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Abstract is one approach which uses a separate feedkjack within 
the adaptive controller to cancel-the effect of the unde- 
sired feedback [6]. This scheme, however, requires special 
care in the implementation to avoid the cancellation of 
the reference signal all together (see [4] for details). Look- 
ing at  feedback neutralization from a different point of 
view, it is clear that this algorithm generates poles as well 
as zeros for the overall adaptive filter. In other words, 
the overall adaptive controller is an IIR filter in general 
(and hence stability of the overall system should be closely 
monitored). Observing this fact, there have been several 
attempts to directly design an adaptive IIR filter in such 
circumstances. Filtered-U recursive LMS algorithm is one 
such approach. In this technique, the feedback path is 

We present an estimation-based approach to the design of 
adaptive IIR filters. We also use this approach to design 
adaptive filters when a feedback signal from the output of 
the adaptive filter contaminates the reference signal. We 
use an H ,  criterion to  cast the problem as a nonlinear 
H ,  filtering problem, and present an approximate linear 
H ,  filtering solution. This linear filtering solution is then 
used to adapt the adaptive IIR Filter. The presentation 
of the proposed adaptive algorithm is done in the context 
of an adaptive Active Noise Cancellation (ANC) problem. 
Simulations are used to examine the performance of the 
proposed estimation-based adaptive algorithm. 

explicitly treated as part of the plant, [7], and the deriva- 
tion involves approximations that rely on slow adaptation. 
Furthermore, there are many concerns about the conver- 
gence properties of this scheme [4]. It is also noted that 
the optimal solution can be extremely ill-conditioned if 
a large number of controller coefficients are used or the 
structure of feedback path is complicated. 
This paper's estimation-based approach to the design of 
adaptive IIR filters, in essence meets a disturbance attenu- 
ation criterion (to be defined shortly), and hence provides 
a framework in which the questions about convergence and 
stability of the adaptive algorithm can be systematically 
addressed. Moreover, the estimation-based approach eas- 
ily extends to the case where the reference signal available 
to the adaptive algorithm is contaminated with the feed- 
back from the output of the adaptive filter. 
This paper is organized as follows. Section 2 presents the 
estimation-based formulation for the adaptive filter de- 
sign. Section 3 discusses the H,-optimal solution to the 
formulated estimation problem. Section 4 outlines our 
proposed implementation scheme for the adaptive algo- 
rithm. Section 5 contains simulation results. Section 6 
concludes this paper with a summary and final remarks. 

2 Problem Formulation 

we discuss the estimation-based approach to the design 
of an adaptlve IIR filter (with and the presence 
of a feedback path) in the context of the ANC problem of 
~i~~~~ 1. this section we first concentrate on the caSe 
where there is no feedback path. The with feedback 
path is then an 
The objective of ANC is to generate a control signal u ( k )  
such that the output of the secondary path, Y(k), is In 
some measure (to be specified later) close enough to the 
output of the primary path, d(le). For this to material- 
ize, the series connection of the IIR filter (for some opti- 

path must appropriately approximate the unknown pri- 

1 Introduction 

The Least-Mean Squares (LMS) adaptive algorithm [I] 
has been used for Over 35 years as the center piece of a 
wide variety of adaptive algorithms. Despite numerous 
successful applications, it was only recently that the H ,  
optimality of the LMS algorithm was established [a], and 
its important properties, such as bounds on adaptation 
rates, were rigorously derived. 
Over years, however, numerous (mostly heuristic) varia- 
tions of the LMS algorithm have been developed to over- 
come practical implementation problems (see [l] and [4] 
for instance). The contamination of the reference signal 
(see Figure 1) with the output of the adaptive filter has 
proven to  further complicate the implementation prob- 
lems. Thus systematic approaches for the design and anal- 
ysis of the adaptive filters for realistic control scenarios 
have been of primary interest to researchers in the field. 
In [3], an estimation-based approach to  the design of adap- 
tive FIR filters is proposed. Reference [3] uses an adaptive 
ANC scenario to  explain how an estimation interpretation 
of the adaptive control problem provides a framework for 
the systematic synthesis and analysis of adaptive FIR fil- 
ters. This paper extends the results in 131 to the design 
of adaptive Infinite Impulse Response (IIR) filters. The 
formulation presented here also applies when the reference 
signal is contaminated with a feedback from the Output Of 

the adaptive filter (Figure 1). 
The effects of the reference signal contamination has been 
studied in the adaptive control literature (see Chapter 3 
of [4] and the references therein). Feedback neutrahation 
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Fig. 1: Block Diagram ‘of an ANC Problem With Feedback con- 
tamination of the Reference Signal 

