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The detection of signals with varying frequency is important in many areas of physics and astrophysics. The
current work was motivated by a desire to detect gravitational waves from the binary inspiral of neutron stars
and black holes, a topic of significant interest for the new generation of interferometric gravitational wave
detectors such as LIGO. However, this work has significant generality beyond gravitational wave signal
detection. We define a fast chirp transform �FCT� analogous to the fast Fourier transform. Use of the FCT
provides a simple and powerful formalism for detection of signals with variable frequency just as Fourier
transform techniques provide a formalism for the detection of signals of constant frequency. In particular, use
of the FCT can alleviate the requirement of generating complicated families of filter functions typically
required in the conventional matched filtering process. We briefly discuss the application of the FCT to several
signal detection problems of current interest.

PACS number�s�: 04.80.Nn, 02.30.Nw, 84.40.Ua, 95.75.Pq

I. INTRODUCTION

The detection of periodic signals is a well-developed art.
In contrast, the detection of signals with variable frequency
is an active area of research in signal processing. Consider-
able progress has been made in recent years using a variety
of time-frequency techniques which include wavelets, bilin-
ear transforms, and short time Fourier transforms �STFT’s�
�1,2�.
In this paper, we consider the detection of deterministic

signals with unknown parameters. The case of deterministic
signals with unknown amplitude, phase, frequency, and ar-
rival time has been treated in the literature �3,4�. In this pa-
per, we generalize to an arbitrary number of parameters and
consider signals with a deterministic, but parametrized, fre-
quency evolution. We call these ‘‘variable frequency sig-
nals.’’ Specifically, we consider signals of the form

hs� t ��� A� t �cos„�� t ,�0 , . . . ,�M �…, 0�t�T ,
0 otherwise,

�1�

where �(t ,�0 , . . . ,�M) is real and the ��0 , . . . ,�M	 repre-
sent various parameters which describe the phase evolution
�e.g. frequency, frequency derivative, etc.�. In general, �( )
may depend non-linearly on time. For this paper, the ‘‘in-
stantaneous frequency’’ of hs must be a well-defined quan-
tity and the frequency evolution of the signal must be well
resolved in the data. Variable frequency signals include the
class of signals usually known as chirps, i.e. signals which
have a monotonically increasing or decreasing instantaneous
frequency. Such signals appear in many contexts, such as
almost-periodic signals with a small frequency drift or peri-
odic signals emitted from accelerated systems. Chirps are
discussed often in the literature of signal processing �5,4,2�.
We will concentrate on chirp signals in order to simplify the
description of the chirp transform algorithm.
A standard technique for the detection of signals in the

presence of noise is the ‘‘matched filter’’ technique �3,6�.

Detection of a signal hs(t) in the presence of white noise in
a data stream h(t) of length T is based on the matched filter
output:

S��
0

T
dt hs� t �h� t ���

0

T
d
h f ilt�
�h�T�
�, �2�

where h f ilt(t) is an optimal filter function in the time do-
main. For white noise, the optimum filter has an impulse
response given by h f ilt(
)�hs(T�
), in the interval 0�

�T . To detect a signal beginning at time t0 in a data stream
of arbitrary length we compute the quantity:

S� t0���
��

�

d
 h f ilt�
�h�� t0�T ��
� , �3�

where h(t) is zero outside a finite region of interest. When
colored noise is present, it is conventional to work in the
frequency domain. For matched filtering of real signals with
an unknown arrival time, one constructs a signal estimator of
the form

S� t0��4 Re� �
0

�

d f
h̃� f �h̃ s*� f �e�i2� f t0

Sh� f �
� , �4�

where h̃( f ) is the Fourier transform of the signal plus noise,
h(t), defined as

h̃� f ���
��

�

dt h� t �ei2� f t, �5�

h̃ s( f ) is the Fourier transform of the signal waveform and
Sh( f ) is the one-sided noise power spectral density. An op-
timum filter output is calculated for each realization of hs
from Eq. �1� using different values of the parameters. The
approach of matched filtering thus requires the construction
of a ‘‘dense’’ set of signal waveforms which cover the pa-
rameter space of possible signals.
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Other approaches to the variable frequency detection
problem include techniques based on either synthesizing a
multichannel filterbank �7� or resampling the data at a vari-
able rate �8,9�. These techniques are used widely in the radio
pulsar community and, like the conventional matched filter-
ing approach described above, differ significantly from the
algorithm presented here.
Just as the Fourier transform can be considered a form of

matched filtering using a dense set of sine and cosine func-
tions appropriate for periodic signals of unknown amplitude
and phase, we wish to define a transform which performs
matched filtering for a dense set of variable frequency sig-
nals with unknown parameters. By using the Fourier trans-
form for periodic signals, we avoid the need of explicitly
storing and computing the individual filter functions, i.e. the
sine and cosine functions in the time domain. Analogously,
the appropriate transform for variable frequency signals will
avoid the need of generating a large set of filter functions and
will provide a prescription for densely covering the set of
possible signal waveforms. We will informally call the trans-
form for variable frequency waveforms a ‘‘chirp transform.’’
The term ‘‘chirp transform’’ has been used elsewhere in

the literature. For instance, Oppenheim et al. �10� describe a
‘‘chirp transform algorithm’’ which is a special case of the
‘‘chirp-z transform.’’ The chirp-z transform is well-known
and can be used to evaluate quadratic chirps. The method
described in our paper is general and not constrained to qua-
dratic chirp functions. We call the algorithm described in this
paper the ‘‘fast chirp transform’’ �FCT�.
The techniques discussed in this paper appear to be re-

lated to filter bank design, to wavelet analysis, and to
STFT’s. In fact, the chirp transform can be viewed as a pre-
scription for coherently adding the outputs of a bank of
variable-length STFT’s with a particular time-domain rela-
tionship. Thus, the fast chirp transform may already exist in
some other formalism in the signal processing literature, but
we are currently unaware of it. The work of Schutz �11� and
of Williams and Schutz �12� describes an approach which is
similar in several aspects, but differs in that constant length
STFT’s are used rather than variable-length transforms.
In Sec. II, we give the discrete forms of the matched filter

outputs and discuss how these may be expressed in the form
of the discrete analog to generalized Fourier integrals. In
Sec. III we derive the two-parameter fast chirp transform that
can be used to evaluate the discrete matched filter expres-
sions. In Sec. IV we generalize the definition of the FCT to
an arbitrary number of parameters. In Sec. V we briefly dis-
cuss several applications of the fast chirp transform.

