventional digital 
circuits. But in our retina we take advantage 
of the gain of this. excellent phototransistor. 

There'S nothing special about this fabrica
tion process, and it's not exactly desirable 
from an analog point of view. Neurons in 
the brain don't have anything special about 
them either; they have limited dynamic range, 
they're noisy, and they have all kinds of gar
bage. But if we're going to build neural sys
tems, we'd better not start off with a better 
process (with, say, a dynamic range of 105

), 

because we'd simply be kidding ourselves that 
we had the right organizing principles. If we 
build a system that is organized on neural 

principles, we can stand a lot of garbage in 
the individual components and still get good 
information out. The nervous system does 
that, and if we're going to learn how it works, 
we'd better subject ourselves to the same 
discipline. 

As in a biological eye, the first step is to 
take the logarithm of the signal arriving at the 
photoreceptor. To do this, we use the stan
dard trick of electrical engineers, that is, to 
use an exponential element in a feedback 
loop. The voltage that comes out is the loga
rithm of the current that goes in. We think 
this operation is similar to the way living sys
tems do it, although that is not proven. The 
element that we use to make this exponential 
consists of two MOS transistors stacked up. 
A nice property of this element is that the 
voltage range of the output is appropriate for 
subsequent processing by the kinds of 
amplifiers we can build in this technology. 
When we use the element to build a photore
ceptor, the voltage out of the photoreceptor is 
logarithmic over four or five orders of magni
tude of incoming light intensity. The lowest 
photo current is about 10-14 amps, which 
translates to a light level of 105 photons per 
second. This level corresponds approximately 
to moonlight, which is about the lowest level 
of light you can see with your cones. 

There are two kinds of receptors in the 
eye - cones and rods. We use the cones 
under all normal circumstances and the rods 

This computer drawing of a 
small group of pixels (one 
pixel appears on the cover) 
from the center of the retina 
shows how the individual cells 
are composed to form the pro
cessing array. The entire 
chip, shown on the following 
page, contains a 48 x 48 
array of these pixels. 
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The retina chip enlarged below 
is 5.4 millimeters by 4.8 mil
limeters in size and contains 

about 100,000 transistors. 

only in very low-illumination conditions. 
The rods are more sensitive, but they don't 
have good contrast sensitivity. Our silicon 
photoreceptor can't compete with the rods, 
but its intensity range is approximately that 
of the cones. It's a good photoreceptor, and 
it's logarithmic over the right range. 

Now we can build a network of resistive 
elements patterned after the horizontal cells 
in the eye. The horizontal cells take the out-
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puts of all the receptors and average them 
spatially. They take a weighted average that is 
a function of distance from the local receptor; 
the farther away an input is, the less weight it 
is given. It's an extremely simple mechanism, 
and it's used in many places in peripheral 
sensory systems. We want to have something 
to compare our signal to, but we don't want 
that something to be global. A television 
camera blanks out because it compares each 



local signal with the average level over the 
entire scene. A biological visual system is 
more intelligent. It takes a local average, 
which gives progressively less weight to inputs 
that are farther away. 

Our resistive networks turn out to be 
extremely good at calculating the spatial aver
age. CMOS technology does not have a resis
tor of sufficiently high value as an inherent 
part of the process. All of our circuit com
ponents - resistors, capacitors, etc.- are 
made out of transistors. We have to build a 
little circuit that functions like a resistor, 
except that it has a mechanism to control the 
resistance. Each photoreceptor is hooked up 
to six neighbors in a hexagonal array linked 
by the resistive network that calculates the 
spatial average. The circuit is actually better 
than a regular resistor because, if the voltage 
between the two sides gets too big, the current 
that can go through it is limited. So, for 
example, if one of our pixels gets stuck, it 
doesn't take down the whole network. In a 
network of linear resistors, one stuck input 
could create damage for a large distance. 

We made our amacrine cells out of a cou
ple of amplifiers and a capacitor - again, all 
made out of transistors. Analogous to the 
amacrine cells' task in the visual system, this 
little circuit takes the derivative with respect 
to time. What it does is take the input signal, 
which corresponds to that coming out of the 
bipolar cell in the retina, compares it with a 
temporally smoothed version of the signal, 
and reports the difference as a finite time con
stant derivative circuit. The output repre
sents the difference between the local signal 
and the time average of the surrounding sig
nals. You can think about the computation 
that's done locally as taking the amplified 
difference between the local input and the 
space-and-time-averaged input, which is 
weighted over the surround in some way that 
dies off as it gets to farther neighbors. What 
our circuit does not have, which the amacrine 
cells do have, is a motion gain control. It will 
not turn down the gain if an object in the 
surround is moving. We have not yet 
evolved that level of processing. 

Compared to an animal's eye, this is all 
very low-level. It's not the kind of thing that 
could recognize your grandmother or even 
locate tanks on a battlefield. But it's the first 
step in simulating the computation that your 
brain does to process a visual image. It's 
done in a smooth analog manner completely 
analogous to the way the eye does it. And it 

does indeed have tremendous advantages in 
the preservation of information compared 
with any kind of system that starts with a 
standard TV-type front end. 

In a small way, we have embarked upon a 
second evolutionary path - that of a silicon 
nervous system. As in any evolutionary 
endeavor, we must start at the beginning. 
Our first systems have been simple and stu
pid. But they are, no doubt, smarter than the 
first animals were. We are, after all, endowed 
with the product of a few billion years of evo
lution with which to study them. 

The constraints on our silicon systems are 
very similar to those on neural systems: Wire 
is limited, power is precious, robustness and 
reliability are essential. We may therefore 
expect the results of our second evolution to 
bear fruits of biological relevance. The effec
tivenesss of our approach will be in direct 
proportion to the attention we pay to the 
guiding biological metaphor. We use the 
term metaphor in a very deliberate and well
defined way. We are in no better position to 
"copy" biological nervous systems than we 
are to create a flying machine with feathers 
and flapping wings. But we can use biological 
organizing principles as a basis for our silicon 
systems in the same way that a soaring bird is 
an excellent model of a glider. 

It is my conviction that our ability to real
ize simple neural functions is strictly limited 
by our understanding of their organizing prin
ciples and not by difficulties in realization. If 
we really understand a system, we will be able 
to build it. Conversely, we can be sure that a 
system is not fully understood until a working 
model has been synthesized and successfully 
demonstrated. 

The silicon medium can thus be seen to 
serve two complementary but inseparable 
roles: 

1. To give computational neuroscience a 
synthetic element allowing hypotheses con
cerning neural organization to be tested. 

2. To develop an engineering discipline 
by which real-time collective systems can be 
designed for specific computations. 

The success of this venture will create a 
bridge between neurobiology and the infor
mation sciences and bring us a much deeper 
view of computation as a physical process. It 
will also bring us a fresh new view of infor
mation processing and the enormous power 
of collective systems to solve problems that 
are completely intractable by traditional com
puter techniques. 0 
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