Fig. 2: Estimation Interpretation of the IIR Adaptive Filter 
Design in a ANC Problem 

mary path. Figure 2 captures this notion. This observa- 
tion, in our view, is an estimation interpretation of the 
adaptive control problem. Note that as long as the out- 

then i t  can be treated as a component of the measurement 
disturbance signal, V,(k). 
To formalize this observation, we assume a state space 
model for the IIR filteir and the secondary path, and then 
form an approximate model for the primary path as shown 
in Figure 3. This approximate model is the closest to the 

put of the “modeling error” block in Figure 2 is bounded, ) 

...................................................................................................................... - _ -  
actual primary path foa some optimal (but unknown) set- 
ting of the filter parameters. Now, the estimation-based 
approach to  the design of an adaptive IIR filter is de- 

Fig. 3: Approximate Model For the Unknown Primary Path ( A  
second order IIR filter is shown 

scribed as follows: 
state space model, [A,(k), B,(k), C,(k), Ds(k)], for the 

1. Devise an estimation strategy that recursively im- 
proves our estimate of the optimal values of the IIR 
filter parameters in the approximate model of the 
primary path (given the available measurement his- 
tory to be described shortly), 

2. Set the actual value of the parameters in the adap- 
tive IIR filter to the best estimate of the parameters 
obtained from the estimation strategy. 

We now take a closer look at  the main signals in Figure 
2. Note that e (k )  = d ( k )  - y(k) + Vm(k),  where 
a) e (k )  is the available error measurement, 
b) Vm(k) is the exogenous disturbance that captures mea- 
surement noise, modeling error and initial condition un- 
certainty for the secondary path, 
c )  y(k) is a known signal, because (i) u ( k )  is exactly known 
(we directly set the pa.rameters in the IIR filter), and (ii) 
we assume that 00 (the initial condition for the secondary 
path) is known’. 
The derivedmeasured (quantity, m(k) in Figure 3, can now 
be defined as 

(1) 
A 

m ( k )  = e ( k )  + y(k) = d ( k )  + Vm(k) 

replica of the secondary path in Figure 3. We also define 

the unknown optimal vector of the IIR filter parameters 
a t  time k .  {r = [ W ( I C ) ~  6 ( q T ]  is then the state vector 
for the overall system. Note that O(k) captures the dy- 
namics of the replica of the secondary path. The state 
space representation of the system is then 

W ( k )  = [ ~ ( k )  b l ( k )  ... b ~ ( k )  ~ ( k )  ... a ~ ( k ) ] ~  to be 

‘ f (k+l )  Fk - % 

W ( k )  
At: ] [ e ( k )  ] W(k + 1)  4 2 N t 1 ) x ( 2 N t 1 )  [ O(k+1)  1 =I B,($)h; 

where 

h k  = [z(k) r (k  - 1 )  ... r (k  - N )  r (k  - l ) . . .  r (k  - N)IT 

captures the effect of the reference input z(.). Note that 

r ( k )  = z(k)ao(k) + r (k  - l ) b l ( k )  + ...+ r (k  - N ) b ~ ( k ) ,  
r(-l) = ... = r ( - N )  = 0 ( 3 )  

and therefore, the system dynamics are nonlznear in the 
IIR filter parameters. For this system, the derived mea- 
sured output is 

H k  

2.1 Estimation Problem 
Figure 3 reflects a block diagram representation of the =I w ~ C  CM i[ W ( k )  6 ( k )  ] + wv (4) 

approximate model to the primary path. We assume a 
where m(k)  should be constructed at each step according 

is also nonlinear in the parameters of the IIR filter. Now, 
define a generic linear combination of the states as the 