II. DISCRETE MATCHED FILTERING

The discrete forms of the time-domain and frequency do-
main matched filter outputs �Eqs. �2� and �4�� are given by

S��0 , . . . ,�M �

� 

j�0

N0�1

hs� j ,�0 , . . . ,�M �h� j �, and �6�

S� j0 ,�0 , . . . ,�M �

�
4
N0
Re� 


k0�0

N0�1 h̃�k0�h̃ s*�k0 ,�0 , . . . ,�M �e�i2� j0k0 /N0

Sh�k0�
� .
�7�

The Appendix shows that for variable frequency waveforms,
hs(t)�A(t)cos„�(t ,�0 , . . . ,�M)…, the discrete matched fil-
ter outputs can be expressed as generalized Fourier integrals,
and in discrete notation take on a particularly simple form:

S��0 , . . . ,�M ��Re� 

j0�0

N0�1

Gj0e�i�( j0 ,�0 , . . . ,�M)� , �8�

S� j0 ,�0 , . . . ,�M ��
4
N0
Re� 


k0�0

N0�1

H̃k0e
�i�(k0 , j0 ,�0 , . . . ,�M)� ,

�9�

where Gj0 and H̃k0 can be considered as the time or fre-
quency series to be transformed, and �(k0 , j0 ,�0 , . . . ,�M)
is a real phase function of the form given in Eq. �A9�.
In the next section we define the chirp transform and

show how it can be used to evaluate discrete transforms of
the type shown in Eqs. �8� and �9�. Appropriate forms of the
FCT will replace both the forward and inverse transforms
contained in Eqs. �8� and �9�. An inverse FCT is not appli-
cable to the detection problem and will not be considered in
this paper. The above formulation of the matched filtering
process included the starting phase as a search parameter. An
alternative approach is to convolve the signal with both the
in-phase, cos(�), and quadrature-phase, sin(�), filters and
then sum the squares of the results. This formulation is in-
dependent of the starting phase. In order to make the chirp
transform applicable to both formulations and to a wider
class of problems in general, the Re� � operator will not be
included in the definition. If necessary, this operator can be
applied after the transform.

III. THE TWO-PARAMETER FAST CHIRP TRANSFORM

A. Example: quadratic chirp „linear frequency drift…
As an initial example, we consider the problem of the

detection of a quadratic chirp, e.g. a signal of the form
hs(t)�A(t)cos„2�( f t� 1

2 ḟ t2)…. We wish to detect this sig-
nal by matched filtering with a dense set of quadratic chirp
waveforms. This requires evaluation of the sums of the form
in Eq. �6�. Note that if ḟ were zero, the signal waveform
would be periodic and we might discretely sample the input
signal and then compute a power spectral estimate using the
fast Fourier transform �FFT�.
Here we define a FCT for the quadratic chirp analogous to

the FFT. This definition will be generalized to an arbitrary
parameter frequency waveform in the next section. For sim-
plicity we first define the discrete chirp transform �DCT� for
the quadratic chirp in analogy with the discrete Fourier trans-
form �DFT�:
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H �k0 ,k1	� 

j0�0

N0�1

h j0e
i2�[k0( j0 /N0)�k1( j0 /N0)

2], �10�

where h j0 is the discretely sampled data. The quadratic na-
ture of the chirp is specified by the term ( j0 /N0)2 in the
exponential. If k1 is zero, we have the usual DFT.
To derive the fast chirp transform, we begin by breaking

the interval � j0�0, . . . ,N0�1	 into a set of contiguous sub-
intervals

H �k0 ,k1	� 

j1�0

N1�1



j0� j0

min( j1)

j0
min( j1�1)�1

h j0e
i2�[k0( j0 /N0)�k1( j0 /N0)

2],

�11�

where j0
min( j1) is the lower boundary of each of the inter-

vals. The requirement that the intervals be contiguous im-
plies j0

min( j1�1)� j0
min( j1)�n0( j1), where n0( j1) is the

number of points in the interval.
The boundaries are chosen as follows: we demand that the

term k1( j0 /N0)2 change by no more than � for values of k1
appropriate for the quadratic chirp signals being considered.
If the term k1( j0 /N0)2 changes by more than � over a single
sample, then the signal is not considered to be finely enough
sampled to resolve the phase evolution. This limitation is
analogous to the Nyquist sampling limit for periodic signals.
Requiring that the term k1( j0 /N0)2 remain relatively con-
stant over a sub-interval allows us to approximate the DCT
as

H �k0 ,k1	� 

j1�0

N1�1

ei2�[k1„j0min( j1)/N0…2]

� 

j0� j0

min( j1)

j0
min( j1�1)�1

h j0e
i2�k0( j0 /N0) �12�

and we note that the second summation can now be com-
puted as a fast Fourier transform. We further demand that the
term k1„j0min( j1)/N0…2 increment by a constant amount from
one sub-interval to the next. The requirement that the incre-
ment be less than � for the maximum value of k1 , k1

max ,
specifies N1�2k1

max , with the ‘‘Nyquist’’ restriction that
k1
max�N0/4 for the case of a quadratic chirp. We can then
write

H �k0 ,k1	� 

j1�0

N1�1

ei2�k1( j1 /N1) 

j0� j0

min( j1)

j0
min( j1�1)�1

h j0e
i2�k0( j0 /N0),

�13�

where we have anticipated that we will evaluate the sum for
integral values of k1 using a standard FFT. Finally, we ex-
press the inner sum in standard FFT form by extracting a
phase factor and we define the two-parameter FCT, C �k0 ,k1	 ,
as

H �k0 ,k1	�C �k0 ,k1	

� 

j1�0

N1�1

ei2�k1( j1 /N1)� ei2�k0[ j0
min( j1)/N0]

� 

j0�0

N0( j1)�1

h j0� j0
min( j1)e

i2�k0( j0 /N0)� . �14�

As before, n0( j1) is the number of points in the interval. We
call k0 and k1 the ‘‘conjugate variables’’ of the linear and
quadratic terms, respectively, in the same sense that fre-
quency and time are a conjugate variable pair. Note that both
summations can be implemented using FFT’s and thus we
are justified in calling the transform a fast chirp transform.
The non-linearity of the quadratic chirp is absorbed into the
specification of the boundaries of the contiguous intervals.
This is the key concept of the FCT. Note that the definition
of C �k0 ,k1	 is general and does not depend explicitly on the
quadratic nature of the phase evolution. The same definition
will apply to other non-linear phase evolution functions.
We may also write

C �k0 ,k1	� 

j1�0

N1�1

ei2�k1( j1 /N1)C �k0 , j1	 , �15�

where we have used the notation C �k0 , j1	 to indicate that it is
a partial transform, i.e. transformed over one index, j0, but
not the other, j1. Equation �15� illustrates an interesting fea-
ture of the FCT, which is important in implementation con-
siderations. Although the number of points in an interval,
n0( j1), may be small, the partial transform, C �k0 , j1	 , re-
quires evaluation at a large number of values of k0, for ex-
ample at N0 values of k0. This is equivalent to calculating
the oversampled FFT of the individual intervals with an
oversampling factor of N0 /n0( j1). The problem of comput-
ing the C �k0 , j1	 thus reduces to the problem of estimating the
oversampled spectrum of each interval. The oversampled
spectrum may be calculated exactly using the fractional Fou-
rier transform �FRFT�. Fast methods have been developed
for evaluating FRFT’s �13� and it can be shown that the
calculation of the values of the individual oversampled
FFT’s that enter into C �k0 , j1	 in Eqs. �14� and �15� requires
O„N0log2n0( j1)… operations to be computed exactly. The
computation required to calculate the entire set of FRFT’s
can be shown to be O„N1N0log2(N0 /N1)…. The phase fac-
tors, exp�i2�k0„j0min( j1)/N0…� in Eq. �14� are easily com-
puted as part of the same formalism.
Taking into account the evaluation of the inner and outer

sums separately, the number of operations required for the
evaluation of the FCT can be shown to be

Nops�O�N1N0log2N0�, �16�

which is at least as efficient as the matched filter approach.
The inequality indicates that the evaluation requires less
computations if approximations are used in evaluating the
oversampled FFT’s or if a coarser sampling of the FCT over
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k0 values is used. We will discuss the issue of computational
efficiency further in Sec. III D below.

B. Accuracy of the approximations

How accurately can the FCT approximate the discrete
matched filter output? There are three types of approxima-
tions to be considered: �1� Possible use of the stationary
phase approximation in deriving a form for the matched filter
output; �2� The constant phase approximation used to derive
the discrete form of the FCT; and �3� Possible use of ap-
proximations in calculating the oversampled FFT’s that enter
into the FCT. We will consider each of these approximations
in turn.

�1� There may be some error due to the stationary phase
approximation itself �Appendix� if this is used to approxi-
mate the Fourier transform of the signal waveform. This is
not inherently part of the FCT, and we will not discuss this
approximation here since it depends on the specific wave-
form being analyzed. However, we note that the stationary
phase approximation can be extremely accurate in practice
�14,15�.

�2� The error due to the constant phase approximation
�Eq. �12�� in the FCT itself is obviously dependent on the
value of the conjugate variables at which the FCT is evalu-
ated. If the value of k1 is small, the value of the increase in
the quadratic phase term as j1 goes to j1�1 is also small,
and the approximation will be very accurate. By analogy to
the Fourier transform, we expect the ‘‘frequency response’’
of the output of the matched filter computed by the FCT to
behave similarly to the frequency response of a power spec-
trum computed with an FFT. Specifically, just as there is a
roll-off in power for some periodic signals near the Nyquist
frequency, there will be a roll-off in the accuracy of the FCT
approximation to the matched filter output for signals near
the Nyquist limit of the conjugate variable, namely
k1(Nyquist)�N1/2. For values of k1 well below Nyquist, we
expect the accuracy of the FCT approximation to the
matched filter output to be very good. Furthermore, if we
wish higher accuracy in the FCT approximation, we can em-
ploy the same techniques used in Fourier analysis, namely,
we can ‘‘oversample’’ the FCT. This can be accomplished
by ‘‘zero-padding’’ of the outer ( j1) FFT.