‘Note that as long as the effect of the initial condition in the 
output of the secondarypath does not grow without bound, any error 

to ~~~~~i~~ (1). once again, the measurement equation 
in y(k) (due to an initial con~tionother than what we 
be treated as a componenl. of the measurement disturbance. 

can 
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desired quantity to be estimated 

Note that m(.) E Rpxl ,  s(.) E RqX1, e( . )  E R r X 1 ,  and 
W(.)  E R(2N+1)x1. All matrices are then of appropriate 
dimensions. 
To allow for a simplified solution (see Section 3),  of all 
choices available for L K ,  LK = Hk is considered here. In 
principle, any estimation algorithm can now be used to 
generate i(klk) = F(m(O), . . ., m(k) )  (a causal estimate 
of the desired quantity, s ( k ) )  such that some closeness 
criterion is met. This paper focuses on an H, estimation 
criterion. Here, the main objective is to limit the worst 
case energy gain from the measurement disturbance and 
the initial condition uncertainty to the error in a causal es- 
timate of s(k). In other words, it is desired to find an H ,  
suboptimal causal estimator i (k lk)  = F(m(O), . . . , m(k))  
such that 

A 

k=O 

Note that, in this case 
1. There is no statistical assumption regarding the mea- 
surement disturbance. Therefore, the error in the model- 
ing of the primary path can be easily treated as a compo- 
nent of the measurement disturbance. For large modeling 
error, however, the performance can be expected to dete- 
riorate. 
2. A closed form solution to the nonlinear H, estimation 
problem is not available. To derive a recursion for the fil- 
ter parameter update, we apply the following approxima- 
tion: At each time step, replace the IIR filter parameters 
an Equation (3) with thezr best available estimate. This 
reduces the problem into a linear H ,  estimation problem 
for which a solution similar to  that in [3]  exists2. 

3 H,-Optimal Solution 

In this section, we only quote the y-suboptimal filtering 
solution for the linearzzed H,-estimation problem [5,8]. 
The arguments for the optimal value of y for the solution 
to  the linearized problem and the simplifications that fol- 
lows are similar to  those presented in [3]  and hence are 
not repeated here. 

2As Figure 3 suggests, feedback is an integral part of an IIR filter 
structure. The discussion in Section 2.1 showed that this feedback 
results in the nonlinearity in the system dynamics. The same holds 
true when a feedback path exists such that the reference signal is 
contaminated by the output of the adaptive filter itself (Figure 1). 
Our treatment of the nonlinearity in the case of an IIR filter, i.e. 
replacing the IIR filter parameters in Equation (3) with their best 
available estimates, carries over to the case where such a feedback 
Path exists. 

3.1 y-Suboptimal Finite Horizon Filtering Solu- 
tion 
Theorem [5] :  Consider the system in Figure 3 and de- 
scribed by Equations ( 2 ) - ( 5 ) .  Assume that the linearizing 
approximation discussed in the previous section is applied. 
A level-y H, filter that achieves (6) exists if, and only if, 
the matrices Rk and Re,k defined by 

Rk 

have the same inertia for all 0 5 6 5 M ,  where P o  = no 
and Pk > 0 satisfies the Riccati recursion 

Pk+l = FkpkF; - I ( p , k R e , k K p , k  (8) 

where I ( p , k  = (FkPk [ H; 
then the central H, estimator is given by 

L; I) RCi. If this is the case, 

i k + i  = F k i k  4- I C i , k  (m(k) - H d k )  , &I = 0 (9) 