�3� Finally, there may be errors due to the possible use of
approximations in calculating the oversampled FFT’s. As in-
dicated in Eq. �16�, the exact calculation of the oversampled
FFT’s requires O(N1N0log2N0) calculations. However, this
assumes that each interval is oversampled by a factor
N0 /N0( j1), which can be quite large. Typically, oversam-
pling factors of 22�23 are sufficient for an accurate approxi-
mation. If N1 is large, the computational requirements may
thus be reduced considerably by using such approximations
�i.e. O(N0log2N0) rather than O(N1N0log2N0)�. A quantita-
tive discussion of oversampling approximations is beyond
the scope of this paper.
We also remark that the FCT formalism lends itself natu-

rally to a variety of hierarchical search approaches. For in-
stance, consider Eqs. �14� and �15�. The outer sum is a co-
herent addition of the contributions from the individual

intervals. In order to implement a fast hierarchical search, we
could simply take the magnitudes of each C �k0 , j1	 and add
them as an incoherent sum over j1, giving a measure of the
incoherent power as a function of k0. Values of k0 with
significant incoherent power could then be examined in more
detail by performing the coherent summation over j1. This
could lead to a dramatic decrease in the required number of
computations, depending on the threshold set for the inco-
herent power summation step.

C. Implementation considerations

As an initial trial, we have implemented the two-
parameter FCT and tested it on several types of waveforms,
including the quadratic chirp discussed above and the ‘‘New-
tonian chirp’’ discussed in Sec.V A below. We have used
two implementations, one which uses a fixed length over-
sampling of the inner FFT, and one which uses a pre-
packaged 2D FFT algorithm.
In this section we will describe in more detail the 2D FFT

implementation in order to give further insight into the de-
tails of the two-parameter FCT algorithm. The 2D FFT
implementation is extremely simple to code although it is not
the most computationally efficient. It will be shown in the
next section that even so, it is nearly as efficient as the brute-
force matched filtering method.
The 2D FFT implementation of the FCT packs the initial

one dimensional data array, h j0, into a sparse two dimen-
sional array ĥ j0 , j1. The packing will be determined by the
j0
min( j1) array which is ultimately defined by the phase func-
tion �( j0). Once the data are packed appropriately, the FCT
is calculated using any pre-packaged 2D FFT routine. For
the rest of this discussion, it is assumed that N0 and N1 are
compatible with the 2D FFT routine being employed. This
usually means that these lengths are a power of two.
From Eq. �13�, the two parameter FCT may be written as

C �k0 ,k1	� 

j1�0

N1�1

ei2�k1( j1 /N1) 

j0� j0

min( j1)

j0
min

� j1�1 ��1

h j0e
i2�k0( j0 /N0).

�17�

By defining a two dimensional N0�N1 array such that

ĥ j0 , j1�� h j0, j0
min� j1�� j0� j0

min� j1�1 �,

0 otherwise,
�18�

Eq. �17� becomes

C �k0 ,k1	� 

j1�0

N1�1



j0�0

N0�1

ĥ j0 , j1e
i2�(k1 j1 /N1�k0 j0 /N0). �19�

As promised, C �k0 ,k1	 is the 2D FFT of the sparsely packed
array ĥ j0 , j1. For the case of a monotonic phase function that
satisfies �(0)�0 and �(N0)�N1, the array boundaries are
given by

j0
min� j1����1� j1�. �20�
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Note that we have the freedom to rescale �( j) so that N1
may be chosen arbitrarily.
The number of operations needed by the FCT implemen-

tation using a 2D FFT is the same as that needed by a two
dimensional FFT of order N0�N1:

Nfct�2D�O�N0N1log2N0N1�. �21�

D. Computational efficiency

For a matched filter operation using individual filters,
there is one Fourier transform to perform for each filter, thus
the number of computations, Nmf , is of order

Nmf�O�N1N0log2N0�, �22�

where N1 is the number of filter functions needed to cover
the space of possible waveforms, and N0 is the number of
samples in the time series or frequency spectrum. As shown
in Sec. III A using the fractional Fourier transform �FRFT�,
the FCT computation can be of order

Nfct�FRFT�O�N1N0log2N0�. �23�

Two approaches offer potential computational gains: �1�
Reducing the oversampling factor in computing the inner
FFT �discussed in Sec. III A�, and �2� relaxing the require-
ment of full resolution in the k0 variable. Reducing the over-
sampling factor can change the inner sum computation from
an O„N0N1log2(N0 /N1)… calculation to an O(N0log2N0) cal-
culation �see Sec. III A�. If N1�1 the total calculation of the
FCT will then be of order O(N0N1log2N1). This is poten-
tially a factor of O(log2N0 /log2N1) more efficient than the
conventional matched filtering technique. We emphasize that
the detailed coefficients in front of the scalings are not yet
known for computationally efficient implementations.
Significant computational gains are also potentially avail-

able by relaxing the requirement of full resolution in the k0
variable. Not all problems require the high k0 resolution that
the previously discussed FCT implementations deliver.
While the power is very localized in the k0 variable when the
value of k1 is that of the actual signal �and vice-versa�, the
power can be significant for values of k0 and k1 which si-
multaneously deviate from the actual signal values. The rea-
son for this is that the deviation in k0 can be compensated for
by a deviation in k1, providing a reasonable correlation of
the matched filter template with the actual signal. The deter-
mination of the optimum sampling resolution is closely re-
lated to the calculation of the ambiguity function �3�. Discus-
sions of techniques for calculating the ambiguity function
have been given by Owen �16�, Mohanty and Dhurandhar
�17�, and Owen and Sathyaprakash �18� for special cases of
the types of chirp functions considered here.
The FCT may be evaluated at lower resolution by reduc-

ing the order of the 2D array ĥ j0 , j1 �Sec. III D� from N0
�N1 to (�N0)�N1 where ��1. As long as (�N0)�N1
�N0, we can still pack the original N0 data points into this
smaller array. The resulting FCT will have a coarser k0 reso-
lution but it will take O(�N1N0log2N0) operations to perform
�again neglecting terms of order log2N1). Alternatively, in the

straightforward evaluation of the FCT contained in Eq. �15�,
the sums over j1 are simply evaluated at a decimated set of
k0.
We remark that sampling the FCT at lower resolution can

be used as part of a hierarchical algorithm, i.e. the FCT is
first calculated at lower resolution and values of k0 are iden-
tified having excess signal strength. The FCT is then evalu-
ated on a finer grid of k0 values near those values of k0
exhibiting the excess signal.

E. Selection of the range for evaluation of the FCT

We can select ranges of k0 and k1 to be evaluated by a
process analogous to a heterodyne operation on a periodic
signal. Selection of the range of k0 is done by the usual
process of down-conversion and low-pass filtering and we
will not consider it further here. For the parameter k1 the
process is different in that no low-pass filtering is required,
and because the range of k1 can depend on k0, i.e. the con-
jugate parameter ranges need not be independent. This pro-
vides considerable flexibility in determining the shape and
volume of parameter space that can be efficiently searched.
Suppose we wish to compute the FCT for a range of k1

centered on k1
mid . Re-writing the two-parameter FCT includ-

ing the k1
mid term, we obtain

H �k0 ,k1	� 

j0�0

N0�1

h j0e
i2�[k0( j0 /N0)�„k1�k1

mid(k0)…( j0 /N0)2],

�24�

where we have explicitly allowed k1
mid to depend on k0. As

before, assuming that k1�k1
mid is sufficiently small, we take

the quadratic phase term out of the inner summation to ob-
tain

H �k0 ,k1	�C �k0 ,k1	

� 

j1�0

N1�1

ei2�k1( j1 /N1)

�� ei2�[k0„j0min( j1)/N0…�k1mid(k0)( j1 /N1)]

� 

j0�0

N0( j1)�1

h j0� j0
min( j1)e

i2�k0( j0 /N0)� . �25�

To further simplify the notation for the outer sum, we define

��k0 , j1 , j0
min ,k1

mid��k0� j0
min� j1�/N0��k1

mid�k0�� j1 /N1�
�26�

to obtain

C �k0 ,k1	� 

j1�0

N1�1

ei2�k1( j1 /N1)� ei2��(k0 , j0
min ,k1

mid)

� 

j0�0

N0( j1)�1

h j0� j0
min( j1)e

i2�k0( j0 /N0)� . �27�
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It is important to note that N1 can be chosen to be any inte-
ger less than or equal to the ‘‘Nyquist limit,’’ N0/2. This is
due to the fact that we can choose the boundaries, j0

min( j1),
of the intervals arbitrarily as long as the phase change from
the quadratic term is kept sufficiently small. Thus, we are
free to choose any range of k1 around k1

mid as long as the size
of the range does not exceed the Nyquist limit.

IV. GENERALIZED DEFINITION OF THE FCT

Because the non-linearities of the phase evolution enter
into the FCT only in the boundaries of the sub-intervals, we

may generalize the definition of the FCT to the case of a sum
of non-linear phase evolution terms. In particular, consider
the DCT:

H �k0 , . . . ,kM�1	

� 

j0�0

N0�1

h j0exp� i2�� k0 j0N0 � 

p�1

M�1

kp
�p� j0�
�p�N0�

� � ,
�28�

where the ��p( j0):p�1, . . . ,M�1	 are a set of parameter-
less, non-linear phase functions. The corresponding FCT is

C �k0 , . . . ,kM�1	
� 

jM�1�0

NM�1�1

ei2�kM�1[( jM�1)/(NM�1)] . . . exp� i2�k1� j1min� j2 , . . . , jM�1�

N1
� �

� 

j1�0

N1( j2 , . . . , jM�1)�1

ei2�k1( j1 /N1)exp� i2�k0� j0min� j1 , . . . , jM�1�

N0
� �

� 

j0�0

N0( j1 , . . . , jM�1)�1

ei2�k0( j0 /N0)h j0� j0
min( j1 , . . . , jM�1) , �29�

where the j p
min( j p�1 , . . . , jM�1) and Np( j1 , . . . , jM�1) are specified by the phase functions ��p( j0):p�1, . . . ,M�1	, and

the �Np :p�1, . . . ,M�1	 are determined by the maximum allowed values of the �kp :p�1, . . . ,M�1	. As before, the
intervals specified by the j0

min( j1 , . . . , jM�1) are contiguous. Thus for each non-linear phase function �p( j0) there is a
corresponding ‘‘conjugate variable,’’ kp .
In analogy with Eqs. �18� and �19�, the M parameter FCT may be written in the form of an M-dimensional discrete Fourier

transform by defining the matrix ĥ j0 , . . . , jM�1
such that

ĥ j0 , . . . , jM�1
�� h j0 j p�

�p� j0�Np
�p�N0�

� j p�1for all p��1,M�1� ,

0 otherwise.
�30�

With this definition, Eq. �29� becomes

C �k0 , . . . ,kM�1	
� 

jM�1�0

NM�1�1

••• 

j0�0

N0�1

ei2�(
kM�1 jM�1
NM�1

�•••�
k0 j0
N0

)ĥ j0 , . . . , jM�1
. �31�

Note that the interval boundaries, j p
min , may be determined from Eq. �30�.