with I < l , k  = ( F k P k H ; )  Rg:,k and R H e , k  = Ip 4- HkPkH,'. 
The optimal value of y is 1 (see Refs. [2,3]), and for 
this optimal value the Riccati equation in (8) reduces to 
pk+l = F k P k F g ) .  
3.2 Important Remarks 
1. As in the case for the FIR filter design, the estimation- 
based approach to the design of the adaptive IIR filter 
requires the solution to only one Riccati equation. Fur- 
thermore, the Riccati solution propagates forward in time 
and does not involve any information regarding the future 
of the system or the reference signal. Thus, the resulting 
adaptive algorithm is real-time implementable. 
2. As mentioned in Section 3 . 1 ,  the Riccat.i update  (for 
the simplified solution) reduces to a Lyapanov recursion 
which always generates a positive definite Pk as long as 
P o  > 0. This eliminates the need for computationally ex- 
pensive checks for positive definiteness of Pk at  each step. 
3. In general, the solution to an H, filtering problem re- 
quires verification of the fact that Rk and Rr,k are of the 
same inertia a t  each step. This can be a computationally 
expensive task. Our formulation of the problem eliminates 
the need for such checks by allowing a definitive answer 
to the feasibility of y = 1. This also guarantees that a 
breakdown in the solution will not happen. 

the computational complexity of the estimation based ap- 
proach is O(n3) (in calculating F k P k F g ) ,  where 71 = 
2N + 1 (number of IIR filter Parameters) +?lsec--palh (the 
order of the secondary path). The special structure of Fk 

however reduces the computational complexity involved to 
O ( n ~ e , - p a t h ) .  This can be a substantial reduction in the 
computation when 2N + 1 is large compared to n s e e - p a t h .  

4. With no need to verify the solutions a t  each step, 

4 Estimation-Based Adaptive Algorithm 

In this section, we use three sets of variables to describe 
the adaptive algorithm, (i) I@(k) and O ( k )  (best estimate 
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A ofthe state a t  time k), (ii) Bactual ,  u (k )  = h;vV(k),  y(k), 
and d ( k )  (the actual v,alue of the variables), and (iii) adap- 
tive algorithm’s internal copy of a variable (referred to 
with subscript “copy”). See [3] for a detailed description 
of these variables. We outline the implementation algo- 
rithm as follows: 
1. Start with @(O) = @o, 8(0) = 80 as the best 
initial guess for the state vector in the approximate 
model of the primary path. Assume that the IIR filter 
starts with T(-1) = .. . = r ( - N )  = 0. Also consider 
Qactuar(0) = Bactuai ,0 ,  while the adaptive algorithm as- 
sumes that Qcopy(0) := BcoPy,o. Furthermore, d ( 0 )  is the 
initial output of the primary path. Then, for 0 5 k 5 
M(finite horizon): 
2. Form hg (with the available estimate of the parameter 
vector @(k)), 
3. Form the control signal u(k)  = h*,I@(k), 
4. Apply the control signal to the secondary path. The 
actual output and the new state vector have dynamics 

Qactual(k + 1) = As(k )&c tua l (k )  + & ( k ) u ( k )  
Y(k) = c s ( k ) ~ a c t u a l ( k )  + D s ( k ) U ( k )  (11) 

5.  Propagate the internal copy of the state vector and the 
output of the secondaly path as 

ocopy(k. + 1) = A(k)Ocopy(k)  + Bs(k . )~ (k )  
!/CO&) = Cs(k)&opy(k)  + Ds(k.)u(k) (12) 

6. Form the derived measurement, m(k),  using the direct 
measurement e ( k )  anld the copy of the output of the sec- 
ondary path m ( k )  = e(k)+ycopy(k). Note that e ( k )  is the 
error measured after the control signal u ( k )  is applied. 
7. Use the H,-optirnal estimator’s state update, Equa- 
tions (S), to find the .H,-optimal estimate of the optimal 
IIR filter parameters in Figure 3 (i.e. @(k + 1)). Note 
that d ( k  + 1) should also be stored for the next estimation 
update. 
8. If k 5 M ,  go to 2.  
The example in the following section indicates that this 
algorithm performs well. We are currently investigating 
the impact of the use of ycopy in this algorithm. 