Finally, we consider how the range for evaluation of the generalized FCT can be specified, analagous to Eq. �27� for the
two-parameter case. To specify the region for which the FCT is to be evaluated, we add a term to each of the exponential terms
in Eq. �29�. As for the two-parameter case, Eq. �26�, we define

�p�kp�1 , j p , j p�1
min ,kp

mid��kp�1� j p�1
min /Np�1��kp

mid� j p /Np�, �32�

where j p�1
min is a function of � j p , . . . , jM�1	 and kp

mid can depend on �k0 ,k1�k1
mid , . . . ,kp�1�kp�1

mid 	. The parameter space
searched by the FCT will then be kp

mid	Np/2. This provides considerable flexibility in determining the shape and volume of
parameter space that can be efficiently searched. We can now write

C �k0 , . . . ,kM�1	
� 

jM�1�0

NM�1�1

ei2�kM�1[( jM�1)/(NM�1)]ei2��M�1(kM�2 , jM�1 , jM�2
min ,kM�1

mid ) 

jM�2�0

nM�2( jM�1)�1

ei2�kM�2[( jM�2)/(NM�2)]

�33�
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�•••

�ei2��2(k1 , j2 , j1
min ,k2

mid) 

j1�0

n1( j2 , . . . , jM�1)�1

ei2�k1( j1 /N1)ei2��1(k0 , j1 , j0
min ,k1

mid)

� 

j0�0

n0( j1 , . . . , jM�1)�1

ei2�k0( j0 /N0)h j0� j0
min( j1 , . . . , jM�1) .

V. DISCUSSION: APPLICATION TO DETECTION
OF VARIABLE FREQUENCY SIGNALS

A. Detection of gravitational waves from the binary inspiral
of neutron stars and black holes

One of the primary goals of the new generation of laser
interferometric gravitational wave detectors is the detection
of gravitational waves from the binary inspiral of compact
objects, specifically neutron stars �NS� and black holes
�BH’s�. There is a large literature written on the subject of
matched filtering for detection of gravitational waves using
laser interferometers �see e.g. �19–21��. The matched filter-
ing techniques are based on Eq. �4�, where h̃( f ) is the Fou-
rier transform of the gravitational strain generated from the
differential output of the interferometer, the h̃ s( f ) are the
Fourier transforms of theoretically generated binary inspiral
signal waveforms, and Sh( f ) is the measured power spectral
density of the interferometer.
A significant amount of work has gone into the calcula-

tion of binary inspiral waveforms �called ‘‘templates’’�, the
spacing of such templates to achieve near-optimal sensitiv-
ity, and the cost of generating such templates in terms of
compute cycles and storage requirements �22,16,18,23,24�.
Current matched filter techniques require thousands to tens
of thousands of templates to cover the space of expected
waveforms depending on the mass range of the binary sys-
tems considered.
The method of chirp transforms described here does away

with the requirement of generating thousands of individual
templates and provides a natural way to cover the space of
allowed waveforms completely. To apply the chirp transform
to the binary inspiral problem, we make use of the stationary
phase formalism. Droz et al. �14� have shown that the sta-
tionary phase formalism can be used to provide an accurate
approximation to the Fourier transform of the time-domain
waveforms of inspiraling binaries as calculated in the ‘‘New-
tonian’’ approximation. This is essentially an application of
the stationary phase approximation �SPA� discussed in the
Appendix to the case of gravitational waveforms. Damour
et al. �25,15� have shown that the binary inspiral waveforms
can be accurately calculated using the SPA and an alternative
formalism based on ‘‘P-approximants.’’ They note that care
must be taken in the treatment of the termination of the
waveform at the time of the final plunge and merger.
In order to illustrate the use of the FCT in gravitational

wave detection, we discuss the example of a ‘‘post-
Newtonian’’ �PN� expansion. The canonical PN stationary

phase waveforms for binary inspiral up to 2PN order are of
the form �18�

h̃ s� f ��� 5�

96M�
� 1/2� Mtot

�2M�
� 1/3f�7/6T�

�1/6exp� i�� f �� , �34�

�� f ��2� f tc�2�c��/4�
3

128� ���5/3�� 3715756 �
55
9 � �

���1�16���2/3�� 15293365508032 �
27145
504 �

�
3085
72 �2���1/3� ,

where, for simplicity, we consider only one polarization. The
variables have been defined as usual (M� is the mass of the
sun, T� is GM� /c3 and has a value of approximately
4.925�10�6s, Mtot is the total mass of the binary system,
���/Mtot , � is the reduced mass of the binary, tc is the
time of coalescence, �c is the phase at coalescence�, and we
have defined

��
�MtotT�

M�

f . �35�

It can be seen that the stationary phase waveforms have
frequency dependent amplitudes and phase functions that are
expansions in powers of the frequency, f. In particular,

�� f ����2�tc f��0 f�5/3��1 f�1��1.5f�2/3��2 f�1/3,
�36�

where � is a phase constant and the �x are coefficients of the
frequency expansion which depend on Mtot , M� , T� , and
� .
In order to apply the FCT, we construct the discrete ver-

sion of the matched filter output, Eq. �7�, where h̃(k0) is the
Fourier transform of the discretely sampled interferometer
strain output, h̃ s(k0) are the stationary phase waveforms
given in Eq. �34� above, and Sh(k0) is the noise power spec-
tral density of the interferometer.
The FCT is then used to evaluate the matched filter, with

a resulting output,

C �tc ,�0 ,�1 ,�1.5 ,�2	 . �37�

In this expression, 2�tc is the conjugate variable of the lin-
ear f term; �0 is the conjugate variable to the Newtonian
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term, f�5/3, �1 is the conjugate variable to the 1PN term,
f�1, etc. Numerous considerations arise in selecting the
search ranges for the conjugate parameters. As discussed by
several authors �23,18�, spinless low-mass binaries should be
reasonably well detected by a three parameter search over
�tc ,�0 ,�1	. The conjugate parameters �0 and �1 fulfill a
function similar to the parameters 
0 and 
1 that appear in
the literature �e.g. �23,18�� which represent the Newtonian
and 1PN contributions to the time to coalescence, respec-
tively. Thus, in the case of spin-less low-mass binaries,
��1.5,2	 can be considered functions of ��0,1	 . Owen and
Sathyaprakash �18� point out that 
�0,1.5	 may be more con-
venient search parameters. Hence, ��1,2	 become functions of
��0,1.5	 . In this case, the ‘‘heterodyne’’ approach �see the
discussion following Eq. �31�� can be used with the depen-
dent parameters to reduce the search space to that of spin-
less 2PN waveforms.
To search for binaries with spin, additional independent

parameters will be needed and thus it will be useful to search
in a range around the spin-less PN expansion �or other ex-
pansion�. This can also be accomplished using the method
described in the discussion following Eq. �31�. The tech-
nique will be particularly useful for massive binaries for
which spin interactions could be significant. An important
step will be to estimate limits to the range of the conjugate
variables in the FCT analysis due to spin effects. The FCT
then provides a formalism for searching the complete wave-
form space, even if the exact waveforms are not known.
It will also be quite useful to enlarge the search region

beyond the space physically accessible by astrophysical bi-
nary systems. While no binaries are expected outside the
physically accessible regions, it is important to study the
characteristics of noise signals in regions close to the physi-
cally accessible regions. The FCT formalism provides a
straightforward way to tailor the analysis to a range of search
regions. This, of course, is also possible with conventional
template-based techniques.
The FCT formalism may be useful for expansions other

than post-Newtonian. In particular, we are very interested to
see whether the FCT formalism can be applied to the
P-approximants discussed very recently by Damour et al.
�15�. Also, as we remarked earlier, the FCT lends itself natu-
rally to hierarchical approaches for binary inspiral detection.
We note in particular the recent paper by Tanaka and Ta-
goshi �24� which discusses efficient hierarchical search algo-
rithms which have several similarities to the general FCT
algorithm.
In summary, the use of the FCT for detection of the chirps

from gravitational waves has several attractive features.
First, no explicit calculation and storage of gravitational
waveforms is required for the analysis. Only the order of the
PN expansion, the power-law exponents appearing in the ex-
pansion, and the range of the search parameters is important.
Second, waveforms with perturbations on the phase evolu-
tion such as those due to spins can be detected even if the
exact waveforms are not known since the FCT can be used to
search completely an arbitrary region of parameter space.
The only requirement is that the perturbation not involve
significant terms beyond those in the expansion considered

for the FCT. The FCT may therefore be very useful in the
search for BH-BH coalescence where the waveforms are not
precisely known �26�, or for sources to be detected by the
space-based gravitational detector, the Laser Interferometer
Space Antenna �LISA�, where the waveforms are also only
approximately known and phase perturbations are likely to
be present. Finally, the FCT formalism can be used to inves-
tigate the characteristics of noise signals in the neighborhood
of expected signals from binary inspiral.

B. Detection of rotating neutron stars

1. Acceleration searches

Pulsars are rotating neutron stars that spin with periods in
the range of approximately 1 ms up to hundreds of seconds.
Pulsars are detected primarily at radio and x/�-ray wave-
lengths. In the future, rotating neutron stars may also be de-
tectable as sources of gravitational waves. Detection of pul-
sars usually employs Fourier transform techniques to find the
periodic pulses. However, several effects complicate the de-
tection of pulsars and cause the pulsations to deviate from
being strictly periodic. For instance, the emission from pul-
sars in compact binary systems is Doppler shifted causing a
frequency variation on the time scale of the orbital period.
Likewise, the earth’s rotation and orbit can induce frequency
and phase variations that are dependent on the position of the
source on the sky. Rotating neutron stars can also have non-
negligible spin down effects, especially if the neutron star is
young. Any of these effects can be important at both radio
and x/�-ray wavelengths depending on the length of the ob-
servation. They are also likely to be important in future
searches for gravitational wave emission from rotating neu-
tron stars due to r-modes, or from older rotating neutron stars
because of the earth’s orbit and rotation.
In the past, so-called ‘‘acceleration searches’’ have been

employed to detect pulsars with slowly varying frequency
�8�. These are essentially matched filter techniques imple-
mented either with templates, or equivalently, with ‘‘stretch-
ing’’ of the time or frequency variable. This requires indi-
vidual matched filter operation, one for each discrete
acceleration trial. The FCT analogue is that of the quadratic
chirp analysis discussed in Sec. III. The FCT also provides a
natural extension to searches beyond quadratic �acceleration�
effects.

2. Dispersion measure searches

Radio radiation emitted by pulsars travels through a dif-
fuse interstellar plasma known as the interstellar medium
�ISM� before reaching detectors on Earth. The dispersive
properties of the ISM cause individual radio pulses to
broaden in time. This dispersion broadening will reduce the
chances of detecting a given pulsar signal. The magnitude of
the dispersion effect is measured by a quantity called the
dispersion measure �DM�. If the DM is known, the disper-
sion effect can be removed from the pulsar signal using stan-
dard digital signal processing techniques. When searching
for new pulsars, the DM is rarely known and systematic
searches must be performed both in DM and in the pulsar
period.
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The effect of ISM dispersion may be removed from the
received signal by applying the following transformation
�27,7�:

S�DM ,t ���
��

�

Ŝ r� f �ei2� f te i2�DM�( f )d f , �38�

where Ŝ r( f ) is the Fourier transform of the received signal
and S(DM ,t) is known as the dedispersed signal. When
searching for new pulsars, one must generate several time
series corresponding to different values of the DM. The
above equation shows that S(DM ,t) is simply a chirp trans-
form of Ŝ r( f ). The FCT provides an efficient way to gener-
ate S(DM ,t) for several values of DM. Each of these time
series can then be searched for periodic signals.
When searching for pulsar signals, one typically ‘‘de-

tects’’ the total power in the signal by calculating
P(DM ,t)��S(DM ,t)�2 and then averages over a small
window of time. Each time series is then searched separately
using various pulsar detection techniques. The structure of
the FCT points to the possibility of a slightly different tech-
nique. Rather than searching each time series separately, one
first calculates P(t)�
DMP(DM ,t) and then searches this
time series for possible pulsar signals �see Sec. III B�. Using
the property that the sum of the squares is conserved under a
Fourier transform, the second set of FFT’s in the FCT does
not need to be performed in order to calculate P(t). Thus, a
highly efficient intermediary chirp transform can be used in-
stead of the complete FCT.