5 Simulation 

This section examines the performance of the adap- 
tive algorithm described in Section 4. For the sim- 
ulations in this section, second order systems, p(,) = 

(with different damping ratios and resonance frequencies) 
are used as primary and secondary paths. The primary 
path is unknown to the adaptive algorithm. We use a 
second order adaptive IIR filter (and hence the parame- 
ter vector for the IIIl filter is of length 5 ) .  We examine 

out feedback contamination. For the feedback path an- 

is used. A multi-tonesignal, x(k) = lOsin(2sfikAt) 
(where f1 = 3.0, f2 = 4.5,  and f3 = 15 Hz), is used as 
the reference signal. As measurement noise, Vm(k), we 

1-0.3 1-0.3 
(2+0.4-~0.8)(~+0.4+~0.8) 7 and ’(’1 = (~+0.65-jO.7)(~+0.65+j0.7) ’ 

the performance of the adaptive IIR filter with and with- 

2-0.3 other second order vstern, F ( z )  = ~++o.2~~o.75)(~+0.2+~o.75~ I 

3 

use a zero mean, normally distributed random variable 
with variance 0.01. Furthermore, At = 0.01 seconds and 

Figure 4 captures the performance of the adaptive IIR fil- 
ter with the multi-tone reference signal described above 
when no feedback contamination exists. The error plot 
indicates an effective cancellation of the output of the pri- 
mary path in roughly 1.5 seconds. Figure 5 clearly indi- 
cates that the existence of a feedback path from the output 
of the adaptive filter to the reference signal, results in a 
slower convergence of the adaptive IIR filter. Neverthe- 
less, the adaptive filter successfully reduces the error in 
noise cancellation. 

Po = 0.051. 

6 Conclusion 

We have introduced a systematic, estimation-based ap- 
proach to the design of adaptive IIR filters. This work 
extends our previous results in 131 (where an estimation- 
based approach to the design of FIR filters is introduced). 
We have also proposed an appropriate framework in which 
an IIR (as well as an FIR) filter can be designed when 
the reference signal is contaminated by a feedback from 
the output of the adaptive filter. The proposed algorithm 
uses an H ,  filtering solution to  limit the worst case en- 
ergy gain from the measurement disturbance and initial 
condition uncertainty to  the residual error energy. We 
have shown that this worst case energy gain is unity, and 
have exploited the structure of the formulation to simplify 
the filtering solution. 
In our view, the proposed formulation in this paper pro- 
vides an appropriate framework for robustness studies of 
adaptive filters. Furthermore, systematic optimization of 
the filter parameters (such as the order of the IIR filter) 
may be investigated. 

Appendix A: Adaptive IIR Filter Design When 
Feedback Contamination Exists 

Figure 6 reflects the block diagram for an approximate 
model of the primary path when a feedback path from the 
output of the IIR filter to its input exists. The deriva- 
tion of an adaptive IIR filter in this case paralles that in 
Sections 2 and 3. Therefore, only the state space repre- 
sentation of this approximate model is outlined here: 

F ( k + l )  F k  

v r  
A 

W(k + 1) 4 2 N + l ) X ( 2 N + l )  0 

where p(k) is the state vector for the feedback path, and  
h k  and W ( k )  are the same as in Sectioti 2 .  I .  .Note I I l i i t  

where the contamination of the reference signal with the 
feedback from the output of the adaptive filter is evident. 
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For this system the derived measured output, m(k) ,  is 
described as 

- Error in Noise Cancellation : d(k)-y(k) 

while the quantity to be estimated, s ( k ) ,  is 

W ( k )  

4 k )  

Lk 

s ( k )  = 7 D,(k)h; -CS(k) 0 [ [ Q(k)  ] 
Note that HI,  = LI, . Obviously, system dynamics are non- 
linear in IIR filter parameters. The disturbance attenua- 
tion criterion of Equation (6) can now be used to pose a 
nonlinear H,-filtering problem. The approximate linear 
solution to this problem parallels that in Section 3 and is 
not repeated here. It is clear that the above mentioned 
formulation also applies when the adaptive IIR filter is 
replaced with an adaptive FIR filter. 
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Fig. 4: The performance of the adaptive IIR filter in cancellation 
of the output of the secondary without feedback contamination 
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Fig. The performance of the adaptive IIR Iilter when the 
reference signal in the presence of feedback contamination. Note 
that for clarity, y(k) and d(k) are plotted for only 2.5 seconds. 
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Fig. 6: Block diagram of the approximate model for the primary 
path in the presence of the feedback path 
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