VI. SUMMARY

We have described an algorithm for the detection of sig-
nals with variable frequency. Standard detection algorithms
use matched filtering techniques which require both the com-
putation of a large set of task specific filter functions and a
prescription for densely covering the set of possible signal
waveforms. The fast chirp transform proposed in this paper
automatically precludes the need to generate specific filter
functions since standard FFT’s can be used in the implemen-
tation and the FCT immediately provides the prescription for
densely covering the waveform parameter space.
The FCT for a two parameter chirp was defined and then

generalized to N parameters with arbitrary phase functions.
A straightforward implementation of the FCT was discussed
and it was shown to be comparable in efficiency with the
brute-force matched filtering approach. Several approaches
to achieving even better computational efficiency were also
discussed.
The efficient detection of variable frequency signals has a

large number of practical applications. Of considerable inter-
est to the authors is the detection of gravitational waves from
NS and BH binary systems and the detection of radio waves
from pulsars. Another obvious area of application is radar-
sonar signal processing where target or transmitter motion
can cause Doppler frequency shifts in the received signal.
Other potential areas of application include communications
and image processing. A more detailed description of the

FCT and its application to the above problems will be the
subjects of future work.
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APPENDIX: THE STATIONARY PHASE
APPROXIMATION AND MATCHED FILTERING

1. Frequency-domain matched filtering

We begin by showing how the Fourier transform of wave-
forms such as those of Eq. �1� can be approximated in a way
that allows them to be expressed naturally in frequency-
domain matched filtering, Eq. �4�. The stationary phase ap-
proximation �see e.g. �28�; see also Ref. �19� and Refs.
�29,15� for a description in the context of gravitational wave
detection�, provides a prescription for approximating the
Fourier transform of a function of the form hs(t)
�A(t)cos„�(t)… �where A(t) and �(t) are real and ��(t) is
positive�:

h̃ s� f ��
1
2 � �

��

�

dt A� t � ei f��(t)��
��

�

dt A� t � e�i f��(t)�
�A1�

with �	(t)��(t)/ f	2�t . If t f exists such that ��� (t f)�0
or ��� (t f)�0, then t f is called a ‘‘stationary point.’’ Consid-
ering positive f and positive ��(t), only the second integral
in Eq. �A1� contains a stationary point. Hence, to leading
order, we can write �28�:

h̃ s� f ��
1
2���

�

dt A� t � ei[2� f t��(t)] �A2�

for f�0. Note that we compute h̃ s(� f ) using the Fourier
transform property of real functions: h̃ s(� f )� h̃ s*( f ).
If all derivatives of ��(t) up to order p are zero at t f ,

then the Fourier transform of hs may be approximated by

h̃ s� f ��A� f �exp� i�� f �� , �A3�

with components given by somewhat complicated but
straightforward expressions:

A� f ��A� t f �� p!
f 	� (p)� t f �	

�1/p ��1/p �

p , �A4�

and

�� f ��2� f t f��� t f �	�/2p , �A5�

where the sign of �/2p is positive or negative depending on
whether ��

(p)(t f) is positive or negative, respectively. In par-
ticular, for p�2, the following approximation holds:
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h̃ s� f ����

2A� t f �	��� t f �	�1/2ei[2� f t f��(t f )	�/4]. �A6�

The stationary phase approximation is accurate as long as the
amplitude of hs does not vary too quickly compared to the
time derivative of the phase, ��(t), and the effect of the
higher derivatives of �(t) on the phase evolution are small
compared to the effect of ��(t).
Using the form given in Eq. �A3�, we can now rewrite Eq.

�4�. Gathering all the amplitude terms together,

H̃� f �� h̃� f �
A*� f �
Sh� f �

, �A7�

we can express the matched filter output as

S� t0��4 Re� �
0

�

d f H̃� f �e�i�( f )� , �A8�

where
�� f ���� f ��2� f t0 . �A9�

Hence, the matched filtering operation in the frequency do-
main is expressed as an integral transform, specifically a so-
called generalized Fourier integral. In analogy with the dis-
crete Fourier transform �DFT�, we can write this in discrete
form as

S�
4
N0
Re� 


k0�0

N0�1

H̃k0e
�i�k0� . �A10�

The summation can be computed as a FCT.

2. Time-domain matched filtering

We note that for signal waveforms of the form, hs(t)
�A(t)cos„�(t)…, the expression �Eq. �2�� for time-domain
matched filtering yields directly

S�Re� �
0

T
dt h� t �A� t �ei�(t)� . �A11�

Such signals are of considerable interest and include periodic
signals with frequency drift. The integral transform in Eq.
�A11� can be represented in discrete form in the usual way as

S�Re� 

j0�0

N0�1

Gj0ei�( j0)� , �A12�

where
Gj0�h� j0�A� j0�, �A13�

and where h( j0), A( j0), and �( j0) are the discretely
sampled values of the continuous functions.